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Quantum channels, which break entanglement, incompatibility, or nonlocality, are not useful for
entanglement-based, one-sided device-independent, or device-independent quantum information processing,
respectively. Here, we show that such breaking channels are related to certain temporal quantum correlations,
i.e., temporal separability, channel unsteerability, temporal unsteerability, and macrorealism. More specifi-
cally, we first define the steerability-breaking channel, which is conceptually similar to the entanglement and
nonlocality-breaking channels and prove that it is identical to the incompatibility-breaking channel. Similar to
the hierarchy relations of the temporal and spatial quantum correlations, the hierarchy of non-breaking channels
is discussed. We then introduce the concept of the channels which break temporal correlations, explain how
they are related to the standard breaking channels, and prove the following results: (1) A certain measure of
temporal nonseparability can be used to quantify a non-entanglement-breaking channel in the sense that the
measure is a memory monotone under the framework of the resource theory of the quantum memory. (2) A
non-steerability-breaking channel can be certified with channel steering because the steerability-breaking chan-
nel is equivalent to the incompatibility-breaking channel. (3) The temporal steerability and non-macrorealism
can, respectively, distinguish the steerability-breaking and the nonlocality-breaking unital channel from their
corresponding non-breaking channels. Finally, a two-dimensional depolarizing channel is experimentally im-
plemented as a proof-of-principle example to compare the temporal quantum correlations with non-breaking
channels.

I. INTRODUCTION

The extension of quantum physics into the realm of infor-
mation theory is important both for fundamental physics and
for practical applications, such as quantum computing, quan-
tum cryptography [1], and quantum random number genera-
tion [2, 3]. For the latter examples, the practical implemen-
tation of entangled based, device-independent, and one-side
device-independent quantum information tasks [4–8] relies on
the quantum resources, e.g., entangled [9–11], steerable [12–
15], and nonlocal states [16–20], respectively. Extending
these ideas to quantum networks [21–24], one needs reliable
quantum devices (e.g., quantum communication lines [25] and
quantum repeaters [26, 27]) to transmit or generate quantum
resources between nodes (senders and receivers) in the net-
work.
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In general, the properties of quantum networks can be char-
acterized by the concept of quantum channels [28], which
is particularly convenient for estimating the preservability of
quantum resources [29]. For instance, a reliable quantum
memory [30–32] should ideally preserve the entanglement.
Therefore, in the channel formalism, the most useful quantum
memory is the identity channel, while the threshold of a quan-
tum memory becoming useless is given by the entanglement-
breaking (EB) channel [33, 34], which is also known as a
measure-and-prepare channel. Obviously, quantum informa-
tion tasks which rely on entanglement (e.g., the Ekert E91
cryptography protocol [4]) no longer work across the whole
network once any part of the quantum network is EB.

Recently, the nonlocality-breaking (NLB) channels [35],
defined in a similar way to the EB channel, were shown to
be not useful for device-independent quantum information
tasks. As expected from the hierarchy of correlations [36],
the EB channel also breaks the nonlocality, but not vice
versa [35, 37]. Thus, the EB channel is a strict subset of the set
of NLB channels. Although the definition of the NLB chan-
nels is rigorous, one can only assess non-NLB channels by
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observing a Bell inequality violation with arbitrary entangled
quantum states as input.

In order to detect a faithful quantum memory (i.e., detect-
ing whether the equivalent channel is non-EB) with minimal
assumptions, one can rely on a set of the temporal quan-
tum correlations observed with an uncharacterized measure-
ment apparatus [46] (see Fig. 1 for a schematic view of how
to probe a non-breaking channel with the temporal quan-
tum correlations). For instance, channel steering [13, 39],
which is a generalization of standard spatial quantum steer-
ing, can be used to witness a non-EB channel. Moreover,
a semi-quantum prepare-and-measure (SQPM) framework al-
lows one to certify non-EB channels in a scenario where Alice
received trusted quantum states as inputs [44]. Nevertheless,
not all non-EB channels can be certified with channel steering.
Later, the temporal semi-nonlocal game was proposed to wit-
ness “all” non-EB channels under the framework of a resource
theory of quantum memories [38, 47]. This is done by expand-
ing the concept of measurement-device-independent quantum
information tasks into the temporal domain [48–51]. Another
approach to assess the non-EB channel is by estimating the
coherence of a state sent through the channel [45] while the
used approach does not satisfy the memory monotone [38].

We here propose the concept of steerability-breaking (SB),
which is not useful for one-sided device-independent quan-
tum information tasks, and show that it is identical to the
incompatibility-breaking channel [37]. Similar to the exist-
ing hierarchy relations in spatial and temporal quantum cor-
relations [52, 53], the relationship between EB and NLB is
discussed in Ref. [35]. Here, we further discuss the relation-
ship between SB and NLB by showing that all NLB channels
must be the SB channels. In addition, we show that the set
of all Clauser-Horne-Shimony-Holt (CHSH) breaking chan-
nels [35, 54], which is a subset of all NLB channels, is a strict
subset of all SB channels. Therefore, the hierarchy of break-
ing channels can be obtained.

We then connect the non-EB, non-SB, and non-NLB chan-
nels with certain temporal quantum correlations including
the pseudo-density operator (PDO) [43], channel steerabil-
ity [39], temporal steerability [40], and Leggett-Garg inequal-
ities (LGIs) [55, 56] in the form of the temporal Bell inequal-
ity [41, 42, 57, 58]. More specifically, we show that: (1)
a measure of the PDO satisfies the memory monotone [38],
(2) channel steering can be used to certify all non-SB chan-
nels, while the temporal steerability can certify the non-SB
unital channel, and (3) the temporal CHSH inequality viola-
tion can detect a non-CHSH-NLB unital channel. In Table I,
we summarize some previous observations and our results of
the breaking channels in the form of the temporal quantum
correlations. We also experimentally study a 2-dimensional
depolarizing channel as an explicit example to show the re-
lationship between breaking channels and temporal quantum
correlations.

(a)

(b)

FIG. 1. Schematic illustration of certifying the quantum non-
breaking channel with (a) spatial and (b) temporal quantum corre-
lations. In (a), one relies on a bipartite quantum input ρ̃A0,B0 sent to
an unknown channel E (black box). The property of the channel can
be probed by analyzing the obtained spatial correlation of the state
ρ̃′A1,B0

via a quantum measurement (grey rectangle). In (b), a given
property of E can be probed by a temporal quantum correlation with
an input ρ̃t0 which is measured before and after the channel.

II. QUANTUM CORRELATIONS AND THEIR
CORRESPONDING BREAKING CHANNELS

In this section, we first briefly review the definitions and the
properties of the EB and NLB channels. We then propose the
SB channel, which is defined in analogy to the EB and NLB
channels. The properties of the SB channel, including the rela-
tionship with the incompatibility-breaking channel, will also
be discussed. Finally, we discuss the hierarchy relation for
breaking channels.

