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The non-triviality of Hilbert space geometries in non-Hermitian quantum systems sometimes blurs
the underlying physics. We present a systematic study of the vielbein formalism which transforms
the Hilbert spaces of non-Hermitian systems into the conventional ones, rendering the induced
Hamiltonian to be Hermitian. In other words, any non-Hermitian Hamiltonian can be “transformed”
into a Hermitian one without altering the physics. Thus, we show how to find a reference frame
(corresponding to Einstein’s quantum elevator) in which a non-Hermitian system, described by a
non-trivial Hilbert space, reduces to a Hermitian system within the standard formalism of quantum
mechanics for a Hilbert space.

Since the discovery of PT -symmetric quantum me-
chanics [1–4], non-Hermitian quantum mechanics has
become a very popular research field in quantum
physics [5–8]. Even though the underlying mecha-
nism of PT -symmetric quantum mechanics was origi-
nally constructed from symmetry, many studies [9–13]
have pointed out that the geometric information of the
Hilbert space is hidden in that underlying mechanism.
To be more precise, the dual space needs to be modified
by a metric operator G, which often renders the Hilbert
space geometry non-trivial or even dynamical.

This dynamics can be better understood with the
help of Einstein’s elevator gedanken experiment. This
gedanken experiment of a free-falling elevator laid the
theoretical foundations for general relativity by show-
ing the equivalence between inertial reference frames in
a uniform gravitational field (curved spacetime) and ac-
celerating reference frames, in which physical phenomena
can be described within the gravitation-free (locally flat
spacetime) special-relativity [14].

We, therefore, ask an analogous question but concern-
ing Hermitian and non-Hermitian formalisms of quantum
mechanics: Does exist a reference frame (a quantum ver-
sion of Einstein’s elevator) in which a non-Hermitian sys-
tem, described by a non-trivial Hilbert space, reduces to
a Hermitian system, within the standard formalism of
quantum mechanics for a “flat” Hilbert space? So the
question is how to flatten the Hilbert space of a given
non-Hermitian system. We constructively answer the
question by applying the vielbein formalism [15]; namely,
breaking the metric into two pieces and spreading those
into the vector space and its dual space so that the sys-
tem seems flat everywhere (see Fig. 1).

To be more precise, we can choose some non-coordinate
bases [15], via the vielbein technique, to simplify the cal-

culations and obtain new insights into the systems under
study. Indeed, the vielbein formalism is useful in many
fields of physics, including general relativity [16, 17], su-
pergravity [18–20], superstring theories [21–24], etc. The
main reason for applying the vielbein formalism is that it
maps non-trivial space phenomena into a simpler space
(and back).

Since the Hilbert spaces of non-Hermitian quantum
systems are not trivial, it is useful to study the vielbeins
in these systems. Although some rudimentary ideas re-
garding the vielbein formalism have been studied [25–28],
we here provide a clearer geometric understanding of this
formalism. With the vielbein formalism, the time evolu-
tion of the transformed states is always governed by an
induced Hermitian Hamiltonian.

In addition to how the formalism works, we also study
the relations between different choices of vielbeins. This
leads to some gauge transformation [29–32] which does
not affect the physics. With different choices of gauges,
the states evolve with different induced Hermitian Hamil-
tonians. These induced Hamiltonians are, in some sense,
an artifact that simplifies calculations but does not alter
the final physical results.

A classical mechanics analogy of the gauge choice is a
rotating or accelerating frame which causes a fictitious
force. The induced Hamiltonian plays a similar role as
those fictitious forces in the time-dependent frame (see
Fig. 2).

In fact, the widely used Heisenberg and interaction pic-
tures in Hermitian quantum mechanics are merely differ-
ent choices of vielbeins. After the construction of the viel-
bein formalism in the Hilbert spaces of quantum states
and its gauge symmetry, we show some examples of the
vielbein formalism including how the Heisenberg and in-
teraction pictures are related to the vielbeins.
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FIG. 1. An illustration of “flattening” the coordinates via
the vielbein formalism. This procedure flattens the space
(or curve in 1D). (Note that Regge calculus also flattens the
curved manifold into flat space with deficit angles, that mea-
sure the local curvature [16].)
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FIG. 2. Fictitious force induced from the coordinate change.
This is a classical analog of different gauge choices induc-
ing different Hamiltonians. As usual, there is no best gauge
choice for all physical systems.

