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Received May 24, 2019; accepted July 19, 2019; published online August 29, 2019

We investigate quantum-squeezing-enhanced weak-force sensing via a nonlinear optomechanical resonator containing a movable
mechanical mirror and an optical parametric amplifier (OPA). Herein, we determined that tuning the OPA parameters can consid-
erably suppress quantum noise and substantially enhance force sensitivity, enabling the device to extensively surpass the standard
quantum limit. This indicates that under realistic experimental conditions, we can achieve ultrahigh-precision quantum force
sensing by harnessing nonlinear optomechanical devices.
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1 Introduction

Cavity optomechanics (COM) has recently emerged as a ver-
satile platform for both fundamental studies of light-matter
interactions and practical applications ranging from opti-
cal communication to quantum metrology [1, 2]. In partic-
ular, COM sensors have achieved unprecedented sensitiv-
ity for measuring mass [3, 4], acceleration [5, 6], displace-
ment [7-10], and force [11-16]. Moreover, the sensitivity
of such sensors is constrained by the standard quantum limit
(SQL) [17] or a lower bound on the additional measurement
uncertainty determined by the balance between the shot and
back-action noise. However, the SQL has been surpassed us-
ing quantum non-demolition techniques [18-20] to achieve
sub-SQL sensitivity via quantum entanglement [21-23] or
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squeezing [24-31]. Squeezed states were studied early in
1927 [32], although an explosion of interest in them was trig-
gered 40 years ago when they were first used to detect gravita-
tional waves via supersensitive interferometry [11,24,33,34].
Experiments by injecting squeezed light into a COM res-
onator have successfully demonstrated sub-SQL sensitiv-
ity [35-38]. However, the inevitable injection losses hinder
the ultimate performance of COM sensors in practice.

To overcome this obstacle, COM sensing using an intra-
cavity optical parametric amplifier (OPA) has recently been
proposed to implement ultrahigh-precision position detec-
tion [39]. This scheme has the advantage that all the informa-
tion is imprinted on the deamplified momentum quadrature,
which induces limited signal suppression but simultaneously
brings about a dramatic reduction in the noise. Using such
squeezed resonators, the SQL can be attained precisely at a
mechanical resonance without injection losses [39]. Addi-
tionally, sub-SQL sensitivity can be achieved using an OPA in
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a dissipative COM system [40]. Nevertheless, none of these
previous works have considered the role of the optical phase,
particularly the OPA pump phase, in further enhancing the
sensitivity.

This paper aims to fill this gap by discussing the effects
of both the OPA gain and pump phase on force sensing in
a squeezed COM device. We show that tuning the OPA
parameters can considerably suppress quantum back-action
noise and enable the device to reach sub-SQL sensitivity
at a smaller COM coupling without losing quantum effi-
ciency. Unlike previous studies [39], our study focuses on the
squeezed quadrature and we determine that in the limit where
the cavity linewidth is much larger than any measurement fre-
quency of interest [41], the squeezed momentum quadrature
carries complete information regarding the weak-force sig-
nals, and the information about the added force contained
in the position quadrature can be safely ignored. Herein,
we focus on canonical quadrature squeezing; however, other
observables can also be squeezed, such as the photon num-
ber [42, 43]. Our research demonstrates that squeezed COM
devices are feasible and powerful enough to achieve ultrahigh
precision quantum measurement [44, 45].

2 Model and solution

Figure 1 shows the schematics of intracavity squeezing in
an OPA-assisted Fabry-Pérot cavity [46, 47]. Previous re-
searches on such squeezed quantum systems have usually
focused on enhanced mechanical cooling [48-51] or squeez-
ing [52-54] and enhanced light-matter coupling [55-57].
When light pressure couples to a movable mirror, coherent
states are transformed into squeezed states of light [58], and
this type of squeezing, referred to as ponderomotive squeez-
ing [59], can be only used to evade back-action and thus it is
less extensive than externally injecting a squeezed light [60]
or generating intracavity squeezing via an OPA [46]. We note

that in a recent experiment, the OPA effect was improved by
14 orders of magnitude via symmetry breaking at a micro-
cavity surface [61]. Other approaches to generate intracav-
ity squeezing include, e.g., Kerr media [62-64] or dissipative
COM devices [65-67]. We also note that by using mechanical
squeezing [68-71], the sensitivity of detecting small displace-
ments was improved by a factor of up to 7 [70].

To realize weak-force sensing with OPA, we assume that
only one optical mode is coupled to the mechanical mode.
Thus, the Hamiltonian of the COM system can be described
as [53]:

H0 = ~ωaa†a +
p2

2m
+

1
2

mω2
mx2 + ~

ωa

L
xa†a

+ i~G
(
eiθa†2e−2iωlt − e−iθa2e2iωlt

)
, (1)

where ωa denotes the optical resonant frequency; x and p re-
fer to the position and momentum operators of the vibrating
mechanical oscillator having an effective mass m and an an-
gular frequency ωm, respectively. In addition, a and a† are
the annihilation and creation operators of the cavity mode,
respectively. We have furthermore used G to denote the non-
linear gain of degenerate OPA with θ being the phase of
the pump field driving the OPA medium. For the sake of
simplicity, we define dimensionless position and momentum
operators of the mechanical mode as X = x

