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We propose a protocol to realize nonadiabatic geometric quantum computation of small-amplitude
Schrödinger cat qubits via invariant-based reverse engineering. We consider a system with a two-
photon driven Kerr nonlinearity, which provides a pair of dressed even and odd coherent states,
i.e., Schrödinger cat states for fault-tolerant quantum computations. An additional coherent field
is applied to linearly drive a cavity mode, to induce oscillations between dressed cat states. By
designing this linear drive with invariant-based reverse engineering, nonadiabatic geometric quantum
computation with cat qubits can be implemented. The performance of the protocol is estimated
by taking into account the influence of systematic errors, additive white Gaussian noise, and
decoherence including photon loss and dephasing. Numerical results demonstrate that our protocol
is robust against these negative factors. Therefore, this protocol may provide a feasible method for
nonadiabatic geometric quantum computation in bosonic systems.

I. INTRODUCTION

Quantum coherence and quantum entanglement are
arguably the most fascinating properties of quantum
mechanics [1–4]. These are the main resources for
quantum information processing [1, 5] and quantum
technologies of second generation [6]. Their recent appli-
cations include: demonstrations of quantum advantage
using superconducting programmable processors [7] or
boson sampling with squeezed states of photons [4], a
quantum communication network over 4,600 km [8], and
quantum-enhanced gravitational-wave detectors using
squeezed vacuum [9–12]. As a very important subfield of
quantum information processing, quantum computation
has shown a potentially great power in solving many
specific problems [13, 14]. In a practical implementation
of quantum computation, quantum algorithms are
usually (but not always, e.g., in quantum annealing)
designed as a sequence of quantum gates. Therefore,
high-fidelity quantum gates are essential elements of
quantum computation. Unfortunately, experimental
imperfections, including operational errors, parameter
fluctuations, and environment-induced decoherence, may
affect the desired dynamics, limiting the fidelities of
quantum gates. The problem how to overcome these
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experimental imperfections has to be solved for the
constructions of practical quantum computers.

Because geometric phases are determined by the
global geometric properties of the evolution paths,
geometric quantum computation [15, 16] has shown
robustness against local parameter fluctuations over a
cyclic evolution [16–18]. As an extension of geometric
quantum computation, holonomic quantum computation
[19–21] based on non-Abelian geometric phases can
be used to construct a universal set of single-qubit
gates and several two-qubit entangling gates. Early
implementations of geometric quantum computation
involve adiabatic evolutions to suppress transitions
between different eigenvectors of the Hamiltonian. This
makes the evolution slow, and decoherence may destroy
these geometric gates [22–26].

To speed up the evolution, nonadiabatic geometric
quantum computation (NGQC) [27–29] was proposed.
Note that NGQC is also enabled by geometric phases,
thus inheriting robustness against local parameter
fluctuations. Moreover, compared with adiabatic
geometric quantum computation [19–21], NGQC is faster
because the evolution is beyond the adiabatic limit. In
addition, NGQC is compatible with various quantum
optimized control techniques, such as reverse engineering
[30–33] and single-shot-shaped pulses [34–36]. Such
techniques provide flexible ways in designing evolution
paths for NGQC, reducing the number of auxiliary
levels and sensitivity to certain types of control errors
[37]. Because of the above advantages of NGQC, in
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the past decades, robust quantum computation has
recently been discussed in theory [38–40] and successfully
demonstrated in experiments [41–43].

It has been shown [44–46] that encoding quantum
information in logical qubits is promising to protect
quantum computation from errors . For the realization of
logical qubits, bosonic systems are promising candidates,
which can be constructed by quantized fields in, e.g.,
resonators, mechanical oscillators, and superconducting
Josephson junctions [47–51]. The Schrödinger cat states
of bosons [52] have shown applications in quantum
computation in the early 2000s [53, 54]. Subsequently,
it has been shown that the Schrödinger cat states [3, 55–
60] can be used to construct types of useful error-
correction codes [61–75], providing protection against
cavity dephasing [62, 66], and thus have attracted much
interest.

Recently, based on cat codes, various protocols [47–
49, 51, 59] for preparing, stabilizing, and manipulating
cat qubits have been put forward. Moreover, quantum
computation [50] and adiabatic geometric quantum
control [66] of cat qubits have also been considered.
However, so far, only a few protocols [66, 76] have been
proposed to implement geometric computation using cat
qubits. Because of the difficulty to arbitrarily manipulate
a bosonic mode, it is still a challenge to realize NGQC
using bosonic cat qubits, which are both robust and fault
tolerant.

In this manuscript, we propose to use cat qubits
to implement NGQC via invariant-based reverse engi-
neering. To construct cat qubits, a two-photon driven
Kerr nonlinearity is used to restrict the evolution of
cavity modes to a subspace spanned by a pair of cat
states. We apply an additional coherent field to linearly
drive a cavity mode in order to induce oscillations
between dressed cat states. With the control fields
designed by invariant-based reverse engineering, the
system can have a cycling evolution, which acquire only
pure geometric phases. Hence, NGQC with cat qubits
can be implemented.

