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We propose to create and stabilize long-lived macroscopic quantum superposition states in atomic
ensembles. We show that using a fully quantum parametric amplifier can cause the simultaneous
decay of two atoms, and in turn create stabilized atomic Schrödinger cat states. Remarkably, even
with modest parameters these atomic cat states can have an extremely long lifetime, up to four
orders of magnitude longer than that of intracavity photonic cat states under the same parameter
conditions, reaching tens of milliseconds. This lifetime of atomic cat states is ultimately limited to
several seconds by extremely weak spin relaxation and thermal noise. Our work opens up a new way
towards the long-standing goal of engineering large-size and long-lived cat states, with immediate
interests both in fundamental studies and noise-immune quantum information processing.

Introduction.—Schrödinger cat states, i.e., quantum
superpositions of two macroscopically distinct states,
are appealing not only for fundamental studies of
quantum mechanics [1, 2], but also for wide applications,
ranging from quantum information processing [3] to
quantum metrology [4, 5]. The ability to reliably
create and then stabilize cat states is therefore highly
desirable. So far, a large number of approaches that
have been proposed for the generation of cat states
rely on unitary gate operations [6–20]. However, it
remains a challenge for these unitary approaches to
obtain stabilized cat states (and, especially, large-size
ones) in a noisy environment. To overcome this obstacle,
quantum reservoir engineering [21, 22] could provide a
counterintuitive route. Two-photon loss has already
been engineered to stabilize photonic cat states [23–
26]. Such a nonlinear loss can protect these cat states
against photon dephasing [27, 28], but unfortunately not
against single-photon loss, which is unavoidable and can
randomly change the cat state parity. Thus, the cat state
lifetime is still significantly limited. For example, single-
photon loss has been considered to be the major source
of noise in fault-tolerant quantum computation based on
cat states [3, 28–33].

Ensembles of atoms or spins have negligible spin
relaxation, and instead their major source of noise is
spin dephasing. This motivates us to engineer the
simultaneous decay of two atoms of an ensemble (here
denoted as two-atom decay), and then use it to stabilize
atomic cat states. Such cat states could have a very
long lifetime since the two-atom decay can protect
them against spin dephasing, in close analogy to the
mechanism of using two-photon loss to suppress photon
dephasing.

To implement the two-atom decay, we here propose to

use fully quantum degenerate parametric amplification
(DPA), and demonstrate that stabilized atomic cat states
of large size (i.e., containing at least four excited atoms
on average) can be generated in an ensemble of atoms
off-resonantly coupled to the signal mode of DPA. More
importantly, the lifetime of our atomic cat states can
be made longer, by up to four orders of magnitude,
than that of common intracavity photonic cat states (see
Table I in [34]), i.e., equal superpositions of two opposite-
phase coherent states. To ensure a fair comparison, these
photonic cat states need to have the same size as our
atomic cat states and also suffer from single-photon loss
of the same rate as given for the signal mode. With
a modest cavity decay time (∼ 16 µs), our cat state
lifetime can reach ∼ 20 ms. This is comparable to
17 ms [35], which is the longest lifetime of intracavity
photonic cat states to date, but which was achieved with
an extreme cavity decay time (∼ 0.13 sec). As the cavity
decay time increases, our cat state lifetime can further
increase and ultimately is limited to a maximum value
determined by spin relaxation and thermal noise. For
a typical spin relaxation time ∼ 40 sec [36, 37], we can
predict a maximum cat state lifetime of ∼ 3 sec.

Physical model.—The central idea is illustrated in
Fig. 1(a). To consider DPA in the fully quantum regime,
our system, inspired by recent experimental advances [3,
38–41], contains two parametrically coupled cavities: one
as a pump cavity with frequency ωp and the other as
a signal cavity with frequency ωs. We assume that the
pump cavity is subject to a coherent drive with amplitude
Ω and frequency ωd. The intercavity parametric coupling
J stimulates the conversion between pump single photons
and pairs of signal photons. Furthermore, an ensemble of
N identical two-level atoms is placed in the signal cavity,
and the atomic transition, of frequency ωq, is driven by a
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FIG. 1. (a) Schematic setup of our proposal. The pump and signal cavities are coupled via a parametric coupling J , and the
atomic ensemble is coupled to the signal cavity with a single-atom coupling g. The pump cavity is subject to a coherent drive
with amplitude Ω and frequency ωd. Here, ωp, ωs are the resonance frequencies of the pump and signal cavities, κp, κs are their
respective single-photon loss rates, and ωq is the atomic transition frequency. (b, c) Quantum Monte-Carlo trajectory pictured
through the probabilities of the system being in the states |mp0〉|n〉. Initially, only two atoms in the ensemble are excited.
Here, we assumed that κp = 0.2χ and κs = Ω = 0. (d) Time evolution of the preparation error η for a cat size |α|2 = 1. Here,
we assumed that κp = 5χ, κs = 0.3κp, and that the ensemble is initialized in the ground state |0〉, the single-excitation state

|1〉, and a spin coherent state |θ0, 0〉 with
√
N tan (θ0/2) = 1 for the states |C+〉, |C−〉, and ρssens, respectively. In (b)-(d), we

assumed that N = 100, J = 3gcol, and both cavities are initialized in the vacuum.

coupling g to the signal photon. When 2ωq ≈ ωp � 2ωs,
a pair of excited atoms can jointly emit a pump photon.
The subsequent loss of the pump photon gives rise to the
two-atom decay, which in turn stabilizes large-size cat
states for an extremely long time in the ensemble.