From a metric to a vielbein.—Unlike Hermitian quan-
tum systems, where the inner product between two states
in Hilbert space is the familiar 〈φ|ψ〉, the Hilbert spaces
of non-Hermitian quantum systems can have additional
geometric structures so that the inner products in Hilbert
space become ⟪φ|ψ⟫ = 〈φ|G |ψ〉, where ⟪φ| = 〈φ|G is the
corresponding dual state of |φ〉 in the metricized Hilbert
space with a metric G (see Table I for an explicit exam-
ple). G has to be Hermitian and positive-definite for a
proper Hilbert space.
In addition to the Hilbert space constraints mentioned

above, this metric should also be constrained by the
physics. The Hilbert space metric can be found by treat-
ing Schrödinger’s equation as a parallel transport [13].
It has been shown that if the Schrödinger equation of a
system is

∂t |ψ〉 = −iH |ψ〉 , (1)

where H is its Hamiltonian, the compatibility of the met-
ric G with the Schrödinger equation leads to

∂tG+ iH†G− iGH = 0. (2)

Although the solution for G is not unique, they all differ
by a gauge transformation, G→ G′ = T †GT , where T
satisfies ∂tT + iHT − iTH = 0.

Conventional Metricized

〈φ|ψ〉 =
(

φ∗
1
φ∗
2

)





ψ1

ψ2





⟪φ|ψ⟫ = 〈φ|G |ψ〉

=

(

φ∗
1
φ∗
2

)





g11 g12

g21 g22









ψ1

ψ2





TABLE I. Comparing the two inner products of two dimen-
sional Hilbert spaces. In the conventional inner product, the
dual state is just the Hermitian conjugate of the state; the
dual state in the metricized space carries an additional met-
ric operator G. Note that in the Hermitian case, the G can
always be chosen to be the identity which reduces back to the
conventional space [13].

Even though the metric carries the information of the
Hilbert space geometry, like the cases mentioned previ-

ously, it is not always desirable to keep the metric ex-
plicitly. A systematic way of “removing” the metric is to
adopt the vielbein formalism, so that vectors are “flat”
everywhere.
Since G is Hermitian and positive-definite, it can be

decomposed into

G = E†E , (3)

where the operator E plays the role of a vielbein.
We can, therefore, use Eq. (3) to redefine the states

in a locally Hermitian frame (in analogy to a locally flat
frame). To be more specific, we define the state in the
locally Hermitian frame to be

|ψ]] = E |ψ〉 . (4)

It is obvious that the state evolution is no longer the
same as Eq. (1). A simple calculation shows that the
time evolution of the new state is

∂t |ψ]] = −iH♭ |ψ]] , (5)

where

H♭ = EHE−1 + i (∂tE) E−1 (6)

is the induced Hamiltonian. A quick calculation shows
that Eq. (6) guarantees that H♭ = H†

♭ (see the sup-
plemental material [33] for a detailed derivation). This
means that the induced Hamiltonian through the vielbein
formalism, H♭, is always Hermitian.
The induced Hamiltonian being Hermitian implies that

the dual state of |ψ]] is the direct Hermitian conjugate of

the state, i.e., [[ψ| = ( |ψ]])† = 〈ψ| E†. Hence, the inner
product of the states in the locally Hermitian frame is
reduced back to the usual inner product in the Hermitian
system, while implicitly preserving the geometry of the
Hilbert space, i.e.,

[[ψ1|ψ2]] = 〈ψ1|G |ψ2〉 = ⟪ψ1|ψ2⟫ . (7)

Therefore, the vielbein E transforms any non-
Hermitian Hamiltonians to Hermitian ones. This is true
even at exceptional points (EPs) [34–36].
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Original Hermitianized