An amplitude-amplification method, using light
squeezing [77, 78], is applied to increase the distinguisha-
bility of different cat states, so that it can be easier to
detect input and output states in practice. Moreover,
two-qubit quantum gates of cat qubits are also considered
by using couplings between two cavity modes. Controlled
two-qubit geometric quantum gates can be implemented
almost perfectly.

Finally, the performance of the protocol in the presence
of systematic errors, additive white Gaussian noise, and
decoherence (including photon loss and dephasing) are
investigated via numerical simulations. Our results
indicate that the protocol is robust against these negative
factors.

The article is organized as follows. In Sec. II, we
briefly introduce the basic theory for invariant-based
NGQC. In Sec. III, we describe how to implement single-
and two-qubit NGQC with cat qubits. In Sec. IV,

we consider experimental imperfections and estimate the
performance of the protocol via numerical simulations.
In Sec. V, we introduce an amplification method based
on quadrature squeezing for the amplitudes of cat states,
so that the detection of input and output states can
be performed easily. In Sec. VI, we discuss a possible
implementation of our protocol using a superconducting
quantum parametron. Finally, our conclusions are given
in Sec. VII. Appendix A includes a derivation of a
dynamic invariant and the choice of parameters for
eliminating dynamical phases.

II. NONADIABATIC GEOMETRIC QUANTUM
COMPUTATION BASED ON A DYNAMIC

INVARIANT

For details, we first recall the Lewis-Riesenfeld
invariant theory [79]. Assuming that a physical system is
described by a Hamiltonian H(t), a Hermitian operator
I(t) satisfies the following equation (~ = 1)

i
∂

∂t
I(t)− [H(t), I(t)] = 0. (1)

For a non-degenerate eigenvector |φl(t)〉 of I(t), |ψl(t)〉 =
exp[iαl(t)] |φl(t)〉 is a solution of the time-dependent

Schrödinger equation i|ψ̇(t)〉 = H(t)|ψ(t)〉. Here, αl(t)
is the Lewis-Riesenfeld phase defined as

αl(t) =

∫ t

0

〈φl(τ)|
[
i
∂

∂τ
−H(τ)

]
|φl(τ)〉dτ. (2)

To realize NGQC, one can select a set of time-
dependent vectors, {|φl(t)〉}, spanning a computational
subspace S. According to Ref. [80], {|φl(t)〉} should
satisfy the three conditions: (i) the cyclic evolution
condition |φl(0)〉 = |φl(T )〉 with T being the total
operation time; (ii) the von Neumann equation

Ξ̇l(t) = −i[H(t),Ξl(t)], (3)

with Ξl(t) = |φl(t)〉〈φl(t)|; and (iii) annihilation of the
dynamical phase

ϑl(T ) = −
∫ T

0

〈φl(t)|H(t)|φl(t)〉 dt = 0. (4)

When satisfying the three conditions, the evolution in
subspace S can be described by

U(T, 0) =
∑
l

exp[iΘl(T )] Ξ(0), (5)

with a pure geometric phase

Θl(T ) =

∫ T

0

〈φl(t)|i
∂

∂t
|φl(t)〉 dt. (6)

It has been shown in Ref. [81], that a non-degenerate
eigenvector |φl(t)〉 of an invariant obeys the von
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Neumann equation given in Eq. (3). Therefore,
when the parameters of I(t) are designed with the
cycling boundary conditions and the dynamical part
of the Lewis-Riesenfeld phase is eliminated, the three
conditions are satisfied. In this case, one can implement
NHGQC with a dynamic invariant I(t).

III. NONADIABATIC GEOMETRIC QUANTUM
COMPUTATION OF CAT QUBITS

A. Arbitrary single-qubit gates

1. Hamiltonian and evolution operator of a single resonator

We consider a resonant single-mode two-photon (i.e.,
quadrature) squeezing drive applied to a Kerr-nonlinear
resonator. In the frame rotating at the resonator
frequency ω1, the system is described by the Hamiltonian
[49, 51]

Hcat = −Ka†21 a21 + ε2

(
e2iξa†21 + e−2iξa21

)
, (7)

where K is the Kerr nonlinearity, a1 (a†1) is the
annihilation (creation) operator of the resonator (cavity)
mode, ε2 is the strength of the two-photon drive assumed
here to be real, and ξ is its phase. The coherent states
| ±α〉1 (where α =

√
ε2/Ke

iξ is the complex amplitude)
are two degenerate eigenstates of Hcat. Therefore, the
even (|C+〉1) and odd (|C−〉1) coherent states, often
referred to as Schrödinger cat states, which are defined
as

|C±〉1 =
1√
N±

(|α〉1 ± | − α〉1) , (8)

are two orthonormal degenerate eigenstates of Hcat,
where N± = 2[1 ± exp(−2|α|2)] are the normalized
coefficients. The total Hamiltonian

Htot(t) = Hcat +Hc, (9)

includes a control Hamiltonian defined as [51]

Hc(t) = χ(t)a†1a1 + ε(t)a†1 + ε∗(t)a1, (10)

with χ(t) and ε(t) being the detuning and strength of a
single-photon drive, respectively.