The system Hamiltonian in a frame rotating at ωd is

H =
∑
i=p,s

δia
†
iai + δqSz + J

(
apa
†2
s + a†pa

2
s

)
+ g

(
asS+ + a†sS−

)
+ Ω

(
ap + a†p

)
, (1)

where ap, as are the annihilation operators for the pump
and signal modes, S± = Sx ± iSy, δp = ωp − ωd, δs =
ωs − ωd/2, and δq = ωq − ωd/2. The collective spin

operators are Sα = 1
2

∑N
j=1 σ

α
j , with σαj (α = x, y, z) the

Pauli matrices for the jth atom. The Lindblad dissipator,
L (o) ρ = oρo† − 1

2o
†oρ− 1

2ρo
†o, describes the dissipative

dynamics determined by

ρ̇ = −i [H, ρ] +
∑
i=p,s

κiL (ai) ρ, (2)

where κp and κs are the photon loss rates of the pump
and signal modes. Spin dephasing, spin relaxation, and
thermal noise are discussed below.

We assume that 2ωq ≈ ωp ≈ ωd, and the detuning

∆ = ωs − ωq � {gcol, J}. Here, gcol =
√
Ng represents

the collective coupling of the ensemble to the signal
mode. Then, we can predict a parametric coupling,
χ = g2colJ/∆

2, between atom pairs and pump single
photons. Accordingly, the Hamiltonian H, after time
averaging [42, 43], becomes

Havg =
χ

N

(
apS

2
+ + a†pS

2
−
)

+ Ω
(
ap + a†p

)
, (3)

which describes a third-order process. The stronger
second-order process has been eliminated with an
appropriate detuning between ωp and 2ωq (see [34]).
To derive Havg, we have considered the low-excitation
regime, where the average number of excited atoms is
much smaller than the total number of atoms. We
note that other approaches [44, 45] can also obtain a
Hamiltonian similar in form to Havg. Such approaches,
however, rely on a longitudinal coupling which cannot
be collectively enhanced, and in those cases [44, 45], the
coupling χ becomes extremely weak in typical ensembles.

We now adiabatically eliminate the pump mode ap,
yielding an effective master equation

ρ̇ens = − i [Hens, ρens]

+
κ1at
N
L (S−) ρens +

κ2at
N2
L
(
S2
−
)
ρens, (4)

where Hens = iχ2at

(
S2
− − S2

+

)
/N , and ρens represents

the reduced density matrix of the ensemble. Here,
κ2at = 4χ2/κp and χ2at = 2Ωχ/κp are the rates of
the simultaneous decay and excitation of two atoms,
respectively. Moreover, κ1at = (gcol/∆)

2
κs is the rate

of the single-atom decay induced by single-photon loss
of the signal cavity (see [34]), and we can tune it to be
� κ2at, as long as κs � (gcolJ/∆)2/κp.

To gain more insights into the engineered two-atom
decay, we turn to the quantum Monte Carlo method [46].
In Figs. 1(b, c) we plot a single quantum trajectory with
the Hamiltonian H and an initial state |00〉|2〉 (see [34]
for more cases). Here, the first ket |mpms〉 (mp,ms =
0, 1, 2, . . .) in the pair refers to the cavity state with mp

pump photons and ms signal photons, and the second
|n〉 (n = 0, 1, 2, . . .) refers to the collective spin state
|S = N/2,mz = −N/2 + n〉, corresponding to n excited
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FIG. 2. (a) Time evolution of the preparation error η of the states |C+〉, |C−〉, and ρssens under the bosonic approximation for
different cat sizes |α|2 = 2, 4, and 6. The initial states are chosen as in Fig. 1(d). (b) Wigner function at times t1, . . . , t5 shown
on top of panel (a) for the |α|2 = 4 cat size. The first, second, and third rows correspond to the states |C+〉, |C−〉, and ρssens,
respectively. For all plots, we set J = 3gcol, δp = J2/ (20gcol), κp = 5χ, and κs = 0.3κp.

atoms in the ensemble. The non-Hermitian Hamiltonian
HNH = H − i

2κpa
†
pap drives Rabi oscillations between

|00〉|2〉 and |10〉|0〉, as shown in Fig. 1(b). The Rabi
oscillations are then interrupted by a quantum jump ap.
We find from Fig. 1(c) that the jump leaves the system
in its ground state |00〉|0〉, implying that single-photon
loss of the pump mode causes the two-atom decay.

Stabilized manifold of atomic cat states.—When κ1at =
0, the dynamics of the effective master equation in Eq. (4)
describes a pairwise exchange of atomic excitations
between the ensemble and its environment. Because
this exchange conserves the excitation number parity,
the ensemble state space can be decomposed into
even and odd subspaces, according to the eigenvalues
±1 of the parity operator P = exp(iπ

∑N
j=1 |e〉j〈e|).