/
xzpf , P = p

/
pzpf ,

where xzpf and pzpf are the standard deviations of the zero-
point motion and momentum of the oscillator, respectively,
xzpf =

√
~/(mωm) , pzpf =

√
~mωm, and the operators X and

P satisfy the commutation relation [X, P] = i. Thus, in a ro-
tating frame, the Hamiltonian can be rewritten as follows:

H = ~∆aa†a +
~

2
ωm

(
X2 + P2

)
+ ~g0a†aX

+ i~G
(
eiθa†2 − e−iθa2

)
, (2)

where g0 = xzpfωa

/
L represents the single photon coupling

strength of the COM interaction. The first and second terms
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Figure 1 (Color online) (a) Schematics of the cavity optomechanical (COM) system consisting of a Fabry-Pérot cavity coupled to a degenerate optical
parametric amplifier (OPA). One or even two mirror coatings are usually directly placed on the spherical and polished surfaces of the nonlinear crystal that
generates the squeezed vacuum and produces parametric amplification [46, 47]. In this setup, an external weak force Fex acting on the mechanical resonator
can be measured with homodyne detection. (b) Frequency spectrum of the OPA-assisted COM system. An input laser drives the optical cavity at frequency ωl,
thus, a pump laser beam with frequency 2ωl is applied to the degenerate OPA. The dashed curve shows the static frequency shift g0X̄ at the cavity resonance
because of radiation pressure.
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in eq. (2) denote the sum of the free energy of the cavity
field and the mechanical mode without external forces, re-
spectively. And the last two terms respectively describe the
COM interaction and the contribution of an OPA. By intro-
ducing dissipation and noise terms, the Heisenberg-Langevin
equations can be written as:

Ẋ = ωmP,

Ṗ = −ωmX − γmP − g0a†a +
√

2γm ( fth + fex) , (3)

ȧ = −
(
i∆a +

κ

2

)
a − ig0Xa + 2Geiθa† +

√
κain,

where ∆a = ωa − ωl is the detuning of the input light fre-
quency (ωa) with respect to the cavity resonant frequency
(ωl); ain characterizes the input field driving the cavity, which
fulfils [41, 49]:

⟨
ain (t) a†in (t′)

⟩
= δ (t − t′). Moreover, fth =

ξ
/√

2~mγmωm and fex = Fex

/√
2~mγmωm are the scaled

thermal and external forces with zero mean values, respec-
tively. The Brownian thermal noise operator ξ obeys the cor-
relation function [72]:

⟨
ξ (t) ξ

(
t′
)⟩
= m~γm

∫
dω
2π

e−iω(t−t′)ω

[
coth

~ω

2kBT
+ 1

]
, (4)

where kB is the Boltzmann constant and T is the mirror tem-
perature of the thermal bath. Additionally, if the mecha-
nical quality factor is large, Q = ωm/γm ≫ 1, the Brow-
nian noise ξ (t) describes a Markovian process that is delta-
correlated [72]:

1
2
⟨
ξ (t) ξ

(
t′
)
+ ξ

(
t′
)
ξ (t)

⟩ ≃ m~ωmγm (2n̄ + 1) δ
(
t − t′

)
, (5)

where n̄ =
[
exp (~ωm/kBT ) − 1

]−1 is the mean ther-
mal phonon number. Under the approximation of ther-
mal equilibrium and taking the classical limit ~ωm ≪
kBT [17], the scaled thermal force obeys ⟨ fth (t) fth (t′)⟩ =
(kBT /~ωm ) δ (t − t′) [41].

Linearization or even semiclassical approximation are
standard effective descriptions applied in case of strong
optical drives, which are valid in both theory [26,40] and ex-
periments [15,73,74]. Indeed, a strong quantum-optical drive
can usually be treated as a semiclassical parameter. Thus, an
operator (a q-number) describing such a drive can be replaced
by a c-number. For example, in standard description of ho-
modyne detection, which can be applied for quantum state
tomography, a weak quantum signal is driven (i.e., mixed on
a beam splitter) by a strong-laser mode (i.e., a local oscil-
lator), which is described by a classical parameter (see Ap-
pendix D). Therefore, in case where the input optical field
is a semiclassical coherent laser field [15], i.e., in the strong
driving regime |α| ≫ 1 [40] (see Appendix B), we can ex-
pand each operator as the sum of its steady-state value and a
small fluctuation, i.e., P = P̄ + δP, X = X̄ + δX, a = α + δa,

and ain = αin + δain. Here we choose the input field as the
zero-phase reference, i.e., αin = |αin| =

√
Pin/~ωl with Pin

being the input laser power [17]. By setting all the time
derivatives to zero, the steady-state values of the dynami-
cal variables can be obtained as P̄ = 0, X̄ = −g0α

∗α/ωm

and

α =

√
καin

2σ+

(
κ − 2i∆ + 4Geiθ

)
= |α| eiϕ, (6)

where σ± = κ2
/
4 ± ∆2 ∓ 4G2 and ∆ = ∆a + g0X̄ denotes the

effective cavity detuning. Therefore, the phase of the intra-
cavity amplitude becomes

ϕ = arctan
(

4G sin θ − 2∆
4G cos θ + κ

)
. (7)