When the energy gap Egap between the cat states |C±〉1
and their nearest eigenstate of Hcat is much larger than
χ(t) and ε(t), the system can be restricted to the subspace
S spanned by |C±〉1. We can accordingly use the cat
states to define the Pauli matrices as

σx = σ+ + σ−, σy = i(σ− − σ+),

σz = σ+σ− − σ−σ+, ~σ = (σx, σy, σz), (11)

in terms of the raising (σ+) and lowering (σ−) qubit
operators,

σ+ = |C+〉1〈C−|, σ− = |C−〉1〈C+| (12)

Then, the Hamiltonian of the system can be simplified

to Hc(t) = ~Ω(t) · ~σ, where, ~Ω(t) = [Ωx(t),Ωy(t),Ωz(t)]
is a set of driving amplitudes to be determined. We

can derive the dynamic invariant I(t) as I(t) = ~ζ(t) · ~σ
satisfying the conditions ~̇ζ(t) = 2~Ω(t)× ~ζ(t) and |~ζ(t)| =
const (see Appendix A for details).

By introducing two time-dependent dimensionless

parameters η and µ, we can parametrize ~ζ(t) as
(sin η sinµ, cos η sinµ, cosµ) and the eigenvectors of the
dynamic invariant I(t) can be derived as

|φ+(t)〉 = cos
µ

2
|C+〉1 + i exp(−iη) sin

µ

2
|C−〉1,

|φ−(t)〉 = i exp(iη) sin
µ

2
|C+〉1 + cos

µ

2
|C−〉1. (13)

We can design the parameters ε(t) and χ(t) as

Re[ε(t), ξ] =

√
N+N−
8α

(
Ωx cos ξ + e2|α|

2

Ωy sin ξ
)
,

Im[ε(t), ξ] = Re[ε(t), ξ − π/2],

χ(t) =
(η̇ sin2 µ)N+N−
[(N 2

+ −N 2
−)|α|2]

, (14)

with effective driving amplitudes (see Appendix A for
details)

Ωx = [η̇ sin η sin(2µ)− 2µ̇ cos η]/2,

Ωy = [η̇ cos η sin(2µ) + 2µ̇ sin η]/2. (15)

Both dynamical phases, acquired by the eigenvectors
shown in Eq. (13), vanish due to 〈φ±(t)|Hc(t)|φ±(t)〉 = 0,
while the geometric phases acquired by |φ±(t)〉, defined
in Eq. (13), are

Θ±(t) ≡
∫ t

0

〈φ±(τ)|i ∂
∂τ
|φ±(τ)〉dτ = ±

∫ t

0

η̇ sin2
(µ

2

)
dτ.

(16)

According to Eq. (5), the evolution of the system in the
subspace S, after a cycling evolution with period T , is
calculated as

Us(T, 0) = exp
[
iθ~ζ(0) · ~σ

]
=

[
cos θ + i cosµ0 sin θ exp(iη0) sinµ0 sin θ
− exp(−iη0) sinµ0 sin θ cos θ − i cosµ0 sin θ

]
,(17)

where θ =
∫ T
0
η̇ sin2(µ/2) dt is the final geometric phase

of the cycling evolution, and µ0 (η0) is the initial value
of µ (η). The evolution operator Us(T, 0) represents a
rotation on the Bloch sphere that can generate arbitrary
single-qubit gates [82, 83]. For a cycling evolution,
the parameters can be interpolated by trigonometric
functions as

µ = µ0 + Λ sin2

(
πt

T

)
,

η = η0 + π

[
1− cos

(
πt

T

)]
, (18)

where Λ is an auxiliary parameter to be determined
according to the requirements of different gates.
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FIG. 1. Trajectories of the eigenvectors |φ+(t)〉 (red-solid
curve) and |φ−(t)〉, defined in Eq. (13), on the Bloch sphere in
the implementations of (a) the NOT gate, (b) the Hadamard
gate, and (c) the π-phase gate. Parameters are listed in
Table I.

2. Examples of single-qubit-gate implementations

We now discuss how to use the evolution operator
Us(T, 0), given in Eq. (17), to realize: (i) the NOT gate,

UNOT = σx; (ii) the Hadamard gate, UH = (σz+σx)/
√

2;
(iii) the arbitrary phase gate, UPhase(θ) = cos θ2 · 1 +

i sin θ
2 ·σz, where 1 is the identity operator acting on the

cat qubit. The corresponding parameters to realize the
three gates for θ = π are listed in Table I.