Here, |e〉 is the excited state of the atoms. As
demonstrated in [34], the ensemble is driven to an even
cat state |C+〉 = A+ (|θ, φ〉+ |θ, φ+ π〉) if initialized
in an even parity state, or to an odd cat state
|C−〉 = A− (|θ, φ〉 − |θ, φ+ π〉) if initialized in an odd
parity state. Here, |θ, φ〉, where φ = π/2 and θ =
2 arctan(|α| /

√
N), refers to a spin coherent state, and

A± = 1/{2[1± exp(−2 |α|2)]}1/2. Moreover, α = i
√

Ω/χ
is the coherent amplitude. The average number of excited
atoms, |α|2, of the states |C±〉 characterizes the cat
size [35]. When assuming the initial state to be a spin
coherent state |θ0, φ0〉, the steady state of the ensemble is
confined into a quantum manifold spanned by the states
{|C+〉, |C−〉}, and is expressed as ρssens = c++|C+〉〈C+| +
c−−|C−〉〈C−| +c+−|C+〉〈C−|+c∗+−|C−〉〈C+|, where c++ =
1
2 [1 + exp(−2 |α0|2)] with α0 =

√
N exp (iφ0) tan (θ0/2),

c−− = 1−c++, and c+− is given in [34]. To confirm these
predictions, we numerically integrate [47, 48] the master
equation in Eq. (2) to simulate the time evolution of the

preparation error η = 1− F in Fig. 1(d). Here, F is the
fidelity between the actual and ideal states. It is seen
that, as expected, the ensemble states are steered into a
stabilized 2D cat-state manifold with a high fidelity.

Bosonic approximation and cat-state lifetime.— In the
low-excitation regime considered above, the collective
spin in fact behaves as a quantum harmonic oscillator.
This allows us to map S− to a bosonic operator b,
i.e., S− ≈

√
Nb, and thus to investigate cat states

of large size (|α| > 2) in large ensembles. The spin
coherent state |θ, φ〉 accordingly becomes a bosonic
coherent state |α〉, such that the states |C±〉 become
|C±〉 = A± (|α〉+ | − α〉). With the master equation
in Eq. (2) and under the bosonic approximation, we
plot the time evolution of the preparation error η in
Fig. 2(a), and the Wigner function W (β) for different
times in Fig. 2(b). We find that a cat state of size

|α|2 = 4 is obtained after time t ∼ 250/gcol, or more
specifically, t ∼ 4 µs, for a typical collective coupling
strength gcol/2π = 10 MHz [36, 49–52].

So far, we have assumed a model where there is
no spin dephasing. However, there will always be
some spin dephasing, described by a Lindblad dissipator
γdL

(
b†b
)
ρ, with a rate γd > 0. Before discussing spin

dephasing, let us first consider the rate γ of convergence,
i.e., how rapidly the steady cat states can be reached.
To determine the rate γ, we introduce the Liouvillian
spectral gap, λ = |Re [λ1]|, of the effective master
equation in Eq. (4) for κ1at = 0. Here, λ1 is the
Liouvillian eigenvalue with the smallest modulus of the
real part. Since the gap λ determines the slowest
relaxation of the Liouvillian [53], we thus conclude that
γ > λ. In the inset of Fig. 3(a), we numerically calculate

the gap λ, and find λ ≈ |α|2 κ2at for |α|2 ≥ 4.
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Below we show that spin dephasing, which conserves
the parity operator P , can be strongly suppressed by
the two-atom decay, as long as the rate of convergence
is much larger than the spin dephasing rate (i.e., γ �
γdeph, or |α|2κ2at � γdeph due to γ > λ). This is
like in the cases of photonic cat states stabilized by
two-photon loss [27, 28]. The dissipative suppression
can be understood from the quantum jump approach.
The jump operator b†b, when acting, e.g., on the state
|C+〉, excites a state |ψ〉 = A+ [D (α)−D (−α)] |1〉,
according to b†b|C+〉 = |α|2 |C+〉+ α|ψ〉. Here, D(±α) =
exp[±α(b† + b)] are displacement operators. However,
the state |ψ〉 still has even parity, and thus can be
autonomously driven back to the state |C+〉 by the
two-atom decay. Figure 3(a) shows the dependence of
such a dissipative suppression on the ratio κ2at/γdeph.
We find that for κ2at = 10γdeph, corresponding to an
ensemble coherence time of γ−1deph ∼ 27 µs, the steady
state |C+〉 is achieved with an error η ∼ 0.06, implying
a significant suppression of spin dephasing. There is a
similar suppression mechanism for the action of b†b on
the state |C−〉. Furthermore, if the ensemble is initialized
in a spin coherent state, the decay rate of the coherence
between the states |C±〉 scales as ∼ γdeph exp(−2 |α|2),

and is suppressed exponentially with the cat size |α|2.
Hence, the 2D cat-state manifold stabilized by the two-
atom decay is robust against spin dephasing.