We define the standard quadratures of the cavity field as
xa =

(
a + a†

)/√
2 , pa =

(
a − a†

)/(√
2i

)
. These are the

canonical (i.e., dimensionless) position (xa) and momentum
(pa) operators, also referred to as the amplitude and phase
quadratures, which are related to the electric and magnetic
fields of an optical mode, respectively. For simplicity, we
set the integral constants to zero and neglect the higher-order
terms δa†δa and δXδa, then the linearized equations can be
written as (a similar matrix form is given in ref. [53]):

v̇ = Cv + Avin. (8)

The operator vectors are v =
(
X, P, xa, pa

)T
and vin =(

0, fin, xin
a , pin

a

)T
, where fin = fth + fex, and superscript T

represents the transpose of a matrix. The quadratures of the
input field (xin

a and pin
a ), are defined analogously to xa and

pa. The coefficient matrix C and the noise matrix A are given
in Appendix B.

In standard homodyne detection, which enables quantum
state tomography, a quantum optical field [in our case aout (t)]
is mixed with a strong classical laser field αLO (i.e., a local
oscillator, LO) at a balanced beam splitter. The homodyne
signal (say, the photocurrent idet) corresponds to the diffe-
rence of the photon numbers at the two output ports of the
beam splitter. This signal is proportional to the generalized
phase-dependent quadrature operator xφa,out, as follows [75]:

idet = |αLO|
(
eiφa†out + e−iφaout

)
=
√

2 |αLO| xφa,out, (9)

where φ and αLO respectively correspond to the phase and
amplitude of the local oscillator, which are arbitrary (see Ap-
pendix D for more details). Note that by changing the phase
φ of the local oscillator, a complete quantum state tomogra-
phy can be implemented with this method [75]. As depicted
in Figure 1, homodyne detection is a phase-referenced tech-
nique, where direct measurement of an optical field produces
a stochastic photocurrent that is proportional to the rotated
quadrature xφa,out and the measured quadrature is dependent
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on the phase of the local oscillator αLO. We also note that the
quadratures for arbitrary phases of the local oscillator can be
measured. Thus, homodyne tomography can be performed to
reconstruct the output field with arbitrary phase [76]. How-
ever, for brevity, we further study only the output canonical
momentum quadrature, i.e., φ = π/2 . Hence, the external
force can be expressed as:

F =
1

F f (ω)
xπ/2

a,out =
1

F f (ω)
p̃out

a = f̃ex + f̃add, (10)

where F f (ω) = g f−χ−χm
√

2κγm, and g =
√

2g0 |α| repre-
sents the effective linearized optomechanical coupling rate.
Therefore, noise of the added force can be described by

fadd (ω) = f̃th + Xa (ω) x̃in
a + Pa (ω) p̃in

a , (11)

where f̃r ≡ fr (ω), s̃u
a ≡ su

a (ω), for s = x, p, u = in, out, and
r = in, th, ex, add. Moreover, the coefficients in eq. (11) are
given by

Xa (ω) = (µ+λ+χ−κ)
/
F f , Pa (ω) = (χ−κ − 1)

/
F f . (12)

The parameters f±, χ±, µ±, and λ± are defined in
Appendix C.

We use the symmetric part (S FF) of the added noise power
spectral density (S F) to characterize the sensitivity of the
force measurement, given by (see Appendix D for more de-
tails)

S FF (ω) =
S F (ω) + S F (−ω)

2

=
kBT
~ωm︸︷︷︸

thermal noise

+
1
2
|Xa (ω)|2︸      ︷︷      ︸

back-action noise

+
1
2
|Pa (ω)|2︸      ︷︷      ︸

shot noise

, (13)

where we have used the correlation functions and the bath
cross-correlated terms of the measured symmetrized power
spectral density are cancelled out. The first term of S FF (ω)
represents the thermal Brownian noise. The second term
is the back-action noise, which is proportional to the input
power Pin and the square of the coupling strength g2. Very re-
cently, Cripe et al. [77] have presented a testbed for the broad-
band measurement of quantum back-action at room temper-
ature. The third term denotes the shot noise that is inversely
proportional to the input power Pin. Since beating the SQL in
an optomechanical sensor by cavity detuning has been stud-
ied in ref. [78] and the highest parametric gain is achieved at
the cavity resonance [59], in the following, we neglect ther-
mal noise and other technical noises and restrict our discus-
sion to the case of ∆ = 0. We note that the idea of utiliz-
ing a nondegenerate OPA-assisted COM to circumvent mea-
sured back-action and surpass the SQL has been proposed in
ref. [41]. This scheme is based on an antinoise process (us-
ing an oscillator with an effective negative mass) via destruc-
tive quantum interference, i.e., the so-called coherent quan-
tum noise cancellation (CQNC) [16, 79, 80]. Additionally, a

quantum-mechanics-free subsystem (QMFS) [80], proposed
by Tsang and Caves [79], was first realized in ref. [81].