Before showing our results, we first introduce some nota-
tions used in this work. We consider a Hilbert space HA

in a finite dimension dA and L(HA) the set of linear oper-
ators acting on HA . We denote a set of standard density
operators D(HA) ∈ L(HA) satisfying the positive semidef-
initeness and unit trace. A quantum channel is described
by a set of complete-positive trace-preserving (CPTP) maps
from L(HA) to L(HB) as O(HA, HB). The set of prob-
ability distributions is denoted as P(X ) with a finite index
set X . Finally, we only consider the subsystem (say Al-
ice without loss of generality) of the bipartite quantum state
ρ̃A0,B0

∈ D(HA0
, HB0

) which is sent into the quantum
channel E ∈ O(HA0

, HA1
), and denote the output state as

ρ̃′A1,B0
= (E ⊗ 11)ρ̃A0,B0

.

A. Quantum memory and entanglement-breaking channel

A bipartite quantum state ρ̃A0,B0
shared between Alice and

Bob is entangled if the corresponding density operator is not
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Breaking channels EB channel [33] SB channel [37] unital SB channel [37] unital CHSH channel [35]
Spatial correlations Entanglement Steerability Steerability CHSH nonlocality

Temporal correlations Temporal semi-nonlocal game* [38] Channel steering [39] Temporal steering [40] Temporal CHSH inequality [41, 42]
Temporal nonseparability* [43] SQPM [44]

Coherence [45]

TABLE I. Table showing how to probe non-breaking channels with spatial and temporal quantum correlations. Here the italics represent
the results of this work and the asterisk marks the measures within the corresponding temporal scenarios satisfying the quantum memory
monotone.

separable, namely

ρ̃A0,B0
6=
∑
j

p(j) σ̃jA0
⊗ η̃jB0

, (1)

where p(j) ∈ P(J ) is a probability distribution, and σ̃jA0
∈

D(HA0
) (η̃jB0

∈ D(HB0
)) is a local density operator. In gen-

eral, the EB channel is defined by sending Alice’s subsystem
into a quantum channel E ∈ O(HA0

, HA1
), such that the en-

tanglement is broken for arbitrary entangled states. We can
explicitly formulate the EB channel as

ρ̃′A1,B0
= (EEB⊗11)(ρ̃A0,B0

) =
∑
j

p(j)σ̃jA1
⊗η̃jB0

∀ ρ̃A0,B0
,

(2)
where σ̃jA1

∈ D(HA1
). Here, the superscript EB is used to

denote the channel E to be EB. The set of all EB channels is
denoted by EB.

Entanglement-breaking channels are equivalent to
measure-and-prepare channels on a “single” quantum state.
We use the terminology t0 and t1 (as well as their correspond-
ing Hilbert space) to respectively denote a “single system”
before and after the quantum channel. An EB channel
EEB ∈ O(Ht0 , Ht1) is alternatively expressed as

EEB(ρ̃t0) =
∑
j

Tr [ρ̃t0Mj ] σ̃
j
t1 , (3)

whereMj is a positive-operator valued measurement (POVM)
element satisfying Mj > 0 ∀ j and

∑
jMj = 11 with classi-

cal outcomes j. The physical interpretation of the EB channel
can be explained as follows: one measures the original system
ρ̃t0 ∈ D(Ht0), after that, based on the outcome j, the corre-
sponding state σ̃jt1 ∈ D(Ht1) is prepared. Obviously, when
we send one of the entangled pairs into a measure-and-prepare
channel, the system becomes separable since one has locally
prepared another quantum state without any direct interaction
with the other party.

It has been shown that the non-EB channel is the basic cri-
terion for a functional quantum memory because one would
like the quantum memory to, at the very least, preserve the
entanglement in the state. Under the framework of the re-
source theory of quantum memory [38], the most general free
operations of a quantum memory are the pre-quantum instru-
ments and the post-quantum channels with the classical mem-
ory namely,

Λ(E) =
∑
i

Di ◦ E ◦ Ii, (4)

where Λ(E) is a free transformation acting on the initial quan-
tum channel E . Here, Di is a collection of quantum channels
described by CPTP maps, and {Ii} is a quantum instrument
satisfying CP, which sums up to CPTP. In Appendix A, we
present a simple quantum memory monotone under these free
operations.

B. Nonlocality-breaking channel

Before introducing the notion of the NLB channel, let
us briefly recall the definition of Bell nonlocality. As dis-
cussed in the introduction, a spatially separated state is
Bell-local when local measurements generate a correlation
p(a, b|x, y) = Tr

[
(Ma|x ⊗Mb|y)ρAB

]
which admits a hid-

den variable (HV) model [17, 18], namely,

p(a, b|x, y) =
∑
j

p(j)p(a|x, j)p(b|y, j), (5)

where
∑
j p(j)p(a|x, j)p(b|y, j) is the HV model with the

correlations predetermined by a hidden variable j. Here, we
denote a set of correlations admitting a HV model as HV .
SinceHV is a convex set and quantum correlations are a strict
superset ofHV , one can distinguish the local correlation from
the quantum ones by testing the famous “Bell inequalities”
given by the parameters βx,ya,b [17, 18, 59], namely

B ≡
∑
a,b,x,y

βx,ya,b p(a, b|x, y) ≤ δβ , (6)

where δβ is the local bound for a given Bell inequality.
Analogous to the EB channels, a NLB channel is the chan-

nel under which a correlation is obtained that always satisfies
a given Bell inequality defined by βx,ya,b in Eq. (6) for arbitrary
measurements and states, namely [35]∑

a,b,x,y

βx,ya,b Tr(Ma|x ⊗Mb|yρ̃
′
A1,B0

) ≤ δβ

∀ {Ma|x}, {Mb|y}, ρ̃A0,B0 .

(7)

We remark that deciding, whether a local hidden variable
model exists for a given quantum state by testing every possi-
ble measurement, is a hard problem [60–62]. In Ref. [35], the
authors considered the Clauser-Horne-Shimony-Holt (CHSH)
NLB channel, which is a particular case of NLB channels
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which only considers the CHSH inequality [59], namely

BCHSH ≡ E(x1, y1)+E(x2, y1)+E(x1, y2)−E(x2, y2) ≤ 2,
(8)

where 2 is the local bound for the CHSH inequality,
E(xi, yj) ≡ p(a = b|xi, yj) − p(a 6= b|xi, yj) is the ex-
pectation value of a · b, for a ∈ A, b ∈ B, xi ∈ X and yj ∈ Y
with X = Y = {1, 2}, and A = B = {±1}. The quan-
tum bound of the CHSH inequality is given by 2

√
2. Unlike

the situation in the EB scenario, the input of the maximally
entangled state is not sufficient for verifying if the channel is
CHSH-NLB [35, 63]. In this work, we are particularly inter-
ested in CHSH-NLB channels with the input being the max-
imally entangled state, denoted as CHSH-NLB channels for
the maximally entangled state, since there are two important
properties of such channels: (1) if the marginal of the input
state is maximally mixed, then the state after channel cannot
violate CHSH inequality and (2) if the channel is unital, then
the channel is CHSH-NLB.