Let us now consider the cat state lifetime τat.
According to the above discussions, the effects of spin
dephasing on τat can be excluded. This lifetime is thus
determined by the decay rate Γ1at = 2 |α|2 κ1at, such that

τat = Γ−11at =

(
∆

gcol

)2
1

2 |α|2 κs
. (5)

Note that intracavity photonic cat states, i.e., equal
superpositions of two opposite-phase coherent states,
rapidly decohere into statistical mixtures due to single-
photon loss. The lifetime of such photonic cat states is
thus given by τph = 1/2 |α|2 κs [54]. Here, for a fair

comparison, we have assumed the same cat size |α|2 as
our atomic cat states, and the same single-photon loss
rate κs as given for the signal cavity. It is seen that
τat is longer by a factor of (∆/gcol)

2
, compared to τph.

To make τat/τph larger, it is essential to increase ∆/gcol.
However, the rate κ2at, which needs to be � γdeph as
mentioned already, decreases as ∆/gcol increases. Thus,
the ratio ∆/gcol has a lower bound for a given γdeph.
Experimentally, the coherence time, γ−1deph, of NV-spin
ensembles has reached ∼ 1 ms with spin-echo pulse
sequences [55], and if dynamical-decoupling techniques
are employed, it can be even close to 1 sec [56]. In
Fig. 3(b), the ratio κ2at/γdeph for different γdeph, as well
as the ratio τat/τph, is plotted versus ∆/gcol. Assuming
a realistic parameter of γ−1deph = 1 ms, we find from
Fig. 3(b) that in stark contrast to previous work on
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FIG. 3. (a) Effects of spin dephasing on the preparation
error η of the state |C+〉 of size |α|2 = 4. We integrated the
master equation in Eq. (2), with an additional spin dephasing
γdephL(b†b)ρ. We set κs = 0, so that only the effects of
spin dephasing are shown. Inset: the Liouvillian spectral
gap, λ, of the master equation in Eq. (4) versus the cat
size |α|2 for κ1at = 0. Here, the bosonic approximation is
made for all plots. (b) Ratio κ2at/γdeph versus the parameter
∆/gcol for γ−1

deph = 10 µs, 100 µs, and 1 ms for κp = 5χ

and J/2π = 30 MHz. The yellow shaded area represents
the κ2at ≥ 10γdeph regime, where spin dephasing is strongly
suppressed by the two-atom decay. The solid green line shows
τat/τph versus ∆/gcol. Other parameters in (a) and (b) are
set to be the same as in Fig. 2.

intracavity photonic cat states (see Table I in [34]), our
approach can lead to an increase in the cat state lifetime
of up to four orders of magnitude for κ2at ≈ 15γdeph and

a large cat size of |α|2 > 4. Correspondingly, for a typical
single-photon loss rate of κs/2π = 10 kHz (i.e., a cavity

decay time ∼ 16 µs) [38], the lifetime of the |α|2 = 4 cat
states resulting from our approach is ∼ 20 ms.

As the cavity loss rate κs decreases, the lifetime τat
further increases and ultimately reaches its maximum
value limited by spin relaxation and thermal noise
(see [34] for more details). This maximum lifetime is
given by τmax

at = Γ−1relax. Here, Γrelax = [2|α|2(1 +
2nth) + 2nth]γrelax [57] is the cat state decay rate arising
from spin relaxation with a rate γrelax and thermal
noise with a thermal average boson number nth. For
realistic parameters of γrelax = 2π × 4 mHz [36, 37] and
T = 100 mK, we can predict a maximum lifetime of



5

τmax
at ∼ 3 sec, which is more than two orders of magnitude

longer than the longest lifetime, i.e., 17 ms, of intracavity
photonic cat states reported in Ref. [35].

Conclusions.—We have introduced a method to create
and stabilize large-size, long-lived Schrödinger cat states
in atomic ensembles. This method is based on the use of
fully quantized DPA to engineer the simultaneous decay
of two atoms, i.e., the two-atom decay. The resulting
atomic cat states can last an extremely long time, because
of strongly suppressed spin dephasing, and of extremely
weak spin relaxation and thermal noise. We expect that
these atomic cat states can find wide applications in
fundamental investigations of quantum measurement and
decoherence, and various quantum technologies.
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SUPPLEMENTAL MATERIAL

Here, we first compare the lifetimes of our atomic cat states and common intracavity photonic cat states.
In Sec. S2, we present how to eliminate the second-order effect and as a result to make the desired third-
order effect dominant. In Sec. S3, we derive the single-atom decay induced by single-photon loss of the
signal cavity. In Sec. S4, we show quantum Monte-Carlo trajectories of the ensemble-cavity system. Then
Sec. S5 gives the detailed derivation of atomic cat states stabilized by the two-atom decay. Finally, in
Sec. S6, we discuss the effects of spin relaxation and thermal noise on the cat state lifetime, and also show
the maximum cat state lifetime limited by them.