In order to compare force sensing in the presence and in
the absence of OPA, we first concern about force sensing of
a standard COM system at a resonant frequency. For such
a scheme, the sensitivity cannot surpass the SQL without an
OPA (see Figure 2(a)). Moreover, if we assume the linewidth
of the cavity to be much larger than any measurement fre-
quency of interest, κ ≫ ω, the symmetrized noise spectral
density can be simplified as follows [26, 41]:

S st
FF =

g2

κγm
+

1
16

κ

g2γm

1
|χm|2

, (14)

where the susceptibility of the mechanical oscillator (χm)
has been defined in Appendix B. Thus, we obtain S st

FF ≥
(2γm |χm|)−1 = S SQL, g2

SQL = κ/(4 |χm|) .
Subsequently, we study the case of the zero pump phase

(θ = 0) of the COM system with an OPA. In this case,
the symmetrized noise power spectral density S FF can be
reduced to

S FF (θ = 0) =
g2κ

4γm (κ/2 − 2G)2 +
(κ/2 − 2G)2

4κγmg2 |χm|2
. (15)
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Figure 2 (Color online) (a) Noise power spectral density S FF
/
S SQL is

plotted as a function of the scaled square of the coupling strength g2
/
g2

SQL
and of the OPA parametric gain G. The gray solid line corresponds to the
non-OPA case. (b) Phase ϕ, given in eq. (7), of the intracavity field versus
the OPA parameters: the phase θ and gain G in the units of the damping rate
κ. Here we assume the resonance condition ∆ = 0.
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Therefore, we also have S FF (θ = 0) ≥ 1/(2γm |χm|) = S SQL,
indicating that the detection sensitivity still cannot surpass
the SQL when θ = 0. As Figure 2(a) shows, in the absence
of OPA (G/κ = 0), the minimum of S FF

/
S SQL equals to 1

when the coupling strength is g = gSQL. The optimal COM
parameter gopt can be obtained by solving |Xa| = |Pa|, which
gives g(θ=0)

opt = |κ − 4G|
/(

2
√
κ |χm|

)
. Furthermore, by the in-

spection of eq. (7) under the resonance condition ∆ = 0, it is
easy to understand why the intracavity field phases ϕ for ±θ,
corresponding to symmetric points on both sides of the divid-
ing dashed line in Figure 2(b), have opposite signs. By com-
paring the phases ϕ for θ = ±π/2 and G/κ = 1/4, correspond-
ing to the darkest blue and darkest red points in Figure 2(b),
we find that the intracavity field phases ϕ are π/2-shifted for
the opposite phases θ of the OPA pump for these special val-
ues of G = κ/4 and ∆ = 0. This conclusion can easily be
drawn by analyzing eq. (7) for the discussed parameters.

From the analyses made above, we have identified that
it is impossible for weak-force sensing to exceed the SQL
with non-OPA or θ = 0. As depicted in Figure 2(a), ow-
ing to the reduction of shot noise, S FF first decreases with
the COM coupling strength increasing until the turning point
(corresponding to S FF = S SQL); then, the back-action noise
is dominant, leading S FF to increase. Hence, the SQL can
be reached at the minimum point g = gopt and the optimum
coupling strength can be lowered by adjusting the OPA pump
gain G. In calculations, we use experimentally accessible pa-
rameters [17], i.e., ωl/2π = 2 × 1014 Hz, γm/2π = 1 kHz,
ωm/2π = 10 MHz, κ/2π = 10 MHz, g0/2π = 100 Hz and
Pin = 700 nW.

To overcome the SQL, we study the impact of the OPA
pump phase on weak-force sensing. Figure 3 shows the sen-
sitivity as the functions of g2

/
g2

SQL and the parametric gain
G in the low-frequency domain. Specifically, as depicted
in Figure 3(a), the sensitivity can be improved more than
twice with an OPA when choosing appropriate parameters
and the coupling strength required to increase the sensitivity
becomes much smaller than gSQL. Additionally, according to
eqs. (12) and (13), we are likely to enhance the detection sen-

sitivity by tuning sin θ to satisfy 2G sin θ + g2χm cos2 ϕ ≈ 0,
for suppressing the back-action noise to the limit. Further-
more, we utilize sin θ < 0 in Figure 3(b) to reduce quantum
noise and improve the measurement accuracy. We note that
very recently, optimal cavity squeezing up to 30 dB has been
predicted theoretically [82], and single label-free sensing of
nanoparticles has been studied with a spinning resonator [83]
and exposed-core fiber [84]. In particular, Miao et al. [85]
have recently proposed a new fundamental limit to the preci-
sion of a gravitational-wave detector, which provides an an-
swer of how far we can push the detector sensitivity.

In Figure 4, we consider the variation of the optimal sym-
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metrized noise spectral density S FF(ω) with the increase of
the frequency ω, analogously similar to the corresponding
illustration in ref. [41]. Here we set the OPA pump gain as
G/κ = 0.2. As illustrated in Figure 4(a), the SQL can be
well suppressed at frequencies below the mechanical reso-
nance, i.e., we can increase the force sensitivity by nearly
two-orders of magnitude in the low-frequency domain. Note
that recently, a quantum expander for gravitational-wave ob-
servatories has been demonstrated in ref. [86], where quan-
tum uncertainty can be squeezed even at high frequencies,
while maintaining the low-frequency sensitivity unchanged,
thus, expanding the detection bandwidth. In Figures 4(b) and
(c), we depict the two key parameters, i.e., the optomecha-
nical coupling strength gopt and intracavity phase ϕ, required
for the minimum symmetrized noise spectral density, in the
limits of different phases θ and frequencies ω.

