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We propose to create and stabilize long-lived macroscopic quantum superposition states in atomic
ensembles. We show that using a fully quantum parametric amplifier can cause the simultaneous decay of
two atoms and, in turn, create stabilized atomic Schrödinger cat states. Remarkably, even with modest
parameters these intracavity atomic cat states can have an extremely long lifetime, up to 4 orders of
magnitude longer than that of intracavity photonic cat states under the same parameter conditions, reaching
tens of milliseconds. This lifetime of atomic cat states is ultimately limited to several seconds by extremely
weak spin relaxation and thermal noise. Our work opens up a new way toward the long-standing goal of
generating large-size and long-lived cat states, with immediate interests both in fundamental studies and
noise-immune quantum technologies.
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Introduction.—Schrödinger cat states, which are macro-
scopically distinct superposition states, express the essence
of quantum mechanics. Such states are appealing not only
for fundamental studies of quantummechanics [1,2] but also
forwide applications ranging fromquantummetrology [3,4]
to quantum computation [5–9]. So far, a large number of
approaches [10–25] have been proposed to generate cat
states. However, these cat states (especially of large size) are
extremely fragile in a noisy environment, and their fast
decoherence makes them impractical for applications. Thus,
the ability to stabilize cat states, as an essential prerequisite
for their various applications, is highly desirable. To address
this problem, a two-photon loss has been engineered [26–
29] and recently experimentally demonstrated [30–34].
Such a nonlinear loss can protect cat states against photon
dephasing [29,35] but, unfortunately, not against the
unavoidable single-photon loss. This implies a significantly
limited cat-state lifetime. Single-photon loss has been
considered to be the major source of noise in fault-tolerant
quantum computation based on cat states [5–9]. Thus, the
stabilization of large-size cat states for an extended time
remains challenging.
Ensembles of atoms or spins have negligible spin relax-

ation; consequently, their major source of noise is spin
dephasing, i.e., collective dephasing, local dephasing, and
inhomogeneous broadening. This motivates us to engineer
the simultaneous decay of two atoms of an ensemble (here
denoted as “two-atom decay”) and then use it to stabilize
atomic cat states. Such cat states could have a very long

lifetime if the two-atom decay is possible. This is because
such a decaymay protect these atomic cat states against spin
dephasing, which is a close analogy to the mechanism of
using two-photon loss to suppress photon dephasing.
However, it seems to us that the two-atom decay, which

is fundamentally different from two-photon loss, is still
lacking. To implement it, here we propose to exploit fully
quantum degenerate parametric amplification. More impor-
tantly, the lifetime of the resulting atomic cat states can be
made up to 4 orders of magnitude longer than that of
common intracavity photonic cat states (see Table I in [36]),
i.e., equal superpositions of two opposite-phase coherent
states. To ensure a fair comparison, these photonic cat states
need to have the same size as our atomic cat states and also
suffer from single-photon loss of the same rate as given for
the signal mode. With a modest cavity decay time (∼16 μs),
our cat-state lifetime can reach ∼20 ms. This is comparable
to 17 ms [55], which is the longest lifetime of intracavity
photonic cat states to date but which was achieved with an
extreme cavity decay time (∼0.13 sec). As the cavity decay
time increases, our cat-state lifetime can further increase
but ultimately is limited to a maximum value determined
by spin relaxation and thermal noise. For a typical spin
relaxation time ∼40 sec [56,57], we can predict a maxi-
mum cat-state lifetime of ∼3 sec.
Physical model.—The central idea is illustrated in

Fig. 1(a). To consider degenerate parametric amplification
in the fully quantum regime, our system, inspired by
recent experimental advances [31–33,58,59], contains two
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parametrically coupled cavities: one as a pump cavity with
frequencyωp and the other as a signal cavity with frequency
ωs. We assume that the pump cavity is subject to a coherent
drive with amplitude Ω and frequency ωd. The intercavity
parametric coupling J stimulates the conversion between
pump single photons and pairs of signal photons.
Furthermore, an ensemble of N identical two-level atoms
is placed in the signal cavity, and the atomic transition, of
frequencyωq, is driven by a coupling g to the signal photon.
When 2ωq ≈ ωp ≪ 2ωs, a pair of excited atoms can jointly
emit a pump photon. The subsequent loss of the pump
photon gives rise to the two-atom decay, which in turn
stabilizes large-size, extremely long-lived cat states in the
ensemble.
The system Hamiltonian in a frame rotating at ωd is

H ¼
X
i¼p;s

δia
†
i ai þ δqSz þ Jðapa†2s þ a†pa2sÞ

þ gðasSþ þ a†sS−Þ þ Ωðap þ a†pÞ; ð1Þ
where ap, as are the annihilation operators for the pump
and signal modes, S� ¼ Sx � iSy, δp ¼ ωp − ωd, δs ¼
ωs − ωd=2, and δq ¼ ωq − ωd=2. The collective spin oper-
ators are Sα ¼ 1

2

P
N
j¼1 σ

α
j , with σαj (α ¼ x, y, z) the Pauli

matrices for the jth atom. The Lindblad dissipator,
LðoÞρ ¼ oρo† − 1

2
o†oρ − 1

2
ρo†o, describes the dissipative

dynamics determined by

_ρ ¼ −i½H; ρ� þ
X
i¼p;s

κiLðaiÞρ; ð2Þ

where κp and κs are the photon loss rates of the pump and
signal modes. Spin dephasing, spin relaxation, and thermal
noise are discussed below.