S1. Comparison of the lifetimes of our atomic cat states and intracavity photonic cat states

The cat state lifetime can be defined as the inverse cat state decoherence rate. Sec. S6 shows how to derive the
cat state decoherence rate and then obtain the cat state lifetime. In this section, let us first compare the lifetime of
intracavity atomic cat states resulting from our approach with that of common intracavity photonic cat states, under
some realistic parameters. Our atomic cat states refer to superpositions of two spin coherent states, i.e.,

|C±〉 = A± (|θ, φ〉+ |θ, φ+ π〉) , (S1)

Here, A± = 1/{2[1 ± exp(−2 |α|2)]}1/2, and the state |θ, φ〉, where φ = π/2 and θ = 2 arctan(|α| /
√
N), is the

spin coherent state that is obtained by rotating the ground state of the ensemble by an angle θ about the axis
(sinφ,− cosφ, 0) of the collective Bloch sphere. For a large ensemble, we can apply the bosonic approximation,
which maps the collective spin of the ensemble to a quantum harmonic oscillator. Under this approximation, the
spin coherent states |θ, φ〉 and |θ, φ+ π〉 become bosonic coherent states |α〉 and | − α〉, respectively, with coherent
amplitudes ±α. The atomic cat states in Eq. (S1) likewise become

|C±〉 = A± (|α〉 ± | − α〉) . (S2)

Furthermore, the intracavity photonic cat states refer to

|C±〉ph = A±
(
|α〉ph ± | − α〉ph

)
, (S3)

where | ± α〉ph are the photonic coherent states with coherent amplitudes ±α. It is seen, from Eqs. (S2) and (S3),

that |α|2 is the average number of excited atoms or photons and, thus, can characterize the cat size.
In Table I, we list some parameters of intracavity photonic cat states |C±〉ph implemented in experiments. For

comparison, we also show the corresponding results of our atomic cat states |C±〉 at the end of the table. With

TABLE I. Some relevant parameters of experimentally implemented intracavity photonic cat states |C±〉ph. Here, |α|2

characterizes the cat size, Tc is the cavity photon lifetime, κs = 1/Tc is the cavity photon loss rate, τexp is the cat state lifetime
measured in experiments, and τtheor = 1/(2 |α|2 κs) is the theoretical prediction of the cat state lifetime. For comparison, we
also list at the end of the table the corresponding theoretical predictions for our atomic cat states |C±〉.

Ref. approach type |α|2 Tc (µs) κs/2π (kHz) τexp (µs) τtheor (µs)

[S1] unitary evolution 3.0 1.3× 105 1.2× 10−3 1.7× 104 2.2× 104

[S2] reservoir engineering 5.8 3.0 53.0 0.2 0.26

[S3] unitary evolution 28 22.1 7.2 — 0.4

[S4] reservoir engineering 2.4 20 8.0 — 4.1

[S5] reservoir engineering 5 92 1.7 8 9.2

[S6] unitary evolution 3.3 160 1.0 38.4 35

[S7] unitary evolution 1.4 0.14 1.1× 103 — 5.3× 10−2

[S8] unitary evolution 11.3 8.1× 103 2.0× 10−2 200 360

[S9] unitary evolution 2 692 0.2 — 173

our results reservoir engineering 4
16 10 — 2× 104

5.3× 103 3.0× 10−2 — 2× 106
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modest parameters the lifetime of our atomic cat states is predicted to be longer, by up to four orders of magnitude,
compared to those photonic cat states under the same parameter conditions. For a modest single-photon loss rate of
κs/2π = 10 kHz (i.e., a cavity decay time of Tc ∼ 16 µs), the lifetime of our atomic cat states can reach ∼ 20 ms for

a cat size of |α|2 = 4. This lifetime is comparable in length to that (∼ 17 ms) reported in Ref. [S1] in Table I, which,
to our best knowledge, is the longest lifetime of intracavity photonic cat states to date. We stress that in such a
comparison our cat state lifetime is achieved with a modest cavity decay time of Tc ∼ 16 µs. This is in stark contrast
to the cat state lifetime reported in Ref. [S1], which was achieved with an extreme cavity decay time of Tc = 0.13 sec.
This means that our approach can stabilize (for an extremely long time) large-size cat states, even with common
setups.

When decreasing the single-photon loss rate κs, i.e., increasing the cavity decay time Tc, our atomic cat state
lifetime can further increase. For example, a single-photon loss rate κs/2π = 3.0 × 10−2 kHz, corresponding to a
cavity decay time Tc ∼ 5.3 ms, results in a cat state lifetime of ∼ 2 sec, more than two orders of magnitude longer
than the lifetime, i.e., 17 ms, reported in Ref. [S1] in Table I. Ultimately, the maximum value of our cat state lifetime
is determined by extremely weak spin relaxation and thermal noise, reaching ∼ 3 sec.