From what has been discussed above, it would be reason-
able to overcome the SQL by tuning the OPA pump phase.
However, because of this nonzero pump phase, the canonical
position (xa) and momentum (pa) operators become corre-
lated, causing a loss of quantum efficiency which cannot be
ignored (see Appendix B for more details). For instance, the
dashed line in Figure 2(b) illustrates the case of θ = ϕ= 0,
in which xa and pa are decoupled, circumventing quan-
tum efficiency losses successfully, but a loss of mechanical-
mode information is inevitable in the regions divided by the
dashed line. Additionally, as the frequency increases, there
is an unavoidable quantum efficiency loss shown in Figure 4.
Nonetheless, in the specific regime where κ ≫ ω and ∆ = 0,
we are able to achieve quantum noise reduction without los-
ing mechanical-mode information. In the limit of κ ≫ ω,
according to the coefficients given in Appendix C, we find

µ±λ± ≈
4G sin θ ± 2g2χm sin2 (ϕ + ϕ±)
κ ∓ 4G cos θ ± g2χm sin (2ϕ)

, (16)

where ϕ± = (1 ± 1) π/4 . Hence, we obtain tan ϕ = µ−λ− and
cot ϕ , µ+λ+, i.e., f+ = 0 and f− , 0. Utilizing the input-
output relations, the output canonical position quadrature xout

a

does not contain fin; thus, the detected squeezed quadrature
carries all of the mechanical quantum information, and the
SQL can be reached or surpassed, as shown in Figures 2 and
3, whose parameters utilized in calculations obey the approx-
imation κ ≫ ω.

3 Conclusion

In conclusion, we have investigated weak-force sensing in a
squeezed cavity and theoretically showed that (i) the SQL
cannot be surpassed in the case of G = 0 or θ = 0, (ii)
the measurement precision of weak-force detection can be

remarkably improved at the coupling strength smaller than
gSQL by tuning the parametric phase and gain, and (iii) under
the approximation of κ ≫ ω, quantum noise can be reduced
without losing mechanical-mode information. Our work pro-
vides new insight in strengthening the sensitivity of a force
sensor with the assistance of intracavity squeezing, which
can be also extended into other systems of quantum sensing
with e.g., waveguide [84, 87], interferometer [88], or parity-
time (PT ) symmetric microcavity [89-91]. In the future, we
plan to extend our work to study the weak-force measure-
ment with the help of two-mode squeezing or quantum en-
tanglement [92-94], squeezed mechanical modes [70, 95], or
squeezed sources in hybrid COM devices [96, 97].
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Özdemir, and R. El-Ganainy, Phys. Rev. Lett. 122, 153902 (2019),
arXiv: 1810.09417.

92 T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert,
Science 342, 710 (2013).

93 Y. Takeuchi, Y. Matsuzaki, K. Miyanishi, T. Sugiyama, and W. J.
Munro, Phys. Rev. A 99, 022325 (2019), arXiv: 1811.05586.

94 S. Barzanjeh, E. S. Redchenko, M. Peruzzo, M. Wulf, D. P. Lewis, G.
Arnold, and J. M. Fink, Nature 570, 480 (2019), arXiv: 1809.05865.

95 J. Suh, A. J. Weinstein, C. U. Lei, E. E. Wollman, S. K. Steinke, P.
Meystre, A. A. Clerk, and K. C. Schwab, Science 344, 1262 (2014),
arXiv: 1312.4084.

96 J. Li, S. Y. Zhu, and G. S. Agarwal, Phys. Rev. A 99, 021801 (2019),
arXiv: 1811.09668.

97 C. Xu, L. Zhang, S. Huang, T. Ma, F. Liu, H. Yonezawa, Y. Zhang, and
M. Xiao, Photon. Res. 7, A14 (2019).

98 A. Jeffrey, and D. Zwillinger, Table of Integrals, Series, and Products,
6th ed. (Academic, New York, 2000).

Appendix A Derivation of the effective Hamil-
tonian

In our system, the cavity with resonant frequency ωa and
damping rate κ, is driven by an input beam ain at frequency
ωl. The left mirror is movable, which supports a mechanical
mode with frequency ωm and damping rate γm. An exter-
nal force Fex is applied on the left-hand mirror and the cav-
ity adjoins the movable mirror with coupling strength g0 =

xzpfωa

/
L , where L is the length of the cavity. When a pump

field at frequency 2ωl interacts with a second-order nonlinear
optical crystal, the output frequency becomes ωl [40]. The
nonlinear gain G of the degenerate OPA with pump phase θ is
proportional to the pump field. By transforming into a frame
rotating at the incoming laser frequencyωl with ∆a = ωa−ωl,
Hamiltonian (1) can be rewritten as:

H = −i~U
dU†

dt
+ UH0U†, (a1)

via the unitary transformation U (t) = exp
(
iωla†at

)
. Using

the relation

eABe−A = B + [A, B] +
1
2!