We assume that 2ωq ≈ ωp ≈ ωd, and the detuning
Δ ¼ ωs − ωq ≫ fgcol; Jg. Here, gcol ¼

ffiffiffiffi
N

p
g represents

the collective coupling of the ensemble to the signal mode.
Then, we can predict a parametric coupling, χ ¼ g2colJ=Δ2,
between atom pairs and pump single photons. Accordingly,
the Hamiltonian H, after time averaging [60,61],
becomes

Havg ¼
χ

N
ðapS2þ þ a†pS2−Þ þ Ωðap þ a†pÞ; ð3Þ

which describes a third-order process. The stronger second-
order process has been eliminated with an appropriate
detuning between ωp and 2ωq (see [36]). To derive Havg,
we have considered the low-excitation regime, where the
average number of excited atoms is much smaller than the
total number of atoms.
We now adiabatically eliminate the pump mode ap,

yielding an effective master equation

_ρens ¼ −i½Hens; ρens�
þ κ1at

N
LðS−Þρens þ

κ2at
N2

LðS2−Þρens; ð4Þ

where Hens ¼ iχ2atðS2− − S2þÞ=N, and ρens represents the
reduced density matrix of the ensemble. Here, κ2at ¼
4χ2=κp and χ2at ¼ 2Ωχ=κp are the rates of the simultaneous
decay and excitation of two atoms, respectively. Moreover,
κ1at ¼ ðgcol=ΔÞ2κs is the rate of the Purcell single-atom
decay (see [36]), and we can tune it to be ≪ κ2at, as long
as κs ≪ ðgcolJ=ΔÞ2=κp.
We note that the methods of Refs. [62–64] can lead to a

Hamiltonian formally similar toHavg. However, contrary to
our method, the two-atom decay cannot be realized in those
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FIG. 1. (a) Schematic setup of our proposal. The pump and signal cavities are coupled via a parametric coupling J, and the atomic
ensemble is coupled to the signal cavity with a single-atom coupling g. The pump cavity is subject to a coherent drive with amplitude Ω
and frequency ωd. Here, ωp, ωs are the resonance frequencies of the pump and signal cavities, κp, κs are their respective single-photon
loss rates, and ωq is the atomic transition frequency. (b),(c) Quantum Monte Carlo trajectory pictured through the probabilities of the
system being in the states jmp0ijni. Initially, only two atoms in the ensemble are excited. Here, κp ¼ 0.2χ and κs ¼ Ω ¼ 0. (d) Time
evolution of the preparation error η for a cat size jαj2 ¼ 1. Here, κp ¼ 5χ, κs ¼ 0.3κp, and the ensemble is initialized in the ground state
j0i, the single-excitation state j1i, and a spin coherent state jθ0; 0i with

ffiffiffiffi
N

p
tan ðθ0=2Þ ¼ 1 for the states jCþi, jC−i, and ρssens,

respectively. In (b)–(d), we assume that N ¼ 100, J ¼ 3gcol, and both cavities are initialized in the vacuum.
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methods assuming the strong cavity-photon loss. This is
because those methods require a virtual cavity photon to
mediate a third-order process, which indicates that the
cavity-photon loss cannot be allowed to be strong;
moreover, they also depend on a longitudinal coupling,
which cannot be collectively enhanced in atomic
ensembles.
To gain more insights into the engineered two-atom

decay, we use the quantum Monte Carlo method [65]. In
Figs. 1(b),(c), we plot a single quantum trajectory with
the Hamiltonian H and an initial state j00ij2i (see [36]
for more cases). Here, the first ket jmpmsi (mp;ms ¼
0; 1; 2;…) in the pair refers to the cavity state with mp

pump photons and ms signal photons, and the second jni
(n ¼ 0; 1; 2;…) refers to the collective spin state
jS ¼ N=2; mz ¼ −N=2þ ni, corresponding to n excited
atoms in the ensemble. The non-Hermitian Hamiltonian
HNH ¼ H − ði=2Þκpa†pap drives Rabi oscillations between
j00ij2i and j10ij0i, as shown in Fig. 1(b). The Rabi
oscillations are then interrupted by a quantum jump ap.
We find from Fig. 1(c) that the jump leaves the system in its
ground state j00ij0i, implying that single-photon loss of
the pump mode causes the two-atom decay.
Stabilized manifold of atomic cat states.—When

κ1at ¼ 0, the dynamics of the effective master equation,
Eq. (4), describes a pairwise exchange of atomic excitations
between the ensemble and its environment, thus con-
serving the excitation-number parity. As demonstrated in
[36], the ensemble is driven to an even cat state jCþi ¼
Aþðjθ;ϕi þ jθ;ϕþ πiÞ if initialized in an even parity
state, or to an odd cat state jC−i ¼ A−ðjθ;ϕi − jθ;
ϕþ πiÞ if initialized in an odd parity state. Here, jθ;ϕi,

where ϕ ¼ π=2 and θ ¼ 2 arctanðjαj= ffiffiffiffi
N

p Þ, refers to a
spin coherent state, and A�¼1=f2½1�expð−2jαj2Þ�g1=2.
Moreover, α ¼ i

ffiffiffiffiffiffiffiffiffi
Ω=χ

p
is the coherent amplitude. The

average number of excited atoms, jαj2, of the states jC�i
characterizes the cat size [55]. When assuming the initial
state to be a spin coherent state jθ0;ϕ0i, the steady state
of the ensemble is confined into a quantum mani-
fold spanned by the states fjCþi; jC−ig and is expre-
ssed as ρssens¼cþþjCþihCþjþc−−jC−ihC−jþcþ−jCþihC−jþ
c�þ−jC−ihCþj, where cþþ ¼ 1