The essential reason for such an improvement in the cat state lifetime is because, as shown in Fig. S1, single
excitation loss of ensembles (i.e., spin relaxation) is extremely weak compared to that of cavities (i.e., single-photon
loss). At the same time, spin dephasing, though stronger than photon dephasing, is greatly suppressed by the
engineered two-atom decay. This is in close analogy to the mechanism of using two-photon loss to suppress photon
dephasing.

dephasing

thermal noise

single
excitation lossintracavity

photonic cat
intracavity
atomic cat

lifetime ~ 10 μs  ~ 0.1 sec

two
excitation loss

FIG. S1. Comparison of the effects of noise on intracavity photonic cat stats and our atomic cat states. Solid arrows represent
the strong effects, and dashed arrows represent the extremely weak or strongly suppressible effects. While the lifetime of
photonic cat states is ∼ 10 µs, our atomic cat states can have a ∼ 0.1 sec lifetime.

S2. Elimination of the second-order effect

The time-averaged Hamiltonian Havg in Eq. (3) in the main article describes a third-order process, and there exists
a stronger second-order process, which is described by the Hamiltonian

H(2) = −g
2

∆

(
2a†sasSz + S+S−

)
− J2

∆′
(
2a†pap − a†sa†sasas + 4a†papa

†
sas
)
, (S4)

where ∆′ = 2ωs − ωp. In order to make the third-order Havg dominant, we need to eliminate the second-order H(2).
Since the signal cavity is initialized in the vacuum state, the Hamiltonian H(2) is thus reduced to

H(2) = −g
2

∆
S+S− −

2J2

∆′
a†pap. (S5)

We further focus our attention on the low-excitation regime, where the average number of excited atoms is much
smaller than the total number of atoms. In this regime, the operator Sz can be expressed as Sz = −N/2 + δSz, where
δSz is a small fluctuation. As a result, we find

S+S− ≈ NδSz, (S6)

according to the identity N (N/2 + 1) /2 = S2
z − Sz + S+S−, and then obtain

H(2) = −g
2
col

∆
δSz −

2J2

∆′
a†pap. (S7)
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It is seen that the second-order process causes a Lamb shift (i.e., the first term), and a dispersive resonance shift for
the pump cavity (i.e., the second term). These additional shifts can be compensated by properly detuning the pump
cavity resonance ωp from twice the atomic resonance ωq. Hence, the second-order process can be strongly suppressed,
such that the third-order process becomes dominant.

S3. Single-atom decay induced by single-photon loss of the signal cavity

Since the signal cavity is largely detuned from both the ensemble and the pump cavity, the average number of
photons inside the signal cavity is thus very low. In this case, we can only consider the vacuum state |0〉 and the
single-photon state |1〉 of the signal cavity. We work within the limit where δs ≈ ∆ � {δp, δq, gcol, J}, and the
Hamiltonian in Eq. (1) in the main article can thus be rewritten as H = He +Hg + V + V †. Here,

He = δs|1〉〈1|, (S8)

Hg = δpa
†
pap + δqSz + Ω

(
ap + a†p

)
, (S9)

represents the interactions inside the excited- and ground-state subspaces, and

V = gS−|1〉〈0| (S10)

describes the perturbative interaction between the excited- and ground-state subspaces. Then, according to the
formalism of Ref. [S10], we can define a non-Hermitian Hamiltonian He

NH = He − iκs|1〉〈1|/2, and obtain an effective
Lindblad dissipator for the ensemble

κsL
[
|0〉s〈1| (H

e
NH)

−1
V
]
ρens =

κ1at
N
L (S−) ρens, (S11)

where

κ1at =
κsg

2
col

δ2s + κ2s/4
≈
(gcol

∆

)2
κs. (S12)

This means that the single-photon loss process of the signal cavity gives rise to the single-atom decay of the ensemble.
Importantly, the resulting decay rate κ1at is smaller than the cavity decay rate κs by a factor of (gcol/∆)

2
. Thus, our

atomic cat states have an extremely long lifetime.

S4. Quantum Monte-Carlo trajectory for the initial states |00〉|3〉 and |00〉|4〉

The dynamics described by the time-averaged Havg in Eq. (3) of the main article implies that pairs of atoms can
jointly convert their excitations into pump single photons, and then the subsequent single-photon loss process of the
pump cavity results in the simultaneous decay of two atoms, i.e., the two-atom decay.

In Fig. S2, we plot single quantum trajectories, utilizing the quantum Monte Carlo method, for the initial states
|00〉|3〉 and |00〉|4〉. Here, the first ket |mpms〉 (mp,ms = 0, 1, 2, . . .) in the pair refers to the cavity state with
mp pump photons and ms signal photons, and the second |n〉 (n = 0, 1, 2, . . .) refers to the collective spin state
|S = N/2,mz = −N/2 + n〉, corresponding to n excited atoms in the ensemble.

For the former case, where initially the ensemble has three excited atoms, we find from Figs. S2(a, b) that two
excited atoms, as a pair, decay via a single-photon loss process of the DPA pump (corresponding to a quantum jump),
and one excited atom is kept in the ensemble because alone it cannot emit a single photon. If there are initially four
excited atoms as shown in Figs. S2(c, d), all excited atoms, as two pairs, can decay sequentially via two single-photon
loss processes of the DPA pump (corresponding to two quantum jumps).