[A, [A, B]] + · · · , (a2)

we obtain [48, 57]

H = ~∆aa†a + ~
ωa

L
xa†a +

p2

2m
+

1
2

mω2
mx2

+ i~G
(
eiθa†2 − e−iθa2

)
, (a3)

where m stands for the effective mass of the mechanical
mode, while x and p represent the position and momentum
operators, respectively.

In the Heisenberg picture, the dynamics of an operator O
of a quantum system can be determined via the Heisenberg
equation of motion:

Ȯ (t) =
1
i~

[O (t) ,H (t)] . (a4)

By introducing dissipation and noise terms, we have

Ẋ = ωmP,

Ṗ = −ωmX − γmP − g0a†a +
√

2γm ( fth + fex) , (a5)

ȧ = −i (∆a + g0X) a + 2Geiθa† − κ
2

a +
√
κain,

where κ and γm are the decay rates of the optical cavity
and the mechanical oscillator, respectively. X = x

/
xzpf and

P = p
/
pzpf denote the dimensionless displacement and mo-

mentum operators of the mechanical mode, where xzpf =√
~/(mωm) and pzpf =

√
~mωm are the zero-point position

and momentum fluctuations, respectively. The input noise
operator ain (t) fulfills the correlation relations [41, 49]:⟨
a†in (t) ain

(
t′
)⟩
= 0,⟨

ain (t) a†in
(
t′
)⟩
= δ

(
t − t′

)
, (a6)⟨

ain (t) ain
(
t′
)⟩
=

⟨
a†in (t) a†in

(
t′
)⟩
= 0.

Moreover, fth and fex represent the scaled thermal and exter-
nal forces given, respectively, by

fth =
ξ√

2~mγmωm
, fex =

Fex√
2~mγmωm

, (a7)

where ξ and Fex are the corresponding thermal and external
forces, respectively.

When the mechanical resonator is in thermal equilibrium
at environment temperature T , the Bose-Einstein statistics
determines the occupancy probability p (n) of each energy
level, given by

p (n) = δn (1 − δ) , (a8)

where δ = exp [−~ωm/(kBT ) ]. Therefore, the mean number
n̄ of phonons in thermal equilibrium is

n̄ =
∞∑

n=0

np (n) =
(
δ−1 − 1

)−1
. (a9)

In the high temperature limit of kBT ≫ ~ωm, eq. (a9) can be
simplified to the familiar expression:

n̄ ≈ kBT
~ωm

, (a10)

and according to eq. (5), the thermal noise force satisfies the
correlation function as follows [41]:⟨
ξ (t) ξ

(
t′
)⟩
= 2mγmkBTδ

(
t − t′

)
. (a11)
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Combining eq. (a7) with eq. (a11), we obtain

⟨
fth (t) fth

(
t′
)⟩
=

kBT
~ωm

δ
(
t − t′

)
. (a12)

Hence, eq. (a12) becomes [41]⟨
fth (t) fth

(
t′
)⟩
= n̄δ

(
t − t′

)
. (a13)

Appendix B Linear response

To solve the nonlinear Heisenberg-Langevin equations in
eq. (3), we linearize the operators around the steady-state val-
ues

(
X̄, P̄, α, f̄th, f̄ex, αin

)
, i.e., insert the ansatz

X = X̄ + δX, P = P̄ + δP,

a = α + δa, fth = f̄th + δ fth,

fex = f̄ex + δ fex, ain = αin + δain,

(a14)

into eq. (a5), and retain only the first-order terms, then we
obtain

Ẋ = ωmP,

Ṗ = −ωmX − γmP − g0

(
α∗a + αa†

)
+

√
2γm fin, (a15)

ȧ = −
(
i∆a +

κ

2

)
a − ig0

(
X̄a + αX

)
+ 2Geiθa† +

√
κain,

where fin = fth + fex and we consider the thermal and exter-
nal noises average to 0. For simplicity, we set the integral
constants to zero.

When all time derivatives vanish, the steady-state values
fulfill the self consistent equations:

0 = ωmP̄,

0 = −ωmX̄ − γmP̄ − g0α
∗α, (a16)

0 = −
(
i∆a +

κ

2

)
α − ig0X̄α + 2Geiθα∗ +

√
καin.

The steady-state solution of eq. (a16) can be given by P̄ = 0,
X̄ = −g0na/ωm , and

α =

√
κ

2σ+

[
(κ − 2i∆)αin + 4Geiθα∗in

]
= |α| eiϕ, (a17)

where σ± = κ2
/
4 ± ∆2 ∓ 4G2 and ϕ is the phase of the

intracavity field. We have defined the effective detuning
(∆ = ∆a + g0X̄) and the mean intracavity photon number
(na = |α|2).