According to the parameters given in Table I, on the
Bloch sphere in Fig. 1, we plot the trajectories of the
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FIG. 2. (a) Infidelity (1− F̄NOT) versus the amplitude α and
the Kerr nonlinearity K for our implementation of the NOT
gate. (b) Time variations of the parameters χ(t), Re[ε(t)],
and Im[ε(t)], defined in Eq. (14). Parameters are listed in
Table I.

eigenvectors |φ±(t)〉, i.e.,

~r±(t) =
∑

k=x,y,z

Tr[|φ±(t)〉〈φ±(t)|σk]~ek, (19)

where ~ek is the unit direction vector along the k-axis. As
shown in each panel of Fig. 1, both vectors |φ±(t)〉 evolve
along their cycling paths individually, and the geometric
phases acquired by them are equal to half of the solid

TABLE I. Parameters for our implementations of single-qubit
gates

gate µ0 η0 θ Λ

UNOT π/2 π/2 π/2 0.8089

UH π/4 π/2 π/2 0.3859

UPhase(π) 0 0 π/2 1.4669
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FIG. 3. Populations of different output states with different input states in the implementation of (a) the NOT gate, (b) the
Hadamard gate, and (c) the π-phase gate with parameters K = 2π × 12.5 MHz and |α| = 0.5.

angles of the areas surrounded by the corresponding
paths. In addition, the solid angles of the paths of ~r±(t)
have opposite signs, because the paths are on the upper
and lower half spheres, respectively. These numerical
results are in agreement with the theoretical results in
Eq. (16).

The average fidelity of the gates over all possible initial
states in the subspace S can be calculated by [84, 85]

F̄G =
1

D(D + 1)

[
Tr(MM†) + |Tr(M)|2

]
, (20)

with M = PcU†GU1Pc, while Pc and D are the
projector and dimension of the computational subspace,
respectively. The subscript “G” denotes the desired gate,
e.g., G = NOT when one wants to implement the NOT
gate. Figure 2(a) shows the infidelity (1− F̄NOT) versus
the amplitude α and the Kerr nonlinearity K for the
NOT gate, as an example.

We find that the average fidelity F̄NOT decreases
sharply when the amplitude α increases. This effect
can be understood because the control parameters χ(t)
and ε(t) increase with exp(|α|2) according to Eq. (14).
Consequently, the ratio between the energy gap and
parameters of Hc(t) reduces, and the leakage to other
eigenstates of Hcat becomes significant. To manipulate
the cat qubit with a larger α, one may increase the Kerr-
nonlinearity K and the strength ε2 of the squeezing drive,
but we should notice that K and ε2 both have their upper
limits in experiments [51]. We can also consider a longer
interaction time T to reduce values of the parameters in
Hadd(t), but such a long-time evolution may increase the
influence of decoherence.

For a realistic value of the Kerr nonlinearity K =
2π × 12.5 MHz [51] (Egap = 161 MHz), the parameters
χ(t) and ε(t) are shown in Fig. 2(b), when the total
interaction time T = 1 µs and the amplitude of
coherent states is |α| = 0.5. With these parameters,
we obtain F̄NOT = 0.9997, indicating that the NOT
gate can be implemented almost perfectly. To show
the performance of different types of quantum gates,
we plot the populations of different output states with

different input states in the implementation of the NOT,
Hadamard, and the π-phase gates in Figs. 3(a), 3(b),
and 3(c), respectively. As shown, the populations of the
output states are all very close to the ideal values of the
theoretical results, and the leakage to unwanted levels is
negligible.

B. Two-qubit entangling gates

1. Hamiltonian and evolution operator of two coupled
resonators

Now we consider a generalized scheme when two cavity
modes are driven by two Kerr-nonlinear resonators, as
described by the Hamiltonian

Hcat2 = −K
∑
n=1,2

a†2n a
2
n + ε2(a†2n + a2n). (21)

The product coherent states |±α〉1⊗|±α〉2 of the modes
a1 and a2 are the four degenerate eigenstates of Hcat2.
Therefore, the product cat states {|C±〉1 ⊗ |C±〉2} span
a four-dimensional computational subspace S2 useful for
implementing two-qubit gates.

Additionally, we consider a control Hamiltonian [47,
50, 86]

Hc2(t) = χ12(t)a†1a1a
†
2a2 + a†1a1[λ∗(t)a2 + λ(t)a†2]

+ ε̃∗(t)a2 + ε̃(t)a†2 +
∑
n=1,2

χn(t)a†nan, (22)

where χ12(t) is the cross-Kerr parameter, λ(t) is the
strength of a resonant longitudinal interaction between
the modes a1 and a2; χ1/2(t) are the detunings, and
ε̃(t) is the strength of an additional coherent driving of
the mode a2. We assume that the parameters in Hc2(t)
should be much smaller than the energy gap Egap2 of the
eigenstates of Hcat2 to limit the evolution to the subspace
S2.