C. Steerability-breaking channels

In analogy to the EB and NLB channels, we propose a SB
channel as a channel which breaks the steerability for any
collection of measurements {Ma|x} acting on the state sent
through the channel. More specifically, by defining an assem-
blage as ρB0

(a|x) ≡ TrA1

[
(Ma|x ⊗ 11)ρ̃′A1,B0

]
, the assem-

blage after SB channel can always expressed as

ρB0
(a|x) =

∑
j

p(j)p(a|x, j)σ̃jB0
∀ {Ma|x}, ρ̃A0,B0

. (9)

Here,
∑
j p(j)p(a|x, j)σ̃

j
B0

is the hidden-state (HS) model
consisting of the intrinsic states {σ̃jB0

} ∈ D(HB0) with the
classical postprocessing p(j)p(a|x, j). The sets of all assem-
blages admitting HS model and all SB channels are denoted
as HS and SB, respectively. Moreover, we denote as |X |-
SB channels which break the steerability with a finite input
|X |. For instance, if the finite index set is X = {1, 2, 3},
we can define the 3-SB channel. We note that the definition
of the SB channel is similar to that of the incompatibility-
breaking channel, which maps an incompatible measurement
{Ma|x} to a jointly measurable one in the Heisenberg pic-
ture [37, 64]. More specifically, a set of measurements after
incompatibility-breaking channel can always expressed as

E†(Ma|x) =
∑
λ

p(a|x, λ)Mλ ∀ {Ma|x}, (10)

where
∑
λ p(a|x, λ)Mλ is a joint measurable model with an

intrinsic POVM {Mλ} and postprocessing p(a|x, λ), and E†
is the dual map of the quantum channel which is CP and unital.
With the above definitions, we posit the following theorems:

Theorem 1. A quantum channel is steerability-breaking if
and only if it is also incompatibility-breaking.

Proof.—We present the proof in Appendix B.

NLB

SB

EB

CHSH-NLB

?

?

FIG. 2. Visibility parameter v for which the qubit depolarizing
channel is CHSH-nonlocality breaking, nonlocality-breaking (NLB),
steerability-breaking (SB), and entanglement-breaking (EB). The
first bar in red represents the range, where the channel is proven to
break the property, and the second bar in green shows the range,
where the channel is proven not to break the property. The white ar-
eas with a question mark represent the ranges where the property is
not known to be broken.

Although the definition of a SB channel is analogous to that
of the EB channel, there is no simple way to characterize a set
of SB channels, except for some explicit channels discussed
in the literature [37]. It has already been shown that all EB
channels can be certified with the maximally entangled input
in Eq. (2) [33]. Here, we show that the SB channel also has
the same property with the following theorem:

Theorem 2. A quantum channel is steerability-breaking if
and only if it breaks the steerability of a maximal entangled
state.

Proof.—We present the proof in Appendix B. The above
property is useful not only for experimental-friendly certifica-
tions of the SB channel, but also for the theoretical analysis of
the SB channel.

It has been shown that the set of all incompatibility-
breaking channels (also the SB channel) and NLB channels
are superset of all EB channels [35, 37]. Here, we also show
the following:

Lemma 1. The set of all SB channels is a strict superset of
the all CHSH-NLB channels.

Using the notes above, we arrive at the hierarchy in the
breaking channels:

Theorem 3. Similar to the hierarchy relation in temporal and
spatial quantum correlations, the set of all non-EB, non-SB,
non-NLB, and non-CHSH-NLB channels form a strict hierar-
chy. More specifically, we have the strict inclusions

EB ⊂ SB ⊂ NLB ⊂ NLBCHSH. (11)

We present the proof of Theorem. 3 in Appendix D, and we
illustrate this theorem for the qubit depolarizing channel

ED(v, ρ̃) = vρ̃+ (1− v)
11
2

(12)

in Fig. 2.
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III. DETECTING QUANTUM NON-BREAKING
CHANNELS WITH TEMPORAL QUANTUM

CORRELATIONS

In this section, we present the results connecting EB, SB,
and NLB channels with temporal separability, temporal non-
steerability, and macrorealism. In section III A, we show that
all EB channels are temporally separable and the measure of
the temporal nonseparability satisfies the quantum memory
monotone with an additional assumption. In section III B,
we show that all the SB channels can be certified by testing
the channel steerability. In section III C, the temporal steer-
ing and temporal Bell inequality are used to test whether the
unital channel is SB and NLB, respectively.

A. Certifying non-EB channel with temporal quantum
correlations

We first briefly recall the definition of the PDO, which has
primarily been used in causality of quantum theory. We then
show that a measure of temporal nonseparability extracted
from a PDO satisfies the quantum “memory” monotone re-
quirement as demanded by the framework of quantum mem-
ory resource theory. Afterwards, by considering the hierar-
chy in temporal correlations [53, 54], we show how to ob-
tain the same probability distribution under the temporal semi-
quantum game, which certifies the non-EB channel with min-
imal assumptions [38].

To reconstruct the state of a quantum system from observa-
tions or measurements performed at different times, one can
generalize the concept of a standard density operator in the
time domain [43]. Without loss of generality, the events, or
observations, collated at different times can be connected by
quantum channels with an input system. In what follows, we
only consider a “two”-event PDO with the maximally mixed
input. The information of a channel is contained in the PDO,
namely [65]

RE = (11⊗ E)R11, (13)

where R11 = SWAP/d is the PDO of the identity channel
with the swap operator defined SWAP|ij〉 = |ji〉. For the
qubit case, we have SWAP = 1/2

∑3
i=0 σi ⊗ σi. Here,

{σi}i=0,1,2,3 = {11, X̂, Ŷ , Ẑ} is a set containing the iden-
tity and Pauli operators. A PDO is: (1) Hermitian and (2)
unit trace but not necessarily positive semidefinite (the latter
is a necessary condition for standard density operator). We
note that although we only consider a qubit system above, the
high-dimensional PDO can be trivially accessed [65]. Similar
to the standard density operator, a PDO is called temporally
separable when it admits

RE =
∑
j

p(j) ω̃jt0 ⊗ θ̃
j
t1 , (14)

where p(λ) ∈ P(J ), ω̃jt0 ∈ D(Ht0), and θ̃jt1 ∈ D(Ht1). We
note that one cannot, in general, distinguish if the system is

spatially or temporally separable when the PDO is positive
semidefinite. Nevertheless, throughout this work, we refer
to the correlation obtained as temporal correlation whenever
there is no risk of ambiguity.

It has been shown that the PDO is identical to the partial
transpose of the CJ state of the channel E [66, 67],

RPT
E = ρ̃CJ

E , (15)

where PT is a partial transpose operation on the first subsys-
tem. According to the positive partial transpose criterion, a
separable PDO implies that the CJ state is also separable and
thus the corresponding channel must be EB [68, 69]. With the
above, we arrive at:

Lemma 2. A PDO is separable if the corresponding channel
is EB.

Due to the hierarchy relation among temporal quantum cor-
relations, we have the following:

Lemma 3. Temporal steering and Leggett-Garg inequalities
(LGIs)”, in terms of the temporal Bell inequality without the
classical memory, can be used to witness the non-EB channel
with fewer assumptions.

More precisely, since the set of PDOs admitting temporally
separable models is a subset of the PDOs admitting the HS
and HV models [53], temporal steering and temporal Bell in-
equality cannot be violated when the channel is EB, but not
vice versa. Moreover, if temporal steering or a temporal Bell
inequality is violated, the channel must be non-EB.

We now define a degree of temporal nonseparability by the
f -function, namely [43]:

f =
‖RE‖−1

2
, (16)

where ‖X‖:= Tr[
√
XX†] is the trace norm of an operationX .

We recall that the set of free operations is given by Λ(E) =∑
iDi ◦ E ◦ Ii [38]. We show that the degree of temporal

nonseparability is a quantum memory monotone.

Theorem 4. A temporal nonseparability measure f is a con-
vex quantum memory monotone.