2
½1þ expð−2jα0j2Þ� with

α0 ¼
ffiffiffiffi
N

p
exp ðiϕ0Þ tan ðθ0=2Þ, c−− ¼ 1 − cþþ, and cþ−

is given in [36]. To confirm these predictions, we numeri-
cally integrate [66,67], the master equation in Eq. (2), to
simulate the time evolution of the preparation error η ¼
1 − F in Fig. 1(d). Here, F is the fidelity between the actual
and ideal states. It is seen that, as expected, the ensemble
states are steered into a stabilized 2D cat-state manifold
with a high fidelity.
In the low-excitation regime considered above, the

collective spin in fact behaves as a quantum harmonic
oscillator. This allows us to map S− to a bosonic operator b,
i.e., S− ≈

ffiffiffiffi
N

p
b, and thus to investigate cat states of large

size (jαj⩾2) in large ensembles. The spin coherent state
jθ;ϕi accordingly becomes a bosonic coherent state jαi
such that the states jC�i become jC�i ¼ A�ðjαi þ j − αiÞ.
With the master equation in Eq. (2) and under the bosonic
approximation, we plot the time evolution of the prepara-
tion error η in Fig. 2(a), and the Wigner function WðβÞ for
different times in Fig. 2(b). We find that a cat state of size
jαj2 ¼ 4 is obtained after time t ∼ 250=gcol, or more
specifically, t ∼ 4 μs, for a typical collective coupling
strength gcol=2π ¼ 10 MHz [56,68–71].
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FIG. 2. (a) Time evolution of the preparation error η of the states jCþi, jC−i, and ρssens under the bosonic approximation for different cat
sizes jαj2 ¼ 2, 4, and 6. The initial states are chosen as in Fig. 1(d). (b) Wigner function at times t1;…; t5 shown on top of panel (a) for
the jαj2 ¼ 4 cat size. The first, second, and third rows correspond to the states jCþi, jC−i, and ρssens, respectively. For all plots, we set
J ¼ 3gcol, δp ¼ J2=ð20gcolÞ, κp ¼ 5χ, and κs ¼ 0.3κp.
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Suppressed spin dephasing.—So far, we have assumed a
model where there is no spin dephasing; however, there will
always be some spin dephasing. Before discussing spin
dephasing, let us first consider the rate γ of convergence,
i.e., how rapidly the steady cat states can be reached. To
determine γ, we introduce the Liouvillian spectral gap,
λ ¼ jRe½λ1�j, of the effective master equation in Eq. (4) for
κ1at ¼ 0. Here, λ1 is the Liouvillian eigenvalue with the
smallest modulus of the real part. Since the gap λ
determines the slowest relaxation of the Liouvillian [72],
we thus conclude that γ > λ. In the inset of Fig. 3(a), we

numerically calculate the gap λ and find λ ≈ jαj2κ2at
for jαj2 ≥ 2.
Below we consider collective spin dephasing

γcolLðSzÞρens, local spin dephasing γloc
P

N
j¼1 LðσzjÞρens,

and inhomogeneous broadening 1
2

P
N
j¼1 δjσ

z
j. Here, γcol

and γloc are the collective and local dephasing rates,
respectively. Moreover, δj ¼ ωj − ωq, where ωj is the
transition frequency of the jth atom and ωq can be
considered as the average of transition frequencies of all
the atoms [36]. We assume that the distribution of δj has a
linewidth Δinh. The three sources of dephasing noise
conserve the excitation-number parity of the superradiant
subspace, where the cat states are created and stabilized.
Thus, all these dephasing processes can be strongly
suppressed by the two-atom decay as long as γ ≫
fγcol; γloc;Δinhg (i.e., jαj2κ2at ≫ fγcol; γloc;Δinhg) (see
[36] for more details). Figure 3(a) shows the dependence
of such a dissipative suppression on the ratio κ2at=γdeph,
assuming γcol ¼ γloc ¼ Δinh ≡ γdeph. It is seen that for
κ2at ¼ 10γdeph, corresponding to an ensemble coherence
time of γ−1deph ∼ 27 μs, a steady cat state is generated,
implying a significant suppression of spin dephasing. We
note that in Fig. 3(a) the error η is limited by a small N,
especially for κ2at ¼ 10γdeph, and a larger N could
lead to a smaller η until the bosonic approximation is well
satisfied.
Cat-state lifetime.—Let us now consider the cat-state

lifetime τat. According to the above discussions, the effects
of spin dephasing on τat can be excluded. This lifetime is
thus determined by the Purcell decay rate Γ1at ¼ 2jαj2κ1at
such that