State and dual state |ψ⟫ = |ψ〉 and ⟪ψ| = 〈ψ|G |ψ]] = E |ψ〉 and [[ψ| = 〈ψ| E†

Inner product ⟪φ|ψ⟫ = 〈φ|G |ψ〉 [[φ|ψ]] = 〈φ| E†E |ψ〉

Expectation values 〈O〉 = ⟪ψ| O |ψ⟫ 〈O〉 = [[ψ| O♭ |ψ]] = [[ψ| EOE−1 |ψ]]

Governing Equations
∂t |ψ⟫ = −iH |ψ⟫, ∂t ⟪ψ| = i ⟪ψ|H ,

∂tG = i
(

GH −H†G
)

∂t |ψ]] = −iH♭ |ψ⟫, ∂t [[ψ| = i ⟪ψ|H♭,

H♭ = EHE−1 + i (∂tE) E
−1

TABLE II. Relations between the original Hilbert space and the Hermitionized Hilbert space. Since the metric G is Hermitian
and positive-definite, it can always be decomposed into G = E†E .

Observables.—The expectation value of an operator O
is

〈O〉 = ⟪ψ| O |ψ⟫ = 〈ψ|GO |ψ〉
= 〈ψ| E†EO |ψ〉 = [[ψ| EOE−1 |ψ]] .

(8)

This means that the operator O in the locally Hermitian
frame becomes O♭ = EOE−1.
Using the fact that a self-adjoint operator O in the

original space satisfies O†G = GO, together with Eq. (3)
we find that

O†

♭ =
(
E−1

)† O†E† = EOE−1 = O♭, (9)

i.e., the corresponding observable is also Hermitian in the
locally Hermitian frame. Moreover, since O♭ is merely a
similarity transformation of O, the eigenvalues of O♭ are
identical to the ones of O.
Some comparisons between the original Hilbert space

and the Hermitianized one are listed in Table II.
An additional gauge symmetry—The vielbein E is ob-

tained from Eq. (3), hence, by construction there are
some inherited gauge symmetries from the metric G.
Nevertheless, in parallel to the case in differential geome-
try, the vielbein introduced here also has more gauge free-
doms than the metric. The gauge transformation for the
vielbein is a unitary transformation, i.e., E → E ′ = UE ,
where U is any unitary operator. This additional gauge
choice comes from the invariance of G; to be more spe-
cific, G′ = E ′†E ′ = E†E = G.
Since U can be any unitary operator, it can be gener-

ated by ∂tU = −iHLU + iUHR, where HL and HR are
Hermitian operators with U(t = 0) being unitary. Then
Eq. (6) for E ′ becomes

H ′
♭ = E ′HE ′−1 + i (∂tE ′) E ′−1

= HL + U (H♭ −HR)U
−1.

(10)

The detailed derivation can be found in the supplemental
material [33].
This result not only shows that the induced Hamil-

tonian depends on the gauge choice, but it also shows
that H♭ can be chosen freely. To be more specific,
given an E1 which induces a Hamiltonian H1♭, we

can make a gauge transformation, U21, such that the
states evolution is governed by H2♭ for U21 satisfying
∂tU21 = −iH2♭U21 + iU21H1♭.
This means that even though H♭ governs the dynamics

of the corresponding |ψ]], it is, in fact, telling us how

the gauge choice evolves with time without altering the

physics.

This gauge transformation might seem redundant at
first; nevertheless, this has been often used in Hermitian
quantum mechanics already. For example, the Heisen-
berg picture and interaction picture are special cases
of the vielbein formalism with special choices of gauges
(H♭ = 0 and H♭ = HI(t) respectively). With this tool, we
can “remove” the non-Hermiticity of the Hamiltonians.
Examples.—To show how the vielbein formalism

works, some examples, both in Hermitian and non-
Hermitian systems, are provided in the following.
Example 1: The Heisenberg picture and interaction

pictures as gauge choices. The Heisenberg picture is his-
torically the first picture of quantum mechanics exten-
sively applied in many Hermitian studies. The main idea
of the technique is to move all the time-dependence to
the operator but leave the states time-independent. For
the sake of clarity, we keep the time dependence of the
states and operators explicit here.
To achieve this, one first finds a unitary operator UH(t),

satisfying ∂tUH(t) = −iH(t)UH(t), and UH(0) = 1. It
is well-known that the states and the operators in the
Heisenberg picture are defined to be |ψ〉H = |ψ(0)〉 and