Proof.—We present the proof in Appendix A.
Finally, it is useful to compare the PDO and the temporal

semi-nonlocal game, which certifies all the non-EB channels
with minimal assumptions [38]. We consider a set of mea-
surements {Ma|x} at t0 acting on the PDO which is used for
generating a set of the density operators ρ̃t1(a|x) ∈ D(Ht1)
at t1 [53]. This is the so-called “normalized” temporal as-
semblage, and we will formally introduce it later. The joint
measurement is performed with a characterized quantum in-
put {τ̃y} ∈ D(Ht1) and the normalized temporal assemblage.
The above steps are exactly identical to the procedure used in
the temporal semi-nonlocal game, and we have

Lemma 4. The PDO contains the statistical information of
the temporal semi-nonlocal scenario.
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We present a detailed comparison in Appendix C. We note
that, although in Ref. [54] the authors have already shown the
relationship between the PDO and a temporal semi-nonlocal
game, we provide a clearer physical interpretation in the proof
by using the hierarchy relation in temporal quantum correla-
tions.

B. Certifying non-SB channel with channel steering

Now we apply a set of uncharacterized measurements with
a finite input y ∈ Y and outcome b ∈ B at time t1 acting on the
PDO which generates an “evolved” measurement {E†(Mb|y)}
by

Trt0
[
11⊗Mb|yRE

]
= E†(Mb|y)/d, (17)

where d is the dimension of the PDO. Here, we only use the
relation with the PDO and the CJ state in Eq. (15). Equa-
tion (17) is a valid assemblage and thus one can test whether
Eq. (17) admits a HS model. Once the HS model is satisfied,
the corresponding measurement set {E†(Mb|y)} is jointly
measurable (see also Appendix B). Therefore, once the dual
channel breaks the incompatibility of an arbitrary measure-
ment set {Mb|y}, the channel is SB by Theorem 1. The above
description is a special case of channel steering [39, 46] with
the trivial output of Bob. Note that the measurement at time t0
is characterized and the classical memory can be used. From
Theorem 1, we arrive at

Theorem 5. All non-IB or non-SB channels can be certified
in the temporal domain by violating the channel steering in-
equality.

According to the definition of the PDO, Eq. (17) is experi-
mental feasible. We note that all of the results in Refs. [39, 46]
are also valid in our scenario.

C. Certifying unital non-SB and non-NLB channels for
maximal entangled states with temporal correlations

In the temporal steering scenario, we currently consider the
uncharacterized measurement with a finite input x ∈ X and
outcome a ∈ A applied on the PDO at t0. In the most gen-
eral case, one can obtain a set of the subnormalized density
operators, termed as a temporal assemblage [40, 70], namely

ρE(a|x) = Trt0
[
Ma|x ⊗ 11RE

]
. (18)

In addition, since one often makes the noninvasive mea-
surability assumption in the temporal steering scenario, the
marginals of the temporal assemblage are independent of
the classical input x, yielding the so-called no-signalling
in time (NSIT) condition [71–74], namely

∑
a ρE(a|x) =∑

a ρE(a|x′), ∀ x 6= x′. We do not allow a classical mem-
ory, which sends classical information from t0 to t1, otherwise
one can always have a temporal assemblage violating the HS
model even when considering the EB channel [46]. We note
that in the spatial quantum steering, the assemblage can also

violate the HS model with classical communication from Al-
ice to Bob [75]. For brevity, whenever there is no ambiguity
we denote the assemblage {ρE(a|x)} as ~ρ. It is convenient
to quantify the degree of temporal steerability by the tempo-
ral steering robustness (TSR) [39, 62, 76], which refers to the
minimum rate α of the noisy assemblage mixed with a given
assemblage satisfying the HS model:

TSR(~ρ) = min

{
α|ρE(a|x) + ασ(a|x)

1 + α
∈ HS

}
. (19)

Here, ~σ is an arbitrary assemblage. From Eqs. (15) and (18),
one immediately sees that the temporal assemblage ~ρE can be
formulated

ρE(a|x) = E(Ma|x)/d. (20)

Because now the quantum channel is acting on the measure-
ment, in what follows we only consider the unital quantum
channel in the temporal steering scenario. We denote such a
unital channel as Eunital. It is easy to see that the set of quantum
channels is a superset of the unital quantum channels. Obvi-
ously, if TSR(~ρEunital) = 0 when considering an arbitrary mea-
surement set {Ma|x}, the channel Eunital is a unital SB channel
for the state |Φ+〉. Now, further considering Theorem 2, we
can certify all unital SB channel with temporal steering. In
other words, if one discovers TSR(~ρE) 6= 0, the unital chan-
nel Eunital is definitely non-SB. We then arrive at

Lemma 5. Temporal steering can be used to certify all unital
non-SB channels.

Now, the measurements at t1 are also replaced with a
black box having finite inputs y ∈ Y and outcomes b ∈
B [41, 42, 56]. In other words, in the temporal Bell scenario,
the measurements are both uncharacterized at t0 and t1. The
temporal Bell inequality is defined as

BT ≡
∑
a,b,x,y

βx,ya,b p(a, b|x, y) ≤ δβT , (21)

where δβT is the macrorealistic bound, and

p(a, b|x, y) = Tr
[
(Ma|x ⊗Mb|y)RE

]
= Tr

[
Mb|yρE(a|x)

]
.

(22)

If we find that 〈B〉T ≤ δβT , due to the macrorealistic assump-
tion [55, 56], the physical quantity, referring to the probability
here, is always determined by HV. The marginals of the prob-
ability cannot be influenced by the choice of the measurement
apparatus at t0 for satisfying the non-invasive measureabil-
ity assumption or the NSIT condition [71, 72]. We note that
similar to the communication loophole in the spatial Bell in-
equality [18], the classical memory is not allowed. One can
immediately realize that certifying the macrorealistic proba-
bility distribution is identical to witnessing the locality of the
CJ state (22). When Eq. (21) cannot be violated for arbitrary
measurements, the channel breaks nonlocality for the maxi-
mally entangled states by definition. Alternatively, violating
Eq. (21) implies the channel E is not NLB. Thus, we have
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Lemma 6. The LGI in terms of the temporal Bell inequality
can be used to witness the non-NLB channel for the maximally
entangled state.

At the end of this section, we consider the CHSH-NLB
channel and the “quantitative” temporal CHSH inequality,
which optimize all possible measurement settings, namely

Bmax
T-CHSH = max

{Ma|x},{Mb|y}

{
BT-CHSH − 2

2
√

2− 2
, 0

}
, (23)

where BT-CHSH is the temporal CHSH inequality similar to
Eq. (8), while the correlation is obtained temporally. Here,
2 and 2

√
2 are the upper bounds of the temporal CHSH in-

equality under the HV model and quantum mechanics, respec-
tively. Since the unital channel is CHSH-NLB when the chan-
nel breaks the CHSH nonlocality for the maximally entangled
states, the temporal CHSH inequality can be used to certify all
unital CHSH-NLB channels.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, we present a proof-of-principle experiment
to see how the temporal quantum correlations can be applied
to certify the breaking channels. In detail, we consider the
2-dimensional depolarizing channel which is a convex combi-
nation of white noise with the input state, namely,

ED(v, ρ̃) = vρ̃+ (1− v)
11
2
, (24)

where v is the mixing parameter. The corresponding PDO can
be expressed as

RED =
v

2
SWAP +

1− v
4

11, (25)

In the temporal steering scenario, we consider the three di-
chotomic measurements ({X̂, Ŷ , Ẑ}) applied on the PDO at
t0 in order to obtain the maximal temporal steerability [77,
78]. For the 2-dimensional depolarizing channel, the optimal
measurement settings achieving the maximal violation of the
temporal CHSH inequality are two sets of the anti-commuting
measurements ({X̂, Ẑ} and {(X̂ + Ẑ)/2, (X̂ − Ẑ)/2}).