6

|𝒞ା⟩|𝒞ା⟩0

1

|𝒞ା⟩|𝒞ି⟩|𝒞ି⟩|𝒞ା⟩|𝒞ି⟩|𝒞ି⟩ |𝒞ି⟩|𝒞ି⟩|𝒞ି⟩|𝒞ା⟩|𝒞ା⟩|𝒞ି⟩|𝒞ା⟩|𝒞ା⟩

1.000

1.000

0.9995 0.9995

Popula
tions

(b)

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

Time ሺunits of 𝑇ሻ

Averag
e Fidel

ity
(a)

FIG. 4. Implementation of the CNOT gate: (a) Time
variation of the average fidelity F̄CNOT(t). (b) Populations
of different output states for different input states.

To realize geometric controlled θ-rotation gates, we
choose the parameters in Eq. (22) as follows

Re[λ(t), ξ] =
(N+N−)

3
2

(
Ωx cos ξ + e2|α|

2

Ωy sin ξ
)

8α3(N 2
+ −N 2

−)
,

Im[λ(t), ξ] = Re[λ(t), ξ − π/2],

χ12(t) = η̇ sin2 µN 2
+N 2
−/[(N 2

+ −N 2
−)2α4],

χ1(t) = − χ12(t)|α|2N−/N+,

χ2(t) = − χ12(t)|α|2
(
N 2

+ +N 2
−
)
/(2N+N−),

ε̃(t) = λ(t)χ1(t)/χ12(t).

(23)

The evolution operator of the system reads

U2(T, 0) = |C+〉2〈C+| ⊗ 12 + |C−〉2〈C−| ⊗ Us(T, 0), (24)

where 12 is the identity operator acting on the cat qubit
2 and Us(T, 0) is the single-qubit operation acting on the
cat qubit 2 defined by Eq. (17).
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0 50
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FIG. 5. (a) Final average fidelities F̄H(T ) versus the
systematic error coefficient δk with parameters K = 2π ×
12.5 MHz and α = 0.5. (b) Final average infidelities,
1− F̄H(T ), versus simulation counts with the additive white
Gaussian noise (RSN = 10) and parameters K = 2π ×
12.5 MHz and α = 0.5.

2. Example of a two-qubit entangling gate

As an example of the application of a two-qubit
entangling gate, we show the implementation of a
modified controlled-NOT (CNOT) gate defined by the
operator UCNOT = 11 ⊗ |C+〉2〈C+| + iσx ⊗ |C−〉2〈C−|,
corresponding to the parameters η0 = π/2, µ0 = π/2,
and θ = π/2 for U1. The following discussion is based
on the parameters α1 = α2 = 0.5, K = 2π × 12.5 MHz
(Egap = 161 MHz), and T = 1 µs. The average fidelity
F̄CNOT(t) of the implementation of this CNOT gate over
all possible initial states in the computational subspace
S2 is defined by [84, 85]

F̄CNOT(t) =
1

D2(D2 + 1)
{Tr[M2(t)M†2 (t)]+|Tr[M2(t)]|2},

where M2(t) = Pc2U†CNOTU(t)Pc2, given via the
projector Pc2 and the dimension D2 = 4of the
computational subspace S2. We plot the time variation
of F̄CNOT(t) in Fig. 4(a), and obtain F̄CNOT(T ) = 0.9997.
Consequently, the modified CNOT gate can be realized
almost perfectly.

Populations of different output states with different
input states in the implementation of our CNOT-like
gate are plotted in Fig. 4(b). As seen, the system does
not evolve when the cavity mode 1 is in the cat state
|C+〉1. However, if the cavity mode 1 is in the cat state
|C−〉1, a nearly perfect population inversion occurs to the
cavity mode 2. The result of Fig. 4(b) also indicates
that the CNOT gate is successfully implemented with an
extremely small leakage to unwanted levels.
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states for different input states in the implementation of the
Hadamard gate (κ = κφ = 0.05 MHz) with parameters K =
2π × 12.5 MHz and α = 0.5.

IV. DISCUSSIONS ON EXPERIMENTAL
IMPERFECTIONS

Here, we estimate the performance of the protocol in
the presence of different experimental imperfections. We
consider our implementation of a Hadamard gate as an
example. First, due to an imperfect calibration of the
instruments, there may exist systematic errors in the
control parameters. The control parameter under the
influence of systematic errors can be written as Ωek(t) =
(1 + δk)Ωk(t), where Ωek(t) is a faulty control parameter
and δk is the corresponding error coefficient.

We plot the average fidelity F̄H of the Hadamard gate
versus the systematic error coefficient δk in Fig. 5(a). It
is seen that, when δx ∈ [−10%, 10%] (δy ∈ [−10%, 10%]),

the average fidelity F̄H remains higher than 0.9969
(0.9973). In addition, the influence on F̄H caused by
systematic errors of Ωz(t), is larger than those of Ωx(t)
and Ωy(t), but we can still obtain F̄H ≥ 0.9768 when
δz ∈ [−10%, 10%]. Therefore, the implementation of the
Hadamard gate is robust against systematic errors.