τat ¼ Γ−1
1at ¼

�
Δ
gcol

�
2 1

2jαj2κs
: ð5Þ

Note that intracavity photonic cat states, i.e., equal super-
positions of two opposite-phase coherent states, rapidly
decohere into statistical mixtures due to single-photon loss.
The lifetime of such photonic cat states is thus given by
τph ¼ 1=2jαj2κs [73]. Here, for a fair comparison, we have
assumed the same cat size jαj2 as our atomic cat states, and
the same single-photon loss rate κs as given for the signal
cavity. It is seen that τat is longer by a factor of ðΔ=gcolÞ2
compared to τph. To make τat=τph larger, it is essential to
increase Δ=gcol. However, the rate κ2at, which needs to be
≫ γdeph as mentioned already, decreases as Δ=gcol
increases. Thus, the ratio Δ=gcol has an upper bound for
a given γdeph. Experimentally, the coherence time γ−1deph of
NV-spin ensembles has reached ∼1 ms with spin-echo
pulse sequences [74,75], and if dynamical-decoupling
techniques are employed, it can be even close to 1 sec
[76]. In Fig. 3(b), the ratio κ2at=γdeph for different γdeph, as
well as the ratio τat=τph, is plotted versus Δ=gcol. Assuming
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FIG. 3. (a) Effects of collective dephasing, local dephasing, and
inhomogeneous broadening on the preparation error η of the state
jCþi of size jαj2 ¼ 2. We integrated the effective master equation,
Eq. (4), with an additional spin dephasing γcolLðSzÞρens, local
spin dephasing γloc

P
N
j¼1 LðσzjÞρens, and inhomogeneous broad-

ening 1
2

P
N
j¼1 δjσ

z
j. The frequency shifts δj are randomly given

according to a Lorentzian distribution of linewidth Δinh. For
simplicity, we here set N ¼ 10, γcol ¼ γloc ¼ Δinh ≡ γdeph and
κ1at ¼ 0 so that only the effects of these dephasing processes are
shown. Inset: the Liouvillian spectral gap λ of the master
equation, Eq. (4), versus the cat size jαj2 for κ1at ¼ 0 under
the bosonic approximation. (b) Ratio κ2at=γdeph versus the
parameter Δ=gcol for γ−1deph ¼ 10 μs, 100 μs, and 1 ms for κp ¼
5χ and J=2π ¼ 30 MHz. The yellow shaded area represents the
κ2at ≥ 10γdeph regime, where spin dephasing is strongly sup-
pressed by the two-atom decay. The solid green line shows τat=τph
versus Δ=gcol. Other parameters in (a) and (b) are chosen as in
Fig. 2.
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a realistic parameter of γ−1deph ¼ 1 ms, we find from
Fig. 3(b) that in stark contrast to previous work on
intracavity photonic cat states (see Table I in [36]), our
approach can lead to an increase in the cat-state lifetime of
up to 4 orders of magnitude for κ2at ≈ 15γdeph and a very
large cat size of jαj2⩾4. Correspondingly, for a typical
single-photon loss rate of κs=2π ¼ 10 kHz (i.e., a cavity
decay time ∼16 μs) [31], the lifetime of the jαj2 ¼ 4 cat
states resulting from our approach is ∼20 ms.
As the cavity loss rate κs decreases, the lifetime τat

further increases and ultimately reaches its maximum
value, limited by spin relaxation and thermal noise (see
[36] for more details). This maximum lifetime is given by
τmax
at ¼ Γ−1

relax. Here, Γrelax ¼ ½2jαj2ð1þ 2nthÞ þ 2nth�γrelax
[77] is the cat-state decay rate arising from spin relaxation
with a rate γrelax and thermal noise with a thermal average
boson number nth. For realistic parameters of γrelax ¼ 2π ×
4 mHz [56,57] and T ¼ 100 mK, we can predict a maxi-
mum lifetime of τmax

at ∼ 3 sec, which is more than 2 orders
of magnitude longer than the longest lifetime, 17 ms, of the
intracavity photonic cat states reported in Ref. [55].
Conclusions.—We have introduced a method to create

and stabilize large-size, long-lived Schrödinger cat states in
atomic ensembles. This method is based on the use of fully
quantized degenerate parametric amplification to facilitate
the simultaneous decay of two atoms, i.e., the two-atom
decay. The resulting atomic cat states can last an extremely
long time because of strongly suppressed spin dephasing
and extremely weak spin relaxation and thermal noise.
These long-lived cat states are promising for both funda-
mental tests and practical applications of quantum mechan-
ics. Our work can further stimulate more efforts to create
and protect macroscopic cat states or other fragile quantum
states and to use them to improve the performance of
various modern quantum technologies.
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Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve,
Strong Coupling of a Spin Ensemble to a Superconducting
Resonator, Phys. Rev. Lett. 105, 140502 (2010).

[69] Y. Kubo, I. Diniz, A. Dewes, V. Jacques, A. Dréau, J.-F.
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Introduction

Here, we first compare the lifetimes of our atomic cat states and common intracavity photonic cat states.
We next present how to eliminate the second-order effect and as a result to make the desired third-order
effect dominant. Then, the Purcell single-atom decay induced by single-photon loss of the signal cavity
is derived, and quantum Monte-Carlo trajectories of the ensemble-cavity system are shown. Furthermore,
we give the detailed derivation of atomic cat states stabilized by the two-atom decay, and show the strong
suppression of spin dephasing by this nonlinear two-atom decay. We then discuss the source of spin
dephasing due to inhomogeneous broadening in nitrogen-vacancy center ensembles. Finally, we discuss
the effects of spin relaxation and thermal noise on the cat state lifetime, and also show the maximum cat
state lifetime limited by them.