OH(t) = U†
H(t)O(t)UH(t), so that the operators carry all

the time dependence while states have none, while leaving
the physics unaltered, namely,

〈O〉(t) = 〈ψ(t)| O(t) |ψ(t)〉 =H〈ψ| OH(t) |ψ〉H . (11)

To show that this is, in fact, a special case
of the vielbein formalism, we let the vielbein be
E(t) = U−1

H (t) = U†
H(t). So that the states are

|ψ(t)]] = E(t) |ψ(t)〉 = U−1
H (t) |ψ(t)〉 = |ψ〉H , (12)

and the observables are

O♭(t) = E(t)O(t)E−1(t) = U−1
H (t)O(t)UH(t)

= U†
H(t)O(t)UH(t) = OH.

(13)
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The induced Hamiltonian is

H♭(t) = E(t)H(t)E−1(t) + i (∂tE(t)) E−1(t) = 0. (14)

Hence, the Heisenberg picture is the same as choosing the
vielbein satisfying E(0) = 1, with the induced Hamilto-
nian H♭ = 0.
The interaction picture, on the other hand, is a differ-

ent gauge choice, where H♭ = HI(t). The detailed deriva-
tion can be found in the supplemental material [33].
Example 2: A non-Hermitian case.—Here we demon-

strate how the vielbein formalism works using the follow-
ing Hamiltonian [37]

H =
ω

2
σx − i

γ

2
σ+σ−, (15)

where ω 6= 0 and γ̃ = γ/ω. The Hilbert space in this
example is finite dimensional, but it can still be used
in infinite-dimensional Hilbert space cases as well (see
the supplemental material [33] for an infinite dimensional
example).
We split the discussion of this Hamiltonian into three

cases [for |γ| < 2|ω|, |γ| > 2|ω|, and γ = ±2ω], be-
cause the Hamiltonian is non-diagonalizable at γ = ±2ω.
In addition, we use three different starting points (the
metric G, vielbein E for H♭ = 0, and the vielbein E for
H♭ 6= 0) in these three cases to show that they are math-
ematically equivalent.
1. Case |γ| < 2|ω|: We start with the metric method

in this case. Solving Eq. (2) together with G being Her-
mitian and positive-definite, we find the metric

G = eγt/2
(

f∗ f(
−i γ

2ω + λ<
)
f∗

(
−i γ

2ω − λ<
)
f

)

×
(
g11 g12
g21 g22

)(
f

(
i γ
2ω + λ<

)
f

f∗
(
i γ
2ω − λ<

)
f∗

)
,

(16)

where f = exp (iλ<ωt/2), λ< =
[
1− γ2/(2ω)2

]1/2
, and

the gij ’s are constants, such that g11 > 0, g22 > 0, g∗12 =
g21, and |g12|2 < g11g22.
Using Eq. (3), we find the corresponding E being

E = eγt/4
(
h11 h12
h21 h22

)(
f

(
i γ
2ω + λ<

)
f

f∗
(
i γ
2ω − λ<

)
f∗

)
, (17)

where gij =
∑

k hikh
∗
kj . Note that the hij ’s can be time-

dependent functions despite the gij ’s being constants.
Nevertheless, we first treat the hij ’s as constants, using

Eq. (6), and find the induced Hamiltonian H♭ = 0, since
∂tE = iEH .
We next make a gauge transformation to E ′ = UE ,

where

U = exp

(
−iωt

2
σx

)
=




cos
ωt

2
−i sin ωt

2

−i sin ωt
2

cos
ωt

2


 . (18)