Apart from systematic errors, due to random noise,
there are also fluctuations of parameters that may disturb
the evolution of the system. An additive white Gaussian
noise (AWGN) is a good model to investigate random
processes [81, 87–89]. Therefore, we add an AWGN to the
control parameters as Ωnk (t) = Ωk(t)+awgn[Ωk(t), RSN ].
Here, awgn[Ωk(t), RSN ] is a function that generates an
AWGN for the original signal Ωk(t) with a signal-to-noise
ratio RSN. As the AWGN is generated randomly in each
single simulation, we perform the numerical simulation
fifty times to estimate its average effect. Then, 1− F̄H in
each single simulation is plotted in Fig. 5(b). Thus, we
find the values of the infidelity 1 − F̄H ∈ [3 × 10−5, 8 ×
10−5] in the fifty simulations. The results indicate that
the implementation of the Hadamard gate is insensitive
to the AWGN.

As the system cannot be completely isolated from the
environment in experiments, the interactions between the
system and the environment may result in decoherence.
We consider two types of decoherence factors, i.e., a
single-photon loss and dephasing. The evolution of the
system is described by the Lindblad master equation [47]

ρ̇(t) =− i[Hcat +Hadd(t), ρ(t)]

+
κ

2
L[a]ρ(t) +

κφ
2
L[a†a]ρ(t), (25)

where κ (κφ) is the single-photon-loss (dephasing) rate
and the Lindblad superoperator L acting on an arbitrary
operator o produces L[o]ρ(t) = 2oρ(t)o† − o†oρ(t) −
ρ(t)o†o. In the presence of decoherence, the evolution is
no longer unitary. For the convenience of our discussion,
we take the evolution with initial state |C+〉1 as an
example and analyze the fidelities of the Hadamard gate

as FH = 1〈C+|U†Hρ(T )UH |C+〉1.
We plot the infidelity 1− FH versus the single photon

loss rate κ and the dephasing rate κφ in Fig. 6(a) in
the range [0,0.05 MHz] [48]. The results show that the
influence of the single-photon loss is stronger than the
dephasing. When κ, κφ ≤ 0.05 MHz, 1− FH(T ) is lower
than 0.0201. Therefore, the protocol is robust against
the single-photon loss and dephasing. In addition,
the populations of the output states corresponding to
different input states in the implementation of the
Hadamard gate with the decoherence rates κ = κφ =
0.05 MHz are plotted in Fig. 6(b). Compared with the
results shown in Fig. 3(a), in the presence of decoherence,
there exist more faulty populations of the output states.
This is because the single-photon loss continuously causes
quantum jumps between the cat states |C±〉1 [49]. The
total populations in the subspace S with the input states
|C±〉1 are both higher than 0.995, showing that the
leakage to the unwanted levels outside the subspace S
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FIG. 7. Top panel: The process of NGQC for the amplified
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photon number np(t) = Tr[ρ(t)a†a]. Step 1 (3) is an anti-
squeezing (squeezing) process for a measurable input (output)
state. Step 2 denotes evolution of the system implementing a
given gate (e.g., a Hadamard gate in the bottom panel).

is still very small in the presence of decoherence.

V. AMPLIFICATION OF THE CAT-STATE
AMPLITUDE BY SQUEEZING THE DRIVE

SIGNAL

To increase the distinguishability of cat-state qubits,
we can introduce a method to amplify the photon
numbers inspired by Refs. [77, 78]. When we consider
a squeezing operator as S = exp[r(a†2 − a2)/2], the cat

states {|C±〉} become the amplified cat states {|C̃±〉} with

|C̃±〉 = S|C±〉 (i.e., squeezed cat states). Here, we omit
the subscript “1” for simplicity. The squeezing operator
S can be realized by two-photon (squeezing) driving
Hs = −iε2(a2 − a†2) for the interaction time ts = r/2ε2,
i.e., switching off the Kerr interaction and the control
field [Hc(t)]. In addition, the inverse transform S̄ = S†

can be realized by squeezing the driving interaction H̄s =
iε2(a2 − a†2) for the interaction time ts = r/2ε2. In this
case, the total process can be divided into three steps as
shown in Fig. 7.