S1. Comparison of the lifetimes of our atomic cat states and intracavity photonic cat states

The cat state lifetime can be defined as the inverse cat state decoherence rate. Sec. S8 shows how to derive the
cat state decoherence rate and then obtain the cat state lifetime. In this section, let us first compare the lifetime of
intracavity atomic cat states resulting from our approach with that of common intracavity photonic cat states, under
some realistic parameters. Our atomic cat states refer to superpositions of two spin coherent states, i.e.,

|C±〉 = A± (|θ, φ〉 ± |θ, φ+ π〉) , (S1)

TABLE I. Some relevant parameters of experimentally implemented intracavity photonic cat states |C±〉ph. Here, |α|2

characterizes the cat size, Tc is the cavity photon lifetime, κs = 1/Tc is the cavity photon loss rate, τexp is the cat state lifetime
measured in experiments, and τtheor = 1/(2 |α|2 κs) is the theoretical prediction of the cat state lifetime. For comparison, we
also list at the end of the table the corresponding theoretical predictions for our atomic cat states |C±〉.

Ref. approach type |α|2 Tc (µs) κs/2π (kHz) τexp (µs) τtheor (µs)

[S1] unitary evolution 3.0 1.3× 105 1.2× 10−3 1.7× 104 2.2× 104

[S2] reservoir engineering 5.8 3.0 53.0 0.2 0.26

[S3] unitary evolution 28 22.1 7.2 — 0.4

[S4] reservoir engineering 2.4 20 8.0 — 4.1

[S5] reservoir engineering 5 92 1.7 8 9.2

[S6] unitary evolution 3.3 160 1.0 38.4 35

[S7] unitary evolution 1.4 0.14 1.1× 103 — 5.3× 10−2

[S8] unitary evolution 11.3 8.1× 103 2.0× 10−2 200 360

[S9] unitary evolution 2 692 0.2 — 173

our results reservoir engineering 4
16 10 — 2× 104

5.3× 103 3.0× 10−2 — 2× 106



2

Here, A± = 1/{2[1 ± exp(−2 |α|2)]}1/2, and the state |θ, φ〉, where φ = π/2 and θ = 2 arctan(|α| /
√
N), is the

spin coherent state that is obtained by rotating the ground state of the ensemble by an angle θ about the axis
(sinφ,− cosφ, 0) of the collective Bloch sphere. For a large ensemble, we can apply the bosonic approximation,
which maps the collective spin of the ensemble to a quantum harmonic oscillator. Under this approximation, the
spin coherent states |θ, φ〉 and |θ, φ+ π〉 become bosonic coherent states |α〉 and | − α〉, respectively, with coherent
amplitudes ±α. The atomic cat states in Eq. (S1) likewise become

|C±〉 = A± (|α〉 ± | − α〉) . (S2)

Furthermore, the intracavity photonic cat states refer to

|C±〉ph = A±
(
|α〉ph ± | − α〉ph

)
, (S3)

where | ± α〉ph are the photonic coherent states with coherent amplitudes ±α. It is seen, from Eqs. (S2) and (S3),

that |α|2 is the average number of excited atoms or photons and, thus, can characterize the cat size.

In Table I, we list some parameters of intracavity photonic cat states |C±〉ph implemented in experiments. For

comparison, we also show the corresponding results of our atomic cat states |C±〉 at the end of the table. With
modest parameters the lifetime of our atomic cat states is predicted to be longer, by up to four orders of magnitude,
compared to those photonic cat states under the same parameter conditions. For a modest single-photon loss rate of
κs/2π = 10 kHz (i.e., a cavity decay time of Tc ∼ 16 µs), the lifetime of our atomic cat states can reach ∼ 20 ms for

a cat size of |α|2 = 4. This lifetime is comparable in length to that (∼ 17 ms) reported in Ref. [S1] in Table I, which,
to our best knowledge, is the longest lifetime of intracavity photonic cat states to date. We stress that in such a
comparison our cat state lifetime is achieved with a modest cavity decay time of Tc ∼ 16 µs. This is in stark contrast
to the cat state lifetime reported in Ref. [S1], which was achieved with an extreme cavity decay time of Tc = 0.13 sec.
This means that our approach can stabilize (for an extremely long time) large-size cat states, even with common
setups.

When decreasing the single-photon loss rate κs, i.e., increasing the cavity decay time Tc, our atomic cat state
lifetime can further increase. For example, a single-photon loss rate κs/2π = 3.0 × 10−2 kHz, corresponding to a
cavity decay time Tc ∼ 5.3 ms, results in a cat state lifetime of ∼ 2 sec, more than two orders of magnitude longer
than the lifetime, i.e., 17 ms, reported in Ref. [S1] in Table I. Ultimately, the maximum value of our cat state lifetime
is determined by extremely weak spin relaxation and thermal noise, reaching ∼ 3 sec.