A direct calculation shows that the induced Hamilto-
nian of E ′ is then H ′

♭ = ωσx/2. So that if E ′ is cho-
sen to be the vielbein, the state evolution is governed by
∂t |ψ]] = H ′

♭ |ψ]].
2. Case |γ| > 2|ω|: To find the corresponding metric

G, we could calculate the metric using Eq. (2) like we
did in the previous case. Nevertheless, this time we start
with Eq. (6), while letting H♭ = 0 so the general solution
of the vielbein becomes

E = eγt/4
(
h11 h12
h21 h22

)(
f+ i

(
γ
2ω − λ>

)
f+

f− i
(

γ
2ω + λ>

)
f−

)
, (19)

where f± = exp (±λ>ωt/2), λ> =
[
γ2/

(
4ω2

)
− 1

]1/2

and the matrix of hij ’s is constant with a non-vanishing
determinant.
We can then use Eq. (3) to find that

G = eγt/2
(

f+ f−

−i
(

γ
2ω − λ>

)
f+ −i

(
γ
2ω + λ>

)
f−

)

×
(
g11 g12
g21 g22

)(
f+ i

(
γ
2ω − λ>

)
f+

f− i
(

γ
2ω + λ>

)
f−

)
,

(20)

where gij =
∑

k hikh
∗
kj . Now the gij ’s are constants, such

that g11 > 0, g22 > 0, g∗12 = g21, and |g12|2 < g11g22,
which indeed make the metric Hermitian and positive-
definite.
We can, again, apply a gauge transformation from E

to E ′ = UE , with U = exp [(−i/2)ωtσx]. Direct calcu-
lation shows that the induced Hamiltonian also becomes
H ′

♭ = ωσx/2.
3. Exceptional point at γ = ±2ω: Now

HEP =
ω

2

(
∓2i 1
1 0

)
, (21)

which is non-diagonalizable and corresponds to an
EP [36]. Although we can still find its corresponding
metric by solving Eq. (2) directly, we start with Eq. (6)
while setting H♭ = ωσx/2. Thus, using Eq. (6), we find

E = e
(±1−iσx)ωt

2

(
h11 h12
h21 h22

)(
1 ±i

2ωt i(±2ωt− 4)

)
, (22)

where the constant matrix made of hij ’s has a non-
vanishing determinant.
Using Eq. (3), we, again, find the corresponding metric

G = e±ωt

(
1 2ωt
∓i −i(±2ωt− 4)

)(
g11 g12
g21 g22

)

×
(

1 ±i
2ωt i(±2ωt− 4)

)
,

(23)

where gij =
∑

k hikh
∗
kj . Clearly we can always use

U = exp (iωtσx/2) to transform the induced Hamiltonian
into H ′

♭ = 0.
Conclusion.—The non-trivial Hilbert space geometric

structures in non-Hermitian quantum systems sometimes
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complicate the physical description of these systems. Fol-
lowing the geometrical meaning of Schrödinger’s equa-
tion, we find that non-Hermitian Hamiltonians can be
transformed into Hermitian ones via the vielbein formal-
ism shedding a new light on the physics of non-Hermitian
systems. We also present a systematic study on an addi-
tional gauge symmetry which originates from the free-
dom of choosing vielbein frames, where the quantum
states evolution is described by different Hamiltonians.
Furthermore, the vielbein formalism is not restricted to
non-Hermitian quantum systems. The gauge freedoms in
the vielbein formalism in Hermitian systems also grants
us the freedom to choose frames, the Heisenberg and in-
teraction pictures for example, that are easier to work
with.
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Supplemental Material for “Flattening the Curve with Einstein’s Quantum Elevator:

Hermitization of Non-Hermitian Hamiltonians via the Vielbein Formalism”

We first briefly summarize the idea flow of the vielbein formalism and some equations that will be used in this
supplemental material, so the reader does not have to switch back and forth between the main article and the
supplemental material. Nevertheless, the reader should consult the main article for motivation and reasoning.
The flow line of the vielbein formalism can be summarized as follows:

1. The inner product between states is

⟪φ|ψ⟫ = 〈φ|G |ψ〉 , (S1)

where G is the metric operator that is positive-definite and Hermitian.