We have demonstrated all temporal scenarios in photonic
experiments. The experimental setup is schematically shown
in Fig. 3. In this experiment, qubits are encoded into the po-
larization state of individual photons and manipulated using
linear optics. More details on the experimental implementa-
tion are provided in Appendix E.

A quarter and half-wave plates are used to prepare sin-
gle photons in the desired polarization state. In our exper-
iment, we prepared 10 different initial states which are the
eigenstates of operators {X̂, Ŷ , Ẑ}. This preparation is op-
erationally equivalent to the nondestructive projective mea-
surement at t0. The photons then enter the depolarizing
channel consisting of two beam displacer assemblies (BDA),
one of which is enveloped by Hadamard gates (Ĥ). These
two BDAs together can perform one of following operations

{11, X̂, Ŷ , Ẑ}. We assign each operation a probability depend-
ing on parameter v. To implement the depolarizing channel,
we randomly (with assigned probabilities) with frequency 10
Hz change the operation and accumulate signal for sufficient
enough time (100s) (see further details in Appendix E). To
analyze the output state, we implement polarization projec-
tion and subsequent detection using a half and quarter-wave
plate, a polarizer and a single photon detector. Note that the
aforementioned half-wave plate is used to implement both the
second Hadamard gate and the analysis.

Our experimental results are plotted in Fig. 4. As can be
seen, the PDO is separable when v ≤ 1/3 which saturates the
bound of the EB channel in the quantum domain [38]. For the
temporal steering and CHSH scenarios, the vanishing param-
eters v of the SB-breaking and CHSH-NLB channels in the
quantum domain are v = 1/

√
3 and 1/

√
2, respectively. We

note that the temporal CHSH inequality is 0, when v ≤ 1/
√

2
which is identical to the boundary of the CHSH-NLB channel
under the 2-dimensional depolarizing channel [35, 63]. More-
over, the vanishing parameter for temporal steerability under
the three measurement setting scenario is identical to that in
the 3-incompatibility-breaking channel, which breaks the in-
compatibility of every collection of three measurements [37].
In other words, we can also say that it is the 3-SB channel
which breaks the spatial steerability under all the three mea-
surement settings. The error of all experimentally obtained
quantities is estimated by assuming the Poisson distribution
of the photon counts. Errors of quantities obtained from the
density matrices is determined by a Monte-Carlo method. Nu-
merical experimental results with errors are in Appendix E.

LASER

FIG. 3. Scheme for our experimental implementation of the depo-
larizing channel. The β-Ba(BO2)2 is a nonlinear crystal for spon-
taneous parametric down-conversion; λ/2 and λ/4 are half- and
quarter-wave plates, respectively; BDs are beam displacers; BDAs
are beam-displacer assemblies; Pol is a polarizer; and Det are single-
photon detectors.

V. DISCUSSION

In this work, we have proposed the steerability-breaking
(SB) channel, which is defined in an analogous way to the
entanglement-breaking (EB) and nonlocality-breaking (NLB)
channels. We have then proven a strict hierarchy between
these concepts and illustrate it with the qubit depolarizing
channel. In the Heisenberg picture, the set of the SB chan-
nels was shown to be equivalent to a previous concept of a
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FIG. 4. Effects of the 2-dimensional depolarizing channel, character-
ized by the mixing parameter v in Eq. (24), on the TSR, f -function,
and Bmax

T-CHSH of a single qubit. Experimental (marked by symbols) vs
theoretical predictions. The vanishing parameter of the f -function
is 1/3 which distinguishes the EB channel in the quantum domain.
Moreover, for the temporal steering and CHSH scenarios, the vanish-
ing parameters are respectively 1/

√
3 and 1/

√
2, which are the same

as the boundaries of the 2-dimensional depolarizing channels for the
SB and CHSH-NLB channels under the three and two dichotomic
measurement settings.

incompatibility-breaking channel. We have shown the non-
EB, and non-SB can be certified by the temporal inseparabil-
ity and the channel steerability, respectively.

The temporal steerability and non-macrorealism can be ap-
plied to certify the unital non-SB and the unital non-CHSH-
NLB channels, which only break the CHSH nonlocality in-
stead of the general nonlocality. Therefore, the above break-
ing channels can be certified in the temporal scenarios with-
out the entangled quantum input. We have also shown that the
measure of the temporal nonseparability is a quantum memory
monotone. We have also demonstrated the photonics experi-
ment to explicitly show how temporal quantum correlations
can be used to certify the non-breaking channels.

Several natural questions can be discussed: Can all the non-
NLB channel be certified in the temporal scenario? Similar to
the temporal semi-nonlocal game, which certify the non-EB
channel in the measurement-device-independent scenario, the
measurement-device-independent channel steering has been
proposed [79] without considering the relation with the SB
channel. We leave a systematic certifying the non-SB channel
with the measurement-device-independent channel steering as
an open problem.
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Appendix A: Quantum memory monotone

First, we recall the definition of a convex quantum memory
monotone introduced in [38]. A quantum memory Q(E) is a
convex quantum memory monotone if it obeys the following
conditions:

(i) It vanishes for free quantum memory:

Q(E) = 0 if E is EB. (A1)

(ii) Q is non-increasing under the free operation, i.e.,

Q (Λ(E)) ≤ Q(E), (A2)

where Λ(X) =
∑
iDi ◦ X ◦ Ii is a free operation.

Here, Di is a collection of the CPTP maps, and Ii is
a quantum instrument satisfying positivity and summed
up to CPTP.
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(iii) Given the classical mixture (0 ≤ µ ≤ 1) of two chan-
nels (E1 and E2), the quality of the quantum memory
satisfies the inequality

Q(µE1 + (1− µ)E2)

≤ µQ(E1) + (1− µ)Q(E2).
(A3)

In what follows, we show that a measure of quantum casu-
ality, denoted as a f -function, is a quantum memory mono-
tone.

Lemma 7. The value of the f -function is 0 when the channel
is EB.