The essential reason for such an improvement in the cat state lifetime is because, as shown in Fig. S1, single
excitation loss of ensembles (i.e., spin relaxation) is extremely weak compared to that of cavities (i.e., single-photon
loss). At the same time, spin dephasing, though stronger than photon dephasing, is greatly suppressed by the
engineered two-atom decay. This is in close analogy to the mechanism of using two-photon loss to suppress photon
dephasing.

dephasing

thermal noise

single
excitation lossintracavity

photonic cat
intracavity
atomic cat

lifetime ~ 10 μs  ~ 0.1 sec

two
excitation loss

FIG. S1. Comparison of the effects of noise on intracavity photonic cat stats and our atomic cat states. Solid arrows represent
the strong effects, and dashed arrows represent the extremely weak or strongly suppressible effects. While the lifetime of
photonic cat states is ∼ 10 µs, our atomic cat states can have a ∼ 0.1 sec lifetime.
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S2. Elimination of the second-order effect

The time-averaged Hamiltonian Havg in Eq. (3) in the main article describes a third-order process, and there exists
a stronger second-order process, which is described by the Hamiltonian

H(2) = −g
2

∆

(
2a†sasSz + S+S−

)
− J2

∆′
(
2a†pap − a†sa†sasas + 4a†papa

†
sas
)
, (S4)

where ∆′ = 2ωs − ωp. In order to make the third-order Havg dominant, we need to eliminate the second-order H(2).

Since the signal cavity is initialized in the vacuum state, the Hamiltonian H(2) is thus reduced to

H(2) = −g
2

∆
S+S− −

2J2

∆′
a†pap. (S5)

We further focus our attention on the low-excitation regime, where the average number of excited atoms is much
smaller than the total number of atoms. In this regime, the operator Sz can be expressed as Sz = −N/2 + δSz, where
δSz is a small fluctuation. As a result, we find

S+S− ≈ NδSz, (S6)

according to the identity N (N/2 + 1) /2 = S2
z − Sz + S+S−, and then obtain

H(2) = −g
2
col

∆
δSz −

2J2

∆′
a†pap. (S7)

It is seen that the second-order process causes a Lamb shift (i.e., the first term), and a dispersive resonance shift for
the pump cavity (i.e., the second term). These additional shifts can be compensated by properly detuning the pump
cavity resonance ωp from twice the atomic resonance ωq. Hence, the second-order process can be strongly suppressed,
such that the third-order process becomes dominant.

S3. Purcell single-atom decay induced by single-photon loss of the signal cavity

Since the signal cavity is largely detuned from both the ensemble and the pump cavity, the average number of
photons inside the signal cavity is thus very low. In this case, we can only consider the vacuum state |0〉 and the
single-photon state |1〉 of the signal cavity. We work within the limit where δs ≈ ∆ � {δp, δq, gcol, J}, and the
Hamiltonian in Eq. (1) in the main article can thus be rewritten as H = He +Hg + V + V †. Here,

He = δs|1〉〈1|, (S8)

Hg = δpa
†
pap + δqSz + Ω

(
ap + a†p

)
, (S9)

represents the interactions inside the excited- and ground-state subspaces, and

V = gS−|1〉〈0| (S10)

describes the perturbative interaction between the excited- and ground-state subspaces. Then, according to the
formalism of Ref. [S10], we can define a non-Hermitian Hamiltonian He

NH = He − iκs|1〉〈1|/2, and obtain an effective
Lindblad dissipator for the ensemble

κsL
[
|0〉s〈1| (H

e
NH)

−1
V
]
ρens =

κ1at
N
L (S−) ρens, (S11)

where

κ1at =
κsg

2
col

δ2s + κ2s/4
≈
(gcol

∆

)2
κs. (S12)

This means that the single-photon loss process of the signal cavity gives rise to the single-atom decay of the ensemble.
Importantly, the resulting decay rate κ1at is smaller than the cavity decay rate κs by a factor of (gcol/∆)

2
. Thus, our

atomic cat states have an extremely long lifetime.
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(a)

(b) (d)

(c)

state |00>|1>: 
0 photons in both cavities,
1 atom excited

initial state |00>|3>: 0 photon in both cavities, 3 atoms excited

state |10>|1>: 1 photon in the pump cavity, 1 atom excited

initial state |00>|4>: 0 photon in both cavities, 4 atoms excited
state |10>|2>: 1 photon in the pump cavity, 2 atoms excited

state |20>|0>: 2 photons in the pump cavities, 0 atom excited

state |00>|2>: 0 photon in both cavities, 2 atoms excited
state |10>|0>: 1 photon in the pump cavity, 0 atom excited

quantum jump: 
one photon leaks 
out  of the pump cavity

�rst jump: 
one photon 
leaks out of 
the pump cavity

second jump: 
another photon 
leaks out of 
the pump cavity

state |00>|0>: 0 photon in both cavities, 0 atom excited

FIG. S2. Quantum Monte-Carlo trajectory pictured through the probabilities of the system being in the states |mp0〉|n〉 for
the initial states (a, b) |00〉|3〉 and (c, d) |00〉|4〉. A single quantum jump ap gives rise to the two-atom decay in the ensemble.
In all plots, we used the full Hamiltonian H in Eq. (1) in the main article, and set N = 100, J = 3gcol, δp = J2/20gcol, and
κp = 0.2χ. In order to show more clearly the quantum jump responsible for the two-atom decay, we further set κs = Ω = 0.

S4. Quantum Monte-Carlo trajectory for the initial states |00〉|3〉 and |00〉|4〉

The dynamics described by the time-averaged Havg in Eq. (3) of the main article implies that pairs of atoms can
jointly convert their excitations into pump single photons, and then the subsequent single-photon loss process of the
pump cavity results in the simultaneous decay of two atoms, i.e., the two-atom decay.