2. The metric operator G can be decomposed into

G = E†E , (S2)

where E is the vielbein.

3. Define the states in the “locally Hermitian frame” as

|ψ]] = E |ψ〉 , (S3)

where the time evolution of the states become

∂t |ψ]] = −iH♭ |ψ]] . (S4)

4. The induced Hamiltonian H♭ originates from

H♭ = EHE−1 + i (∂tE) E−1. (S5)

This supplemental material includes: 1) the detailed derivation of H♭ = H†

♭ ; 2) showing that H♭ can be chosen
freely and is related to the gauge choice; 3) the interaction picture as a gauge choice; 4) the vielbein formalism on an
infinite dimensional Hilbert space.

I. THE HERMITICITY OF THE INDUCED HAMILTONIAN

The goal of this section is to show that the induced Hamiltonian in the vielbein formalism is always Hermitian.
To show this, we use the fact that the time evolution equation of the metric G is

∂tG = i
(

GH −H†G
)

. (S6)

a direct calculation shows that

H†

♭ =
(

E†
)−1

H†E† − i
(

E†
)−1 (

∂tE†
)

=
(

E†
)−1

H†E†
(

EE−1
)

− i
(

E†
)−1 (

∂tE†
) (

EE−1
)

=
(

E†
)−1

H†GE−1 − i
(

E†
)−1 (

∂tE†E
)

E−1 + i
(

E†
)−1 E† (∂tE) E−1

=
(

E†
)−1

H†GE−1 − i
(

E†
)−1

(∂tG) E−1 + i (∂tE) E−1

=
(

E†
)−1

GHE−1 + i (∂tE) E−1

= EHE−1 + i (∂tE) E−1 = H♭,

(S7)

where Eq. (S2) and Eq. (S6) are applied in the derivation.
Note that the gauge choice of vielbein E has not been specified. That is to say, any vielbein gauge choice renders

H♭ = H†

♭ . Hence the induced Hamiltonian via the vielbein formalism is always Hermitian.

http://arxiv.org/abs/2107.11910v1
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II. THE GAUGE TRANSFORMATION ON H♭

This section focuses on the detailed proof of Eq. (10) in the main text and its implication.
It is know that the decomposition of Eq. (S2) is far from unique. If E satisfies Eq. (S2), we can always find another

vielbein E ′ = UE that also satisfies G = E ′†E ′. By construction, we find

E†E = G = E ′†E′ = EU †UE (S8)

⇒ U †U = 1. (S9)

This shows that U can be any unitary operator. Therefore, the time derivative of U can always be written as

∂tU = −iHLU + iUHR, (S10)

where HL and HR are Hermitian operators with U(t = 0) being unitary. Using Eq. (S5) for E ′, we find

H ′
♭ = E′HE ′−1 + i (∂tE

′) E ′−1

= UEHE−1U−1 + i (∂tUE) E−1U−1

= UEHE−1U−1 +HLUEE−1U−1

− UHREE−1U−1 + iU (∂tE) E−1U−1

= HL + U (H♭ −HR)U
−1,

(S11)

which proves Eq. (10) in the main text.
This result shows that when we have a vielbein, say E1, that induces the Hamiltonian H1♭, we can apply a gauge

transform on E1 to E2 = U21E1, such that the new induced Hamiltonian H2♭ can be any given Hermitian operator. To
achieve this, U21 needs to be unitary at some time t and its time derivative must satisfy

∂tU21 = −iH2♭U21 + iU21H1♭. (S12)

Hence, we can always choose a frame that is convenient to work with.