Proof.— Since the CJ state of an EB channel must be sep-
arable, its corresponding PDO is also separable by Eq. (15).
�

Before we prove that the f -function satisfies (ii), we show
the following

Lemma 8. Let Λ : L(H1)→ L(H2) be a CP unital map and
σ ∈ L(H1) a positive semidefinite operator. It holds that

‖Λ(σ)‖≤ ‖σ‖. (A4)

Proof.— The Stinespring dilation ensures that every unital
CP map can be writen as Λ(σ) = V †

(
σ ⊗ 11E

)
V where HE

is a linear space represented an environmentE and V : H1 →
H2 is an isometry, i.e., V †V = 11. Also, direct calculation

shows that V V † is an orthonormal projector, i.e.,
(
V V †

)2

=

V V † and
(
V V †

)†
= V V †. Since σ ≥ 0 and Λ is CP we can

write

‖Λ(σ)‖ = tr
(

Λ(σ)
)

= tr
(
V †σ ⊗ 11V

)
= tr

(
V V †σ ⊗ 11

)
= tr

(
V V †σ ⊗ 11V V †

)
= ‖V V †σ ⊗ 11V V †‖, (A5)

where the last step holds true because V V †σ ⊗ 11V V † is pos-
itive semidefinite. If follows from Hölder inequality that

‖V V †σ ⊗ 11V V †‖≤ ‖V V †‖∞ ‖σ ⊗ 11‖ ‖V V †‖∞ (A6)

where ‖.‖∞ stands for the operator norm (the maximal singu-
lar value of an operator). Since all projectors have operator
norm equals one, it holds that ‖Λ(σ)‖≤ ‖σ‖, finishing the
proof. �

Lemma 9. The f -function is decreasing under the free oper-
ation of the quantum memory.

Proof.— Based on the definition of the f -function, we only
need to show that the trace norm of the PDO under the oper-
ation Λ(E) =

∑
iDi ◦ E ◦ Ii does not increase. We start by

invoking Lemma 1 of Ref. [65] to write

RΛ(E) = 11⊗
∑
i

Di ◦ E ◦ Ii(R11)

=
∑
i

I†i ⊗Di ◦ E(R11)

=
∑
i

I†i ⊗Di(RE). (A7)

Since RE is hermitian, it admits the decomposition RE =
R+
E − R−E , where R±E ≥ 0 have orthogonal support. This

allows us to write

‖RΛ(E)‖ = ‖
∑
i

I†i ⊗Di(RE)‖

= ‖
∑
i

I†i ⊗Di(R
+
E −R

−
E )‖

= ‖
∑
i

I†i ⊗Di(R
+
E −R

−
E )‖

≤ ‖
∑
i

I†i ⊗Di(R
+
E )‖+‖

∑
i

I†i ⊗Di(R
−
E )‖

= Tr

(∑
i

I†i ⊗Di(R
+
E )

)
+ Tr

(∑
i

I†i ⊗Di(R
−
E )

)

= Tr

(∑
i

I†i ⊗ 11(R+
E )

)
+ Tr

(∑
i

I†i ⊗ 11(R−E )

)
= ‖
∑
i

I†i ⊗ 11(R+
E )‖+‖

∑
i

I†i ⊗ 11(R−E )‖.

(A8)
Now, since

∑
i Ii is TP, we have that

∑
i I
†
i is unital, hence

we can invoke Lemma 8 to ensure that

‖
∑
i

I†i ⊗ 11(R+
E )‖+‖

∑
i

I†i ⊗ 11(R−E )‖≤ ‖R+
E ‖+‖R

−
E ‖.

(A9)
We now finish the proof by pointing that, since R+

E and R−E
have orthogonal support, it holds that

‖R+
E ‖+‖R

−
E ‖ = ‖R+

E −R
−
E ‖

= ‖RE‖.� (A10)

Lemma 10. The f -function satisfies the property (iii).

Proof.— The proof has been shown in Ref. [43].
With the above lemmas, we complete the Theorem 4 in the

main text.

Appendix B: The set of the steerability-breaking channels is
identical to the set of the incompatibility-breaking channel.

We first summarize that the following statements are equiv-
alent related to a quantum channel E :

#1. A quantum channel breaks the steerability for any arbi-
trary quantum state ρ̃AB and arbitrary measurement set
{Ma|x}.
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#2. A quantum channel breaks the steerability for the max-
imally entangled states and arbitrary measurement set
{Ma|x}.

#3. A dual of the quantum channel E† breaks the incompat-
ibility for the arbitrary measurement set {Ma|x}. In the
other words, E†(Ma|x) is joint measurable.

Lemma 11. The above-mentioned statements #2 and #3 are
equivalent.

Proof.—For #3⇒ #2, it is trivial because the incompati-
ble measurement is a necessary condition for demonstrating
the steerability [80, 81]. If the channel is incompatibility-
breaking, it must also be steerability breaking. For #2⇒# 3,
we consider the state ρ̃A,B = |Φ〉〈Φ|with |Φ〉 = 1

d

∑d
i=1|i〉⊗

|i〉, and arbitrary measurement set {Ma|x}. The correspond-
ing assemblage can be obtained by

TrA
[
(Ma|x ⊗ 11)(E ⊗ 11)|Φ〉〈Φ|

]
= TrA

[
(E†(Ma|x)⊗ 11)|Φ〉〈Φ|

]
=

1

d

[
E†(Ma|x)

]T
.

(B1)

Since the assemblage itself must satisfy a HS model, we can
reformulate the above as[

E†(Ma|x)
]T

= d×
∑
λ

p(a|x, λ)p(λ)ρ̃λ

=
∑
λ

p(a|x, λ)Mλ.
(B2)

By summing up the outcome a in Eq. (B2)

11 ≡
∑
a

[
E†(Ma|x)

]T
=
∑
a,λ

p(a|x, λ)Mλ

=
∑
λ

Mλ,
(B3)

we can show Mλ = dp(λ)ρ̃λ is a valid POVM. Here,
we use the facts that

[
E†(Ma|x)

]T
is a valid POVM and∑

a

[
E†(Ma|x)

]T
= 11. Therefore, the last equation in

Eq. (B2) is joint measurable. From above, we prove #2⇔#3.
�

Lemma 12. The above-mentioned statements #1 and #3 are
equivalent.

Proof.— Since #3⇒#1 is trivial, we are going to show #1⇒
#3. An equivalent description of #1⇒#3 is ( 6= #3)⇒ ( 6= #1).
According to the definition of the incompatibility-breaking
channel, there exists a set of measurements {Ma|x} such
that the “evolved” measurement {E†(Ma|x)} is incompatible.
Now, if we consider Alice and Bob sharing a maximally en-
tangled state ρ̃A,B = |Φ〉〈Φ| with |Φ〉 = 1

d

∑d
i=1|i〉 ⊗ |i〉,

we can obtain the following assemblage which is the same as
Eq. (B1). Since 1

d

[
E†(Ma|x)

]T
must be steerable, the channel

is not a SB channel by definition. �
Although from above two Lemmas, it is enough to show

that the statements #1, #2, and #3 are equivalent. We still
provide an independent proof of #2⇔#3.

Lemma 13. The above-mentioned #1 and #2 are equivalent.

Proof.— By definition, #1⇒#2 is trivial. In the follow-
ing, we show that #2⇒#1 also holds. First, we introduce the
maximally entangled state |Φ〉〈Φ|= 1

d

∑
i,j |i〉〈j|⊗|i〉〈j|, the

hidden state ρ̃λ =
∑
i,j χ

λ
i,j |i〉〈j|, and the arbitrary bipartite

quantum state τ̃ =
∑
mnpq Υm,n

p,q |m〉〈n|⊗|p〉〈q| in the matrix
representation. Here χλi,j and Υmnpq are the entries of the
corresponding states. From #2, there must exist a hidden state
model for the channel E breaking the steerability of the max-
imally entangled state for arbitrary measurement set {Ea|x}
and we have

TrA
[
(Ea|x ⊗ 11)(E ⊗ 11)|Φ〉〈Φ|

]
=

1

d

∑
i,j

Tr
[
Ea|xE(|i〉〈j|)

]
|i〉〈j|=

∑
λ

p(a|x, λ)p(λ)ρ̃λ =∑
i,j,λ

p(a|x, λ)p(λ)χλi,j |i〉〈j|.