Since phase is relative while phase difference is absolute,
we focus on the phase difference between the external and
internal optical fields and choose the incoming field as the
zero phase reference, i.e., αin = |αin| =

√
Pin/~ωl , where Pin

denotes the input laser power [17]. Thus, eq. (a17) can be
simplified to the following expression:

α =

√
καin

2σ+

(
κ − 2i∆ + 4Geiθ

)
= |α| eiϕ. (a18)

The assumption that αin is real, makes the phase ϕ dependent
on κ, G, ∆, and θ, as follows:

ϕ = arctan
(

4G sin θ − 2∆
4G cos θ + κ

)
. (a19)

Furthermore, |α| can be solved from eq. (a18):

|α| =
∣∣∣∣∣∣
√
καin

σ+

∣∣∣∣∣∣ √σ + 2G (κ cos θ − 2∆ sin θ), (a20)

where σ = κ2
/
4 + ∆2 + 4G2. In the limit of ∆ = 0, we use

experimentally accessible parameters, which have been listed
in sect. 2, to estimate the magnitude of |α|:

|α| ≥
∣∣∣∣∣∣2
√
καin

κ + 4G

∣∣∣∣∣∣ ∼ 102 ≫ 1. (a21)

Hence, our calculations satisfy the strong-driving condition
|α| ≫ 1 [40] and this linearized model has been proved valid
and physically reasonable for our COM system.

To obtain the solutions of eq. (a15), we define the quadra-
tures of input/output fields as xu

a =
(
au + a†u

)/√
2 and pu

a =(
au − a†u

)/(√
2i

)
, where u = in, out, analogously similar to

the canonical position and momentum operators (given in
sect. 2). Then, we have the linearized Heisenberg-Langevin
equations given in eq. (8), with the coefficients:

A =


0 0 0 0

0
√

2γm 0 0

0 0
√
κ 0

0 0 0
√
κ


,

C =


0 ωm 0 0

−ωm −γm −g cos ϕ −g sin ϕ

g sin ϕ 0 C− S +
−g cos ϕ 0 S − −C+


, (a22)

where C± = 2G cos θ ± κ/2 , S ± = 2G sin θ ± ∆, and g =√
2g0 |α| is the effective linearized optomechanical coupling

strength. Using the Fourier transform of eq. (8), we obtain the
linearized Heisenberg-Langevin equations in the frequency
domain:

−iωṽ = Cṽ + Aṽin, (a23)

where ṽ ≡ v (ω) =
(
X̃, P̃, x̃a, p̃a

)T
, ṽin ≡ vin (ω) =(

0, f̃in, x̃in
a , p̃in

a

)T
, and f̃in ≡ f̃in (ω); õ ≡ o (ω), s̃a ≡ sa (ω),

and s̃in
a ≡ sin

a (ω), for o = X, P, and s = x, p. From
eqs. (8) and (a22), we can see when inserting a degenerate
OPA medium into the Fabry-Pérot cavity, the canonical po-
sition (xa) and momentum (pa) operators are decoupled only
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if S ± = 0. Specifically, in the dashed line showed in Fig-
ure 2(b), substituting ∆ = θ = 0 (S ± = 0) into eq. (a23),
we find that all the information is imprinted on the squeezed
canonical momentum quadrature x̃a = ρ−

√
κx̃in

a , and

p̃a = g2χmρ+ρ−
√
κx̃in

a + ρ+
√
κpin

a − gχmρ+
√

2γm f̃in, (a24)

where ρ± =
(
χ−1 ± 2G

)−1
, and the susceptibilities of the cav-

ity field and the mechanical oscillator are respectively defined
as [49]:

χ (ω) = (κ/2 − iω)−1 ,

χm (ω) = ωm

(
ω2

m − ω2 − iωγm

)−1
.

(a25)

Clearly, there are no correlations between this squeezed
quadrature and its canonically conjugated quadrature x̃a.
However, on the both sides of the dividing line in Figure 2(b),
loss of mechanical-mode information inevitably exists, for
the two quadratures are correlated. Therefore, we can con-
clude that under the resonance condition ∆ = 0, quantum
efficiency losses are dependent on the coupling of the quadra-
tures xa and pa (i.e., the coefficients S ± or the phase θ of the
OPA pump). Our analysis of the stability conditions for the
matrix C, in eq. (a22), and the input-output relations are given
in Appendix C.

Appendix C Stability conditions and input-
output relations

The system is stable only if all the eigenvalues λ of the ma-
trix C have negative real parts [98]. It is well known that the
characteristic equation |C − λI| = 0 can be reduced to:

λ4 +C3λ
3 +C2λ

2 +C1λ +C0 = 0. (a26)

Hence, we obtain the stability conditions of the system from
the Routh-Hurwitz criterion [98]:

0 < C3,

0 < C3C2 −C1, (a27)

0 < C3C2C1 −
(
C2

1 +C2
3C0

)
.

Specifically, all the external parameters should be chosen to
satisfy the stability conditions in eq. (a27), where the coeffi-
cients of the characteristic equation can be given by

C3 = κ + γm,

C2 = ω
2
m + κγm + σ+,

C1 = κω
2
m + σ+γm,

C0 = σ+ω
2
m + 2g2Gωm sin (2ϕ − θ) − g2ωm∆.

(a28)

By solving eq. (a23), we obtain the quadratures x̃a and p̃a:

x̃a = g f+χ+χm
√

2γm f̃in + χ+
√
κx̃in

a + µ−λ−χ+
√
κ p̃in

a ,

p̃a = g f−χ−χm
√

2γm f̃in + χ−
√
κ p̃in

a + µ+λ+χ−
√
κx̃in

a ,
(a29)

where f̃r ≡ fr (ω), s̃u
a ≡ su

a (ω), for s = x, p, u = in, out, and
r = in, th, ex, add. Moreover, the coefficients in eq. (a29) are
given by

f− (ω) = µ+λ+ sin ϕ − cos ϕ,

f+ (ω) = sin ϕ − µ−λ− cos ϕ,

χ± (ω) =
(
λ−1
± − µ+µ−λ∓

)−1
,

µ± (ω) = ∓∆ + 2G sin θ ± g2χm cos2 ϕ,

λ± (ω) =
[
χ−1 ∓ 2G cos θ ± 1

2 g2χm sin (2ϕ)
]−1

.