In step 1, we apply the transform S̄ to the input state,
which is a superposition of the squeezed cat states. In
this way, the amplified cat states {|C̃±〉} are transformed
into small-amplitude cat states {|C±〉}. The step 2 is the
geometric gate operation, as illustrated in Sec. III. In
step 3, we apply the squeezing transform S to enhance
the photon number of the output state, so that the
output state can be experimentally detected. The total
operator acting on the amplified cat-state qubit is Ũ =
SUS†, which has the same matrix elements for a small-
amplitude cat-state qubit, i.e., 〈C̃|Ũ |C̃′〉 = 〈C|U |C′〉

~

Φ(𝑡)

𝐸𝐽 𝐶𝐽

𝐶𝑝 𝑉𝑝

FIG. 8. Superconducting quantum circuit for implementing
Hamiltonian in Eq. (9). The circuit consists of a SQUID
array (black), a shunting capacitor (black), a flux bias line
(purple), and an ac gate voltage (red). Here, Φ(t) is the
externally applied magnetic flux , Cp is the capacitor shunting
the SQUID array, Vp is the amplitude of the ac gate voltage,
and EJ (CJ) is the Josephson energy (capacitance) of a single
SQUID.

(, ′ = ±). Here, we assume r = 1.2 and α = 0.5, as an
example to show the implementation of NGQC for the
amplified-cat-state qubits.

We plot the time variation of the average photon
number np(t) = Tr[ρ(t)a†a] in the bottom panel of Fig. 7.
As shown, the average photon number decreases during
the first step, corresponding to the anti-squeezing process
|C̃+〉 → |C+〉. Then, by implementing the Hadamard
gate, the cat state |C+〉1 is transformed into (|C+〉 +

|C−〉)/
√

2. Finally, in step 3, we amplify the output state

by squeezing, i.e., (|C+〉+ |C−〉)/
√

2→ (|C̃+〉+ |C̃−〉)/
√

2.
The final average photon number is 6.732. The anti-
squeezing and squeezing processes are fast (see Fig. 7), so
that decoherence in these two processes affects weakly the
target state. By considering the experimentally feasible
parameters: ε2 = Kα2 = 2π × 3.125 MHz, ts = r/ε2 =
30.56 ns, and κ = κφ = 0.05 MHz, we achieve the fidelity

F = 0.9513 of the output state (|C̃+〉 + |C̃−〉)/
√

2 for

the Hadamard gate with the initial state |C̃+〉 for the
amplified cat-state qubit.

VI. POSSIBLE IMPLEMENTATION USING
SUPERCONDUCTING QUANTUM CIRCUITS

As shown in Fig. 8, we consider an array-type resonator
composed of N superconducting quantum interference
devices (SQUIDs) [90–95]. An ac gate voltage Ṽp =
Vp cos(ωpt + ϕp) (with amplitude Vp, frequency ωp,
and phase ϕp) is applied to induce linear transitions
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between eigenlevels. The Hamiltonian of this setup reads
[91, 92, 95]

H0 = 4EC n̂
2 −NEJ [Φ(t)] cos

φ̂

N
− ECCpVp

e
n̂,

where n̂ is the number of Cooper pairs and φ̂ is the overall
phase across the junction array. Here, EC is the resonator
charging energy, EJ is the Josephson energy of a single
SQUID, and N is the number of SQUIDs in the array.
The Josephson energy is periodically modulated (with
frequency ω2p and phase ϕ2p) by the external magnetic
flux Φ(t), leading to

EJ [Φ(t)] = EJ + δEJ cos(ω2pt+ ϕ2p). (26)

After the Taylor expansion of cos
(
φ̂/N

)
to fourth

order, we obtain

H0 ≈ 4EC n̂
2 −NEJ(1− X̂ + X̂2/6)

−NδEJ(1− X̂) cos(ω2pt+ ϕ2p)

−
(
ECCpṼp/e

)
n̂, (27)

where X̂ = (φ̂/N)2/2. The quadratic time-independent
part of the Hamiltonian can be diagonalized by defining

n̂ = −in0(a− a†), φ̂ = φ0(a+ a†), (28)

where n0 = 4
√
EJ/(32NEC) and φ0 = 2

√
2/n0 are the

zero-point fluctuations.
By dropping the constant terms, the Hamiltonian H0

becomes

H0 = ωca
†a− EC

12N2

(
a+ a†

)4
+
δEJωc
4EJ

(
a+ a†

)2
cos(ω2pt+ ϕ2p)

+ i(ECCpVp/e)(a− a†) cos(ωpt+ ϕp), (29)

where ωc =
√

8ECEJ/N . For simplicity, we assume
ω2p = 2ωp and ϕ2p = 2ξ. Then, moving into a rotating
frame at frequency ωp and neglecting all of the fast
oscillating terms, the approximate Hamiltonian under
the rotating wave approximation (RWA) can be written
as

H0 =−Ka†2a2 + ε2
(
e2iξa†2 + e−2iξa2

)
+ χ(t)a†a+ ε(t)a† + ε∗(t)a, (30)

where K = 2EC/N
2, ε2 = ωcδEJ/8EJ , χ(t) = ωc −

ωp, and ε(t) = −iECCpVp exp(iϕp)/2e. Then, by
defining a1 ≡ a, we recover the total Hamiltonian
Htot(t) given in Eq. (9) for the single-qubit case. Note
that, as shown in [96], the Kerr nonlinearity (which
is a rescaled third-order susceptibility of a nonlinear
medium) can be exponentially enhanced by applying
quadrature squeezing, which interaction with a medium

is proportional to its second-order susceptibility. This
means that one can exponentially amplify higher-order
nonlinearities by applying lower-order nonlinear effects.
Other methods of applying quadrature squeezing to
increase nonlinear interactions are described in, e.g., [97–
99].