(B4)

By linearity, we obtain

Tr
[
Ea|xE(|i〉〈j|)

]
= d

∑
λ

p(a|x, λ)p(λ)χλi,j . (B5)

Now, inserting the arbitrary bipartite state into the definition
of the SB channel, one finds

TrA
[
E†(Ea|x)⊗ 11τ̃

]
=

∑
m,n,p,q

Υm,n
p,q Tr

[
Ea|xE(|m〉〈n|)

]
|p〉〈q|

=
∑

m,n,p,q

Υm,n
p,q (d

∑
λ

p(a|x, λ)p(λ)χλi,j)|p〉〈q|

= d
∑
λ

p(a|x, λ)p(λ)
∑

m,n,p,q

Υm,n
p,q χ

λ
i,j |p〉〈q|

= d
∑
λ

p(a|x, λ)p(λ)TrA
[
τ̃(11⊗ (ρ̃λ)T )

]
.

(B6)
It is trivial to see that TrA

[
τ̃(11⊗ (ρ̃λ)T )

]
is positive

semidefinite. Now the remaining problem is to show that
dTrA

[
τ̃(11⊗ (ρ̃λ)T )

]
is a valid quantum state. Since the LHS

of Eq. (B6) is a valid assemblage, the marginal assemblage
is a valid quantum state with unit trace. Thus, we trace the
marginal assemblage on the RHS and obtain∑

a

Tr
[
(Ea|x ⊗ 11)(E ⊗ 11)τ̃

]
=

d
∑
a,λ

p(a|x, λ)p(λ)Tr
[
τ(11⊗ (ρ̃λ)T )

]
=

d
∑
λ

p(λ)Tr
[
τ̃(11⊗ (ρ̃λ)T )

]
≡ 1.

(B7)

Since
∑
λ p(λ) = 1, and Tr [τ̃ ] = Tr

[
(ρ̃λ)T

]
= 1, the only

choice for satisfying above is dTr
[
τ(11⊗ (ρ̃λ)T )

]
= 1, with

arbitrary states τ̃ and (ρ̃λ)T . Thus, dTrA
[
τ̃(11⊗ (ρ̃λ)T )

]
is a

valid assemblage. With above we complete #2⇔#3.�
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Appendix C: From PDO to the temporal semi-quantum game

The temporal semi-quantum game considers two players,
Alice and Bob. They are able to generate the same set of char-
acterized quantum states {σ̃x} ∈ D(HA) andD(HB) with the
finite number set x ∈ X and y ∈ Y . Alice first sends a state σ̃x
from the set into a quantum channel E . After the channel, Bob
performs a joint measurement Bb with the evolved state and
the second quantum input sending from Bob. Here, b is the
observed measurement outcome. To certify all non-EB chan-
nels, the set of quantum states should form a tomographically
complete set, e.g., the eigenstates of the Pauli matrices.

To show the results in this section, it is convenient for com-
pactly reformulating the joint measurement with the quantum
input at t1 as Mb = TrB(Bb(11 ⊗ σ̃y)), which forms an ef-
fective POVMs. Following the Born’s rule, the probability
distribution obtained can be expressed as

p(b|x, y) = Tr [Bbσ̃y ⊗ E(σ̃x)] = Tr [MbE(σ̃x)] . (C1)

Now, we show how to obtain the same probability distri-
bution from the causality quantity PDO RE . First, we recall
that the normalized quantum states at time t1 can be obtained
by applying a set of measurements {Mx} at t0 in Eq. (18)
with normalization [53]. More specifically, the effect of the
measurement at t0 on PDO generates the evolved postmea-
surement states at t1. Finally the measurement Mb at t1 is
implemented, and we can obtain the same probability distri-
bution in the temporal semi-quantum game.

Appendix D: Proof of the hierarchy in quantum non-breaking
channels

According to the definitions in Eqs. (7) and (9), one can
trivially see that the set of all SB channels must be NLB [14].
Thus, we have SB ⊆ NLB. To show that the hierarchy is
indeed strict, we consider the single-qubit depolarising chan-
nel defined in Eq. (24). It is known that the qubit depolarizing
channel is EB if and only if v ≤ 1/3 and that it is CHSH-NLB
if and only if v ≤ 1/

√
2 [35]. The two-qubit isotropic state

ISOv = v|φ+〉φ+ + (1− v)11/4 (D1)

is steerable (with projective measurements) when v >
1/2 [14], hence, due to Theorem 2, the qubit isotropic chan-
nel is not SB for v > 1/2. Also, for v ≤ 5/12, the isotropic
state is unsteerable for any POVM [37, 52]; hence v ≤ 5/12
ensures SB.

The two-qubit isotropic state violates a Bell inequality
when v > 0.696 [82]. Hence the depolarizing channel can-
not be NLB in this range. In order to prove that a quantum
channel is NLB, we make use of a local hidden variable for
quantum measurements [83]. Reference [84] shows that for
any set of qubit measurements {Ma|x}, when v ≤ 0.525, the
set of the measurements

{vMa|x + (1− v)Tr(Ma|x)11/2} (D2)

admits a local hidden variable model. That is, for any bipartite
quantum state, when v ≤ 0.525, if Alice performs this set of
noise measurements, the statistics are necessarily Bell local.
Since the depolarizing channel is self-dual (ED = E†D), the
qubit depolarizing channel is NLB when v ≤ 0.525. �

Appendix E: Experimental implementation details and data

As a source of horizontally polarized discrete photons,
we use a type-I process of spontaneous parametric down-
conversion. One photon from each pair serves as a herald
while the other one enters the experimental setup. More
specifically, a Coherent Paladin laser at 355 nm is used to
pump a β-Ba(BO2)2 crystal which produces two photons at
710 nm. In this experiment, we employ polarization encoding
associating the horizontal and vertical polarization with the
logical states |0〉 and |1〉, respectively.

For realizing the depolarizing channel, we consider the fol-
lowing Kraus representation,

ẼD(p, ρ̃) = pρ̃+
(1− p)

3
(X̂ρ̃X̂ + Ŷ ρ̃Ŷ + Ẑρ̃Ẑ), (E1)

where p parameterizes the channel. As one can see, there
is a linear transformation between the above formula and the
one in Eq. (24) via p = (3v + 1)/4. The depolarizing chan-
nel (Fig. 3) is implemented by means of two beam displacer
assemblies (BDA1 and BDA2). A beam displacer assembly
consists of two beam displacers and a half-wave plate in be-
tween. The horizontally and vertically polarized parts of the
wave packet are displaced on the first beam displacer, then the
polarizations are swapped on the half-wave plate and finally
beams are rejoined at the second beam displacer. By slightly
tilting the second beam displacer, which is mounted on a piezo
actuator, we introduce a phase shift θi (where i indexes the
two beam displacer assemblies) between the horizontal and
vertical component of the photon’s polarization state.