S5. Stabilized atomic cat states by the two-atom decay

In this section we show a detailed derivation of atomic cat states stabilized by the engineered two-atom decay. We
begin with the effective master equation given in Eq. (4) of the main text

ρ̇ens = i [ρens, Hens] +
κ1at
N
L (S−) ρens +

κ2at
N2
L
(
S2
−
)
ρens, (S13)
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(c)

state |00>|1>: 
0 photons in both cavities,
1 atom excited

initial state |00>|3>: 0 photon in both cavities, 3 atoms excited

state |10>|1>: 1 photon in the pump cavity, 1 atom excited

initial state |00>|4>: 0 photon in both cavities, 4 atoms excited
state |10>|2>: 1 photon in the pump cavity, 2 atoms excited

state |20>|0>: 2 photons in the pump cavities, 0 atom excited

state |00>|2>: 0 photon in both cavities, 2 atoms excited
state |10>|0>: 1 photon in the pump cavity, 0 atom excited

quantum jump: 
one photon leaks 
out  of the pump cavity

�rst jump: 
one photon 
leaks out of 
the pump cavity

second jump: 
another photon 
leaks out of 
the pump cavity

state |00>|0>: 0 photon in both cavities, 0 atom excited

FIG. S2. Quantum Monte-Carlo trajectory pictured through the probabilities of the system being in the states |mp0〉|n〉 for
the initial states (a, b) |00〉|3〉 and (c, d) |00〉|4〉. A single quantum jump ap gives rise to the two-atom decay in the ensemble.
In all plots, we used the full Hamiltonian H in Eq. (1) in the main article, and set N = 100, J = 3gcol, δp = J2/20gcol, and
κp = 0.2χ. In order to show more clearly the quantum jump responsible for the two-atom decay, we further set κs = Ω = 0.

Here,

Hens =
i

N
χ2at

(
S2
− − S2

+

)
, (S14)

χ2at =
2Ωχ

κp
, (S15)

κ1at =
(gcol

∆

)2
κs, (S16)

κ2at =
4χ2

κp
. (S17)

To proceed, we assume that κ1at = 0, such that the single-atom decay induced by the signal cavity is subtracted.
Then, we obtain in the steady state(

S2
− −Nα2

)
|D〉〈D|S2

+ − S2
+

(
S2
− −Nα2

)
|D〉〈D|+ H.c. = 0, (S18)

where |D〉 is the dark state of the ensemble, and

α = i
√

2χ2at/κ2at = i
√

Ω/χ. (S19)

This indicates that the dark state |D〉 satisfies (
S2
− −Nα2

)
|D〉 = 0. (S20)
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We now express |D〉, in terms of the eigenstates |S = N/2,mz = −N/2 + n〉 of the collective spin operator Sz, as

|D〉 =
∑
n

cn|n〉, (S21)

where, for simplicity, we have defined |n〉 ≡ |S = N/2,mz = −N/2 + n〉. Here, n refers to the number of excited
atoms in the ensemble. The condition in Eq. (S20) gives two recursion relations as follows

c2n+k =
εn√

(2n+ k)!
ck, (S22)

where k = 0, 1. Here, we have worked within the low-excitation regime, in which 〈Sz〉 ≈ −N/2, such that the main
contributions to the dark state |D〉 are from these components with n� N .

The recursion relation in Eq. (S22) reveals that, when the ensemble is initially in a collective spin state |n〉 with an
even n, e.g., in the ground state |0〉 (i.e., a spin coherent state with all atoms in the ground state), the dark state |D〉
can be expressed as,

|D〉e =
1√

cosh |α|2
∑
n

α2n√
(2n)!

|2n〉. (S23)

Similarly, when the ensemble is initially in a collective spin state |n〉 with an odd n, e.g., in the first excited state |1〉
(i.e., a state with only one atom is excited), the dark state |D〉 becomes

|D〉o =
1√

sinh |α|2
∑
n

α2n+1√
(2n+ 1)!

|2n+ 1〉. (S24)

On the other hand, the spin coherent state |θ, φ〉 is defined as

|θ, φ〉 = R (θ, φ) |0〉. (S25)

Here,

R (θ, φ) = exp (τS+) exp
[
ln
(
1 + |τ |2

)
Sz
]

exp (−τ∗S−) , (S26)

is a rotation operator with τ = exp (iφ) tan (θ/2). In the low-excitation limit, Sn+|0〉 ≈
√
n!Nn|n〉, and then

|θ, φ〉 ≈ exp
(
−N |τ |2 /2

)∑
n

(√
Nτ
)n

√
n!

|n〉. (S27)

By setting
√
Nτ = α, we further have

|D〉e,o = A± (|θ, φ〉 ± |θ, φ+ π〉) = |C±〉, (S28)

where A± = 1/{2[1± exp(−2 |α|2)]}1/2. This is what we have already given in Eq. (S1).
We now consider the case when the atomic ensemble is initialized in a spin coherent state |θ0, φ0〉. In this case, the

atomic ensemble evolves into a subspace spanned by the cat states {|C+〉, |C−〉} and, thus, its steady state is

ρssens = c++|C+〉〈C+|+ c−−|C−〉〈C−|+ c+−|C+〉〈C−|+ c∗+−|C−〉〈C+|. (S29)

To obtain the amplitudes c++, c−−, and c+−, we follow the method in Refs. [S11, S12], and after straightforward
calculations, find that

c++ =
1

2

[
1 + exp

(
−2 |α0|2

)]
, (S30)

c−− =1− c++ =
1

2

[
1− exp

(
−2 |α0|2

)]
, (S31)

c+− =−
α∗0 |α| exp

(
− |α0|2

)
√

2 sinh
(

2 |α|2
) ∫ π

0

dϕI0
(∣∣α2 − α2

0 exp (i2ϕ)
∣∣) exp (−iϕ) , (S32)
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where α0 =
√
N exp (iφ0) tan (θ0/2), and I0 (•) is the modified Bessel function of the first kind.