III. THE INTERACTION PICTURE AS A GAUGE CHOICE

Besides the Heisenberg picture shown in the main text, another standard picture in Hermitian quantum mechanics
is the interaction picture, which is particularly useful in perturbation methods. We keep the time-dependence explicit
in this section to avoid possible confusions.
The main idea of the interaction picture is to split the Hamiltonian into a “system” part and an “interaction” part,

namely,

H(t) = Hs(t) +Hint(t), (S13)

where Hs(t) and Hint(t) are Hermitian.
One then finds an UI(t) such that

∂tUI(t) = −iHs(t)UI(t) (S14)

with UI(0) = 1. It is obvious that the UI(t) satisfying these two conditions is a unitary operator. The states and the
operators in the interaction picture are defined to be

|ψ(t)〉I = U−1
I (t) |ψ(t)〉 , (S15)

OI(t) = U†
I (t)O(t)UI(t). (S16)

It can be shown that the time evolution of the states in the interaction picture is

i∂t |ψ(t)〉I = HI(t) |ψ(t)〉I , (S17)

where

HI(t) = U−1
I (t)Hint(t)UI(t). (S18)
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Back to the vielbein formalism, we can choose the vielbein to be

E(t) = U−1
I (t) = U†

I (t), (S19)

so that the states and the operators become

|ψ(t)]] = E(t) |ψ(t)〉 = U−1
I (t) |ψ(t)〉 = |ψ〉I , (S20)

O♭(t) = E(t)O(t)E−1(t) = U−1
I (t)O(t)UI(t)

= U†
I (t)O(t)UI(t) = OI.

(S21)

The induced Hamiltonian in this case is

H♭(t) = E(t)H(t)E−1(t) + i (∂tE(t)) E−1(t)

= U−1
I (t)H(t)UI(t)− iU−1

I (t)∂tUI(t)

= U−1
I (t)H(t)UI(t)− U−1

I (t)Hs(t)UI(t)

= U−1
I (t)Hint(t)UI(t)

= HI(t).

(S22)

Therefore, the interaction picture in Hermitian quantum mechanics is also a special choice of the vielbein.

IV. AN INFINITE DIMENSION NON-HERMITIAN SYSTEM EXAMPLE

In this subsection, we demonstrate that this vielbein formalism also works for a infinite dimensional Hilbert space
with the Hamiltonian

H =− i
γa
2
a†a− i

γb
2
b†b+ g

(

a†b+ b†a
)

=
(

a† b†
)





−iγa
2

g

g −iγa
2





(

a
b

)

,
(S23)

where a and b (a† and b†) are the bosonic annihilation (creation) operators. For later convenience, we define the
vacuum state |0〉 such that

a |0〉 = |0〉 · 0 = 0, (S24)

b |0〉 = |0〉 · 0 = 0. (S25)

A. Case Without Exceptional Point

When |γa − γb| 6= 4|g|, the Hamiltonian can be rewritten as

H = h+c
c
+c

a
+ + h−c

c
−c

a
−

=
(

cc+ cc−
)

(

h+ 0
0 h−

)(

ca+
ca−

)

,
(S26)

where

h± = − i
γa + γb

4
± ζ

4
,

cc± =

[

a† ∓ ζ ∓ i (γa − γb)

4g
b†
]

,

ca± =
1

ζ

[

ζ ± i (γa − γb)

2
a∓ 2gb

]

,

ζ2 = 16g2 − (γa − γb)
2 .

(S27)
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The commutation relations between H , cc, and ca are

[

ca±, c
c
±

]

= 1,
[

ca±, c
c
∓

]

= 0,
[

H, cc±
]

= h±c
c
±,

[

H, ca±
]

= −h±ca±.

(S28)

Then by solving Eq. (S6), together with G = G† and positive-definiteness, we find

G =

∞
∑

n+=0
n−=0

gn+n−

(n+!)
2
(n−!)