We also note that the Kerr nonlinearity enables
the generation of not only conventional (i.e., two-
component) Schrödinger cat states, i.e., superpositions
of two macroscopically distinct states, but also the
generation of superpositions of a larger number of
macroscopically distinct states. The states are referred to
as Schrödinger kitten states or multi-component cat-like
states, as predicted in [100] and experimentally generated
via to the Kerr interaction in superconducting quantum
circuits in [101]. These kitten states, which are examples
of Gauss sums, have been used in an unconventional
algorithm for number factorization, i.e., to distinguish
between factors and nonfactors. Implementations of the
Gauss-sums algorithm include NMR spectroscopy [102,
103] and Ramsey spectroscopy using cold atoms [104]

VII. CONCLUSION

In conclusion, we have proposed a protocol to realize
NGQC using cat qubits with invariant-based reverse
engineering. The evolution of the cavity mode is
restricted to a subspace spanned by a pair of Schrödinger
cat states assisted by a Kerr nonlinearity and a two-
photon squeezing drive, so that one can generate
photonic cat qubits. We add a coherent field to linearly
drive the cavity mode, inducing oscillations between
dressed cat states. When designing the control fields
by invariant-based reverse engineering, the system can
evolve quasiperiodically and acquire only pure geometric
phases. Thus, one can realize NGQC with a cat qubit.
By amplifying the amplitudes of different cat states,
the input and output states can be easy detected in
experiments. Two-qubit quantum gates for cat qubits
are also considered with couplings between two cavity
modes. As we have shown, controlled entangling two-
qubit geometric quantum gates can also be implemented
with high fidelities. The influence of systematic
errors, additive white Gaussian noise, and decoherence
(including photon loss and dephasing), is considered
by numerical simulations. The results indicate that
the protocol is robust against these errors. Therefore,
our protocol may provide efficient high-fidelity quantum
gates for NGQC in bosonic systems.
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Appendix A: Derivation of a dynamic invariant and
the choice of parameters for eliminating dynamical

phases

Because the Hamiltonian Hc(t) = ~Ω(t) · ~σ possesses
SU(2) dynamic structure, there is a dynamic invariant

I(t) in form of I(t) = ~ζ(t) ·~σ [81, 105]. The commutative

relation of Hc(t) and I(t) can be calculated as

[Hc(t), I(t)] = [~Ω(t) · ~σ][~ζ(t) · ~σ]− [~ζ(t) · ~σ][~Ω(t) · ~σ]

= {~σ × [~Ω(t)× ~ζ(t)]} · ~σ

= (~σ × ~σ) · [~Ω(t)× ~ζ(t)]

= 2i[~Ω(t)× ~ζ(t)] · ~σ.
(A1)

Substituting Eq. (A1) into Eq. (1), we obtain ~̇ζ(t) =

2[~Ω(t)× ~ζ(t)]. Moreover,

1

2

d

dt
|~ζ(t)|2 = ~ζ(t) · ~̇ζ(t) = 2~ζ(t) · [~Ω(t)× ~ζ(t)]

= 2~Ω(t) · [~ζ(t)× ~ζ(t)] = 0, (A2)

implies that |~ζ(t)| should be constant.

When |~ζ(t)| = 1, one can parametrize ~ζ(t) as
(sin η sinµ, cos η sinµ, cosµ), and derive the eigenvectors
|φ±(t)〉 of the invariant I(t) as given in Eq. (13). The
time derivatives of the dynamical phases ϑ±(t) and the
geometric phases Θ±(t) acquired by |φ±(t)〉 are

ϑ̇±(t) = ∓
[
Ωz(t) +

1

2
η̇(t) sin2(µ)

]
secµ,

Θ̇±(t) = ±η̇ sin2
(µ

2

)
. (A3)

To eliminate the dynamical phases, we choose

Ωz(t) = −η̇(t) sin2[µ(t)]/2. (A4)

In addition, by reversely solving ~̇ζ(t) = 2[~Ω(t)× ~ζ(t)], we
obtain

Ωx(t) = ~ez · [~ν1(t)× ~ν2(t)]/2,

Ωy(t) = ~ν1(t) · ~ν2(t)/2,

~ν1(t) = [2Ωz(t) + η̇(t)] tan[µ(t)]~ex + µ̇(t)~ey,

~ν2(t) = cos[η(t)]~ex + sin[η(t)]~ey. (A5)

Combining Eqs. (A4) and (A5), we derive Eq. (14) as
shown in Sec. III.
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