In Fig. S2, we plot single quantum trajectories, utilizing the quantum Monte Carlo method, for the initial states
|00〉|3〉 and |00〉|4〉. Here, the first ket |mpms〉 (mp,ms = 0, 1, 2, . . .) in the pair refers to the cavity state with
mp pump photons and ms signal photons, and the second |n〉 (n = 0, 1, 2, . . .) refers to the collective spin state
|S = N/2,mz = −N/2 + n〉, corresponding to n excited atoms in the ensemble.

For the former case, where initially the ensemble has three excited atoms, we find from Figs. S2(a, b) that two
excited atoms, as a pair, decay via a single-photon loss process of the DPA pump (corresponding to a quantum jump),
and one excited atom is kept in the ensemble because alone it cannot emit a single photon. If there are initially four
excited atoms as shown in Figs. S2(c, d), all excited atoms, as two pairs, can decay sequentially via two single-photon
loss processes of the DPA pump (corresponding to two quantum jumps).

S5. Stabilized atomic cat states by the two-atom decay

In this section we show a detailed derivation of atomic cat states stabilized by the engineered two-atom decay. We
begin with the effective master equation given in Eq. (4) of the main text

ρ̇ens = i [ρens, Hens] +
κ1at
N
L (S−) ρens +

κ2at
N2
L
(
S2
−
)
ρens, (S13)
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Here,

Hens =
i

N
χ2at

(
S2
− − S2

+

)
, (S14)

χ2at =
2Ωχ

κp
, (S15)

κ1at =
(gcol

∆

)2
κs, (S16)

κ2at =
4χ2

κp
. (S17)

To proceed, we assume that κ1at = 0, such that the single-atom decay induced by the signal cavity is subtracted.
Then, we obtain in the steady state(

S2
− −Nα2

)
|D〉〈D|S2

+ − S2
+

(
S2
− −Nα2

)
|D〉〈D|+ H.c. = 0, (S18)

where |D〉 is the dark state of the ensemble, and

α = i
√

2χ2at/κ2at = i
√

Ω/χ. (S19)

This indicates that the dark state |D〉 satisfies (
S2
− −Nα2

)
|D〉 = 0. (S20)

We now express |D〉, in terms of the eigenstates |S = N/2,mz = −N/2 + n〉 of the collective spin operator Sz, as

|D〉 =
∑
n

cn|n〉, (S21)

where, for simplicity, we have defined |n〉 ≡ |S = N/2,mz = −N/2 + n〉. Here, n refers to the number of excited
atoms in the ensemble. The condition in Eq. (S20) gives two recursion relations as follows

c2n+k =
εn√

(2n+ k)!
ck, (S22)

where k = 0, 1. Here, we have worked within the low-excitation regime, in which 〈Sz〉 ≈ −N/2, such that the main
contributions to the dark state |D〉 are from these components with n� N .

The recursion relation in Eq. (S22) reveals that, when the ensemble is initially in a collective spin state |n〉 with an
even n, e.g., in the ground state |0〉 (i.e., a spin coherent state with all atoms in the ground state), the dark state |D〉
can be expressed as,

|D〉even =
1√

cosh |α|2
∑
n

α2n√
(2n)!

|2n〉. (S23)

Similarly, when the ensemble is initially in a collective spin state |n〉 with an odd n, e.g., in the single-excitation state
|1〉 (i.e., a state with only one atom is excited), the dark state |D〉 becomes

|D〉odd =
1√

sinh |α|2
∑
n

α2n+1√
(2n+ 1)!

|2n+ 1〉. (S24)

On the other hand, the spin coherent state |θ, φ〉 is defined as

|θ, φ〉 = R (θ, φ) |0〉. (S25)

Here,

R (θ, φ) = exp (τS+) exp
[
ln
(
1 + |τ |2

)
Sz
]

exp (−τ∗S−) , (S26)
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is a rotation operator with τ = exp (iφ) tan (θ/2). In the low-excitation limit, Sn+|0〉 ≈
√
n!Nn|n〉, and then

|θ, φ〉 ≈ exp
(
−N |τ |2 /2

)∑
n

(√
Nτ
)n

√
n!

|n〉. (S27)

By setting
√
Nτ = α, we further have

|D〉even,odd = A± (|θ, φ〉 ± |θ, φ+ π〉) = |C±〉, (S28)

where A± = 1/{2[1± exp(−2 |α|2)]}1/2. This is what we have already given in Eq. (S1).
We now consider the case when the atomic ensemble is initialized in a spin coherent state |θ0, φ0〉. In this case, the

atomic ensemble evolves into a subspace spanned by the cat states {|C+〉, |C−〉} and, thus, its steady state is

ρssens = c++|C+〉〈C+|+ c−−|C−〉〈C−|+ c+−|C+〉〈C−|+ c∗+−|C−〉〈C+|. (S29)

To obtain the amplitudes c++, c−−, and c+−, we follow the method in Refs. [S11, S12], and after straightforward
calculations, find that

c++ =
1

2

[
1 + exp

(
−2 |α0|2

)]
, (S30)

c−− =1− c++ =
1

2

[
1− exp

(
−2 |α0|2

)]
, (S31)

c+− =−
α∗0 |α| exp

(
− |α0|2

)
√

2 sinh
(

2 |α|2
) ∫ π

0

dϕI0
(∣∣α2 − α2

0 exp (i2ϕ)
∣∣) exp (−iϕ) , (S32)

where α0 =
√
N exp (iφ0) tan (θ0/2), and I0 (•) is the modified Bessel function of the first kind.