2
exp [−2t (n+ Imh+ + n− Imh−)]

(

ca†−

)n−
(

ca†+

)n+

|0〉〈0|
(

ca+
)n+

(

ca−
)n−

, (S29)

where gij > 0 are constants.
To find the corresponding vielbeins, we only need to find one E that satisfies Eq. (S2); then, the general solution

can be found by a simple gauge transformation. A vielbein that satisfies Eq. (S2) is

E =
∞
∑

n+=0
n−=0

hn+n−

(n+!)
3/2

(n−!)
3/2

exp [it (n+h+ + n−h−)]
(

a†
)n−

(

b†
)n+ |0〉〈0|

(

ca+
)n+

(

ca−
)n−

, (S30)

where hn+n−
’s are non-zero constants, and that gn+n−

=
∣

∣hn+n−

∣

∣

2
> 0. A direct calculation shows that the induced

Hamiltonian is H♭ = 0.
We can make a gauge transformation on E to E ′ by

E ′ = UE , (S31)

where

U =

∞
∑

m=0
n=0

exp [itg(m− n)]
√
2
m+n

(m!) (n!)
×
(

a† + b†
)m (

a† − b†
)n |0〉〈0| ambn, (S32)

Then the induced Hermitian Hamiltonian becomes

H ′
♭ = g(a†b+ ab†), (S33)

if the vielbein is chosen to be E ′ in Eq. (S31), namely,

E ′ =

∞
∑

n+=0
n−=0

hn+n−
exp {it [n+ (h+ + g) + n− (h− − g)]}
√
2
n++n−

(n+!)
3/2

(n−!)
3/2

(

a† + b†
)n+

(

a† − b†
)n− |0〉〈0|

(

ca+
)n+

(

ca−
)n−

. (S34)

B. Exceptional point (EP) at |γa − γb| = 4|g|

When γa − γb = 4χg, where χ = ±1, the Hamiltonian is at an EP and the Hamiltonian becomes

H =g
[

−i (χ+ δ) a†a+ i (χ− δ) b†b+ a†b+ b†a
]

(S35)

=g
(

a† b†
)

(

−i (χ+ δ) 1
1 i (χ− δ)

)(

a
b

)

, (S36)

where δ = ∆γ/g, γa = 2χg + 2∆γ and γb = −2χg + 2∆γ. With a simple recombination of the operators, the
Hamiltonian becomes

H = g
(

dc+ dc−
)

(

i∆γ 2i
0 i∆γ

)(

da+
da−

)

(S37)

= − i∆γ
(

dc+d
a
+ + dc−d

a
−

)

+ 2igdc+d
a
−, (S38)
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where

dc± =
1√
2

(

a† ∓ iχb†
)

, da± =
1√
2
(a± iχb) . (S39)

The commutation relations in this case become
[

da±, d
c
±

]

= 1,
[

da±, d
c
∓

]

= 0,
[

H, dc+
]

= −i∆γdc+,
[

H, dc−
]

= −i∆γdc− + 2igdc+,
[

H, da+
]

= i∆γda+ − 2igda−,
[

H, da−
]

= i∆γda−.

(S40)

We can, again, use Eq. (S5) with H♭ = 0 to find the corresponding vielbein,

E =

∞
∑

n+=0
n−=0

hn+n−

(n+!)
3/2 (n−!)

3/2
exp [∆γt (n+ + n−)]

(

a†
)n−

(

b†
)n+ |0〉〈0|

(

da+ − 2gtda−
)n+

(

da−
)n−

, (S41)

where the hn+n−
’s are nonzero constants. Therefore, the metric becomes

G =

∞
∑

n+=0
n−=0

gn+n−

(n+!)
2
(n−!)

2
exp [2∆γt (n+ + n−)]

(

da†−

)n−
(

da†+ − 2gtda†−

)n+

|0〉 〈0|
(

da+ − 2gtda−
)n+

(

da−
)n−

, (S42)

where gn+n−
=

∣

∣hn+n−

∣

∣

2
. Once again, we can apply a transformation E → E ′ = UE , where

U =

∞
∑

m=0
n=0

exp [itg(m− n)]
√
2
m+n

(m!) (n!)

(

a† + b†
)m (

a† − b†
)n |0〉〈0|ambn, (S43)

so the induced Hamiltonian becomes

H ′
♭ = g(a†b+ ab†). (S44)

Note that this induced Hamiltonian is indeed Hermitian. This shows that, in addition to the finite dimensional cases,
the Hamiltonian of infinite dimension can also be Hermitized via the vielbein formalism.
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