The role of the first beam displacer assembly (BDA1) is
to implement either the 11 or the Ẑ (phase flip) operation de-
pending on whether the introduced phase shift is θ1 = 0 or
θ1 = π, respectively. The second beam displacer assem-
bly (BDA2) is enveloped by two half-wave plates (rotated by
22.5° with respect to the horizontal polarization), each serv-
ing as a Hadamard gate (Ĥ). The overall effect of the second
beam displacer together with these gates is the implementa-
tion of either 11 or the X̂ = ĤẐĤ (bit flip) operation, pro-
vided we set the phase shift to θ2 = 0 or θ2 = π, respec-
tively. Note that the remaining operation is implemented as a
product of both beam displacer assembly actions Ŷ = iX̂Ẑ
(θ1 = θ2 = π).

To depolarize the photon state as prescribed in Eq. (E1) we
generate, with frequency fr, random real number r ∈ [0, 1]
(uniformly distributed). Based on the value of r, we choose
the setting of θ1 and θ2 (see Table II).

To analyze the output state, we implement the polarization
projection and subsequent detection using a half and quarter-
wave plate, a polarizer, and a single-photon detector. Note that
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the aforementioned half-wave plate is used to implement both
the second Hadamard gate and the analysis. The measured
signal, for any combination of prepared and projected states,
is integrated over a period T � 1/fr. In our experiment,
we accumulate the number of heralded photon detections for
T = 100 s using fr = 10 Hz.

TABLE II. Phase shifts and operations assigned to randomly gener-
ated numbers.

r in range θ1 θ1 Operation
[0, p] 0 0 11(
p, p+ (1−p)

3

]
π 0 Ẑ(

p+ (1−p)
3

, p+ 2(1−p)
3

]
0 π X̂(

p+ 2(1−p)
3

, 1
]

π π Ŷ

In the experiment, we prepared 10 different initial states,
eigenstates of operators {X̂ , Ŷ , Ẑ, (X̂ + Ẑ), (X̂ − Ẑ)} and
projected them onto the same set of states. We have thus regis-
tered photon counts for all 100 combinations of prepared and
projected states. For subsequent data processing, we did not
use data from all 100 combinations of prepared and projected
states.

From the 36 measurements corresponding to the projec-
tions onto the eigenstates of the Pauli operators {X̂ , Ŷ , Ẑ} as,
both preparation states and projection states, we calculated the
Choi-Jamiołkowski matrix, using the maximum likelihood es-
timation [85]. From this matrix, we calculated the f -function
(16) (marked by � in Fig. 4) and purity of the process.

From the same set of 36 measurements, we calculated the
assemblages ρE(a|x). In this case, for each of the 6 prepara-
tion states, we obtained a full output state tomography based
on the 6 projection states, and the single-qubit density matri-
ces were estimated by maximum likelihood [86]. Due to ex-
perimental imperfections, these matrices slightly violate the
no-signalling condition, which is expressed as∑

a

ρE(a|x) =
∑
a

ρE(a|x′) ∀ x, x′. (E2)

To solve this issue, we use semidefinite programming to find
assemblages {ρ̃E(a|x)}, that fulfil the no-signaling condition,
such that the sum of the fidelities of the original unphysi-
cal assemblages violating the condition and the physical ones
{ρ̃E(a|x)} is maximized.

The minimal fidelity across all parameters v and all the
assemblages is 99.88%. Using these newly found assem-
blages, we calculated the temporal steering robustness (19)
(◦ in Fig. 4).

For the calculation of the temporal CHSH inequality (23),
we used the measurements with states prepared in eigenstates
of {X̂, Ẑ} together with projections onto eigenstates of {(X̂+

Ẑ), (X̂ − Ẑ)} (4 in Fig. 4).
The details of the experimental results are presented in Ta-

bles II and III.

TABLE III. Summary of our experimental results.

v Bmax
T-CHSH TSR f -function purity

0.00(1) 0.00(0) 0.000(0) 0.000(0) 0.255(1)
0.10(1) 0.00(0) 0.000(0) 0.000(0) 0.273(1)
0.20(1) 0.00(0) 0.000(0) 0.000(0) 0.290(2)
0.30(1) 0.00(0) 0.000(0) 0.000(0) 0.332(2)
0.35(1) 0.00(0) 0.000(0) 0.00(4) 0.338(2)
0.40(1) 0.00(0) 0.000(0) 0.120(6) 0.381(3)
0.50(1) 0.00(0) 0.000(0) 0.238(6) 0.434(3)
0.55(1) 0.00(0) 0.000(0) 0.300(6) 0.467(4)
0.60(1) 0.00(0) 0.008(2) 0.382(6) 0.514(3)
0.65(1) 0.00(0) 0.038(2) 0.454(6) 0.557(4)
0.70(1) 0.00(0) 0.073(2) 0.538(6) 0.612(4)
0.75(1) 0.10(4) 0.095(2) 0.588(4) 0.648(4)
0.80(1) 0.25(4) 0.131(2) 0.684(6) 0.721(4)
0.85(1) 0.43(4) 0.160(2) 0.774(4) 0.766(4)
0.90(1) 0.56(4) 0.194(1) 0.820(4) 0.832(3)
0.95(1) 0.74(4) 0.223(1) 0.888(4) 0.893(3)
1.00(0) 0.97(3) 0.258(1) 0.972(1) 0.972(1)
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Continuous-variable steering and incompatibility via state-
channel duality, Phys. Rev. A 96, 042331 (2017).

[65] R. Pisarczyk, Z. Zhao, Y. Ouyang, V. Vedral, and J. F. Fitzsi-
mons, Causal Limit on Quantum Communication, Phys. Rev.
Lett. 123, 150502 (2019).

[66] J.-D. Lin, W.-Y. Lin, H.-Y. Ku, N. Lambert, Y.-N. Chen, and
F. Nori, Witnessing quantum scrambling with steering, (2020),
arXiv:2003.07043 [quant-ph].

[67] Z. Zhao, R. Pisarczyk, J. Thompson, M. Gu, V. Vedral, and J. F.
Fitzsimons, Geometry of quantum correlations in space-time,
Phys. Rev. A 98, 052312 (2018).

[68] A. Peres, Separability Criterion for Density Matrices, Phys.
Rev. Lett. 77, 1413 (1996).

[69] M. Horodecki, P. Horodecki, and R. Horodecki, Separability
of mixed states: necessary and sufficient conditions, Physics
Letters A 223, 1 (1996).

[70] S.-L. Chen, N. Lambert, C.-M. Li, A. Miranowicz, Y.-N.

Chen, and F. Nori, Quantifying Non-Markovianity with Tempo-
ral Steering, Phys. Rev. Lett. 116, 020503 (2016).

[71] J. Kofler and C. Brukner, Condition for macroscopic realism
beyond the Leggett-Garg inequalities, Phys. Rev. A 87, 052115
(2013).

[72] R. Uola, G. Vitagliano, and C. Budroni, Leggett-Garg macrore-
alism and the quantum nondisturbance conditions, Phys. Rev.
A 100, 042117 (2019).

[73] H.-Y. Ku, N. Lambert, F.-J. Chan, C. Emary, Y.-N. Chen, and
F. Nori, Experimental test of non-macrorealistic cat states in
the cloud, npj Quantum Inf. 6, 98 (2020).

[74] D. Maskalaniec and K. Bartkiewicz, Hierarchy and robustness
of multilevel two-time temporal quantum correlations, (2021),
arXiv:2106.02844 [quant-ph].
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