The above results show that the ensemble states are steered into a 2D quantum manifold spanned by the cat states
|C+〉 and |C−〉. In typical atomic ensembles, spin relaxation is extremely weak, such that the dominant noise source
is spin dephasing. However, the engineered two-atom decay can protect the cat states of the quantum manifold
against spin dephasing. As a result, these cat states have a very long lifetime even with modest parameters, and thus,
can be used for fundamental studies of quantum physics. Moreover, this atomic-cat-state manifold stabilized by the
two-atom decay could also be used to encode logical qubits (i.e., cat qubits) for fault-tolerant quantum computation,
as an alternative to the photonic-cat-state manifold stabilized by two-photon loss [S12].

S6. Strongly suppressed spin dephasing

In this section, we discuss the strong suppression of spin dephasing of atomic ensembles by the engineered two-
atom decay. In general, the ensemble dephasing noise can be classified into three different types, i.e., collective
spin dephasing, local spin dephasing, and inhomogeneous broadening. Below we show that as long as the rate γ of
convergence of cat states (γ > |α|2κ2at) is much stronger than the collective dephasing rate γcol, the local dephasing
rate γloc, and the inhomogeneous linewidth ∆inh, the engineered two-atom decay is capable of suppressing all of these
dephasing processes. Here, the rate γ describes how rapidly the steady cat states can be reached. As a result, steady
cat states can be achieved with high fidelity.

To proceed, we note that our atomic cat states are stored in the superradiant subspace, rather than in the subradiant
subspace. Here, the superradiant (subradiant) subspace refers to the manifold of total spin S = N/2 (S < N/2), as
shown in Fig. S3.

A. Collective spin dephasing

We first consider collective spin dephasing, which can be described with the Lindblad dissipator,

γcolL(Sz)ρens = γcol

(
SzρensSz −

1

2
SzSzρens −

1

2
ρensSzSz

)
. (S33)
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FIG. S3. Dicke space for an ensemble consisting of N identical two-level atoms or spins. The full space can be separated into the
superradiant subspace of total spin S = N/2 and the subradiant subspace of total spin S < N/2. The blue solid double-headed
arrow represents the two-atom excitation (χ2at), and the dashed arrows represent the dissipative processes, including single-
atom decay (κ1at), two-atom decay (κ2at), collective dephasing (γcol), local dephasing (γloc), and inhomogeneous broadening
(∆inh). The two-atom decay and excitation only act inside the superradiant subspace, and thus the resulting cat states are
stored inside this subspace. While collective dephasing does not couple the superradiant subspace to the subradiant subspace,
local dephasing and inhomogeneous broadening couple these subspaces.

It arises when the atoms or spins of the ensemble are simultaneously coupled to a common bath. For example, the
coupling to the collective phonon modes of the diamond can lead to collective dephasing for NV spin ensembles [S13].
Such a dephasing process does not couple the superradiant to subradiant subspace as shown in Fig. S3, and as a
result, the excitation-number parity of the superradiant subspace is conserved. Thus, collective spin dephasing can
be suppressed by the two-atom decay, as long as the condition

|α|2κ2at � γcol (S34)

is satisfied. This dissipative suppression can be better understood from the quantum-jump approach. The jump
operator Sz, when acting, e.g., on the state |C+〉, excites a state

|ψ〉 = A+ [R (θ, φ)−R (θ, φ+ π)] |1〉, (S35)

according to

Sz|C+〉 =

(
−N

2
+ |α|2

)
|C+〉+ α|ψ〉, (S36)

where A+ = 1/{2[1 + exp(−2 |α|2)]}1/2, and R (θ, φ) is defined in Eq. (S26). It is seen that the state |ψ〉 still has
even parity, and thus can be autonomously driven back to the target state |C+〉 by the two-atom decay. As shown in
Fig. S4, a steady cat state is achieved in the presence of collective spin dephasing.
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FIG. S4. Effects of collective spin dephasing on the preparation error η of the state |C+〉 of size |α|2 = 2. We integrated

the effective master equation (4) in the main article, with an additional collective spin dephasing γcol
∑N

j=1 L(σz
j )ρens. For

simplicity, we set κ1at = 0, so that only the effects of collective spin dephasing are shown. Other parameters are: N = 10,
J = 3gcol, δp = J2/(20gcol), κp = 5χ, and κs = 0.3κp.

B. Local spin dephasing

We now consider local spin dephasing, described by the Lindblad dissipator

γloc

N∑
j=1

L
(
σzj
)
ρens = γloc

N∑
j=1

(σzj ρensσ
z
j − ρens). (S37)

The quantum jump, σzj , when acting on the superradiant state |n〉 ≡ |S = N/2,mz = −N/2 + n〉, results in a

superposition of the state |n〉 with a subradiant state |n〉⊥j . This indicates a dissipative coupling of the superradiant
to subradiant subspace, as shown in Fig. S3, yielding

σzj |n〉 =

(
1− 2n

N

)
|n〉 − 2

√
n

N
|n〉⊥j . (S38)

Here, the subradiant state |n〉⊥j is orthogonal to the superradiant state |n〉 and has the same magnetic quantum

number mz as |n〉.
As an example, we consider the action of the quantum jump σzj on the even cat state |C+〉. Note that similar results

hold for the odd cat state |C−〉. According to Eq. (S38), we obtain