The above results show that the ensemble states are steered into a 2D quantum manifold spanned by the cat states
|C+〉 and |C−〉. In typical atomic ensembles, spin relaxation is extremely weak, such that the dominant noise source
is spin dephasing. However, the engineered two-atom decay can protect the cat states of the quantum manifold
against spin dephasing. As a result, these cat states have a very long lifetime even with modest parameters, and thus,
can be used for fundamental studies of quantum physics. Moreover, this atomic-cat-state manifold stabilized by the
two-atom decay could also be used to encode logical qubits (i.e., cat qubits) for fault-tolerant quantum computation,
as an alternative to the photonic-cat-state manifold stabilized by two-photon loss [S12].

S6. Spin relaxation, thermal noise, and the maximum cat state lifetime

In the main article, we discussed the effects of spin dephasing, and also showed that it can be strongly suppressed
by the engineered two-atom decay. In this section, let us consider the effects of spin relaxation and thermal noise,
and also the maximum cat state lifetime limited by them. Here, we proceed with the bosonic approximation. Such an
approximation maps the spin coherent states |θ, φ〉 and |θ, φ+ π〉 to the bosonic coherent states | ± α〉, respectively.
Correspondingly, the cat states |C±〉 = A± (|θ, φ〉 ± |θ, φ+ π〉) become |C±〉 = A± (|α〉 ± | − α〉), as given in Eq. (S2).

Spin relaxation and thermal noise can be described by the Lindblad dissipators, γrelax(nth + 1)L (b) ρ and

γrelaxnthL
(
b†
)
ρ. Here, γrelax is the spin relaxation rate, and nth = [exp (~ωq/kBT )− 1]

−1
is the thermal average

boson number at temperature T . The decay rate of the cat state coherence, which is induced by single-photon loss of
the signal cavity, is given by

Γ1at = 2 |α|2 κ1at, (S33)

with κ1at = (gcol/∆)
2
κs as given in Eq. (S12). At the same time, for a thermal background at T 6= 0, an additional

decay rate of the cat state coherence, which is induced by spin relaxation and thermal noise, is given by [S13]

Γrelax =
[
2 |α|2 (1 + 2nth) + 2nth

]
γrelax. (S34)

By assuming realistic parameters ωq = 2π × 3 GHz, T = 100 mK, |α|2 = 4, and γrelax = 2π × 4 mHz [S14, S15], we
have Γrelax ≈ 2π×54 mHz, much smaller the decay rate, Γ1at ≈ 2π×8.0 Hz, which is obtained with κs = 2π×10 kHz
and ∆/gcol = 100. This means that the effects of both spin relaxation and thermal noise on the cat states |C±〉 can
be safely neglected. In this case, the lifetime of these cat states is determined only by the single-atom decay rate κ1at,
and is given by

τat = Γ−11at =

(
∆

gcol

)2
1

2 |α|2 κs
. (S35)

On the other hand, the intracavity photonic cat states |C±〉ph in Eq. (S3) mainly suffer from single-photon loss, e.g,
with a rate κs, and thus their lifetime is given by [S16],

τph =
1

2 |α|2 κs
. (S36)

It is found from Eqs. (S35) and (S36) that τat is longer than τph by a factor of (∆/gcol)
2
, i.e.,

τat
τph

=

(
∆

gcol

)2

. (S37)

According to the analysis in the main article, the factor (∆/gcol)
2

can be tuned to be ∼ 104 under modest parameters.
This indicates that the lifetime of our atomic cat states is longer than that of intracavity photonic cat states by up to
four orders of magnitude for cat sizes of |α|2 ≥ 4.

In fact, the decoherence rate Γ1at can be further decreased with the smaller single-photon loss rate κs (i.e., the
longer Tc). This results in a longer cat state lifetime. When Γ1at is comparable to or even smaller than Γrelax, the
lifetime τat is given by

τat = (Γ1at + Γrelax)
−1
. (S38)
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For a single-photon loss rate of κs/2π = 30 Hz, we have Γ1at = 2π×24 mH, which is smaller than Γrelax ∼ 2π×54 mHz.
In this case, Eq. (S38) gives a cat state lifetime of τat ∼ 2 sec. Ultimately, when decreasing the rate κs, the lifetime
τat increases to its maximum value,

τmax
at = Γ−1relax. (S39)

Using the parameters given above, we can predict a maximum lifetime of τmax
at ∼ 3 sec.
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