(a30)

Using the input-output relations x̃out
a =

√
κx̃a − x̃in

a , p̃out
a =√

κ p̃a − p̃in
a , the quadratures of the output fields are given by

x̃out
a = g f+χ+χm

√
2κγm f̃in + µ−λ−χ+κ p̃in

a

+ (χ+κ − 1) x̃in
a ,

p̃out
a = g f−χ−χm

√
2κγm f̃in + µ+λ+χ−κx̃in

a

+ (χ−κ − 1) p̃in
a .

(a31)

Appendix D Motional noise spectrum

Herein, we describe the outcoming optical field and the laser
field with the annihilation operators aout (t) and aLO (t). When
they interact with a 50/50 beam splitter simultaneously, extra-
cavity photons can be transformed into photoelectrons, gen-
erating two photocurrents:

ik (t) = nk (t) = a′†k (t) a′k (t) , (a32)

where k = 1, 2 and nk are the photon number operators mea-
sured in the two detectors. Making the parametric approxi-
mation for the photon number of the laser field, ⟨nLO⟩ ≫ 1,
we have aLO ≈ αLO, where αLO denotes the amplitude of the
local oscillator. In homodyne detection, the relations between
aout, aLO and a′k are expressed as:

a′k =
1
√

2

[
aout + (−1)k aLO

]
. (a33)

We measure the difference of the intensities, which can be
written as:

idet = i2 − i1 = α∗LOaout + αLOa†out

= |αLO|
(
e−iφaout + eiφa†out

)
, (a34)

where we have used aLO ≈ αLO, and φ represents the phase
of the local oscillator. Thus, the values of φ and |αLO| can be
arbitrary.
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We define dimensionless quadrature operators xφa,out and
pφa,out rotated by a phase angle φ from xout

a and pout
a as follows:

xφa,out

pφa,out

 =
 cosφ sinφ

− sinφ cosφ


xout

a

pout
a

 , (a35)

which obey the commutation relation
[
xφa,out, pφa,out

]
= i. Thus,

we obtain the detected field operator:

idet (t) =
√

2 |αLO| xφa,out. (a36)

We use ψ to describe the phase of the outcoming field, and
eq. (a18) yields for the expression of ψ via the input-output
relation:

αout = |αout| eiψ =
√
κα − αin

=
καin

2σ+

(
κ − 2i∆ + 4Geiθ

)
− αin. (a37)

For the assumption that αin is real, ψ is dependent on κ, G, ∆,
and θ,

ψ = arctan
(

2Gκ sin θ − ∆κ
2Gκ cos θ + σ−

)
, (a38)

where σ− has been defined below eq. (a17).
In the specific case of an optomechanical system without

detuning and OPA (∆ = G = 0), we obtain ϕ = ψ = 0 from
eqs. (a19) and (a38), therefore, µ±, λ±, and χ± can be simpli-
fied to µ+ = g2χm, µ− = 0, and λ± = χ± = χ = (κ/2 − iω)−1.
Thus, eq. (a31) can be written as x̃out

a = κ+ x̃in
a

/
κ− and

p̃out
a =

g2χmκ

κ2
−

x̃in
a +

κ+
κ−

p̃in
a −

gχm
√

2κγm

κ−
f̃in. (a39)

where κ± = κ/2 ± iω. Apparently, there is no mechanical-
mode information on the quadrature x̃out

a and we focus upon
only the case where φ = π/2 , so that the total external force
can be expressed as:

F =
1

F f (ω)
xπ/2a,out =

1
F f (ω)

p̃out
a = f̃ex + f̃add

= f̃th + Xa (ω) x̃in
a + Pa (ω) p̃in

a , (a40)

where Xa (ω), Pa (ω), and F f (ω) have been defined in
eq. (12). Then, we have obtained the induced force:

fadd (ω) = f̃th + Xa (ω) x̃in
a + Pa (ω) p̃in

a . (a41)

Moreover, we find that X∗a (ω) = Xa (−ω), P∗a (ω) = Pa (−ω).
The sensitivity of force measurement is commonly char-

acterized via the noise power spectral density S F, which is
given by [25]

S F (ω) =
∫

dω′
⟨

fadd (ω) fadd
(
ω′

)⟩
. (a42)

Utilizing the correlation functions of the input vacuum
noise [25]:

⟨
xin

a (ω) xin
a

(
ω′

)⟩
=

⟨
pin

a (ω) pin
a
(
ω′

)⟩
=

1
2
δ
(
ω + ω′

)
,⟨

xin
a (ω) pin

a
(
ω′

)⟩
= −

⟨
pin

a (ω) xin
a

(
ω′

)⟩
=

i
2
δ
(
ω + ω′

)
,

(a43)

we obtain the symmetrized noise spectral density S FF given
in eq. (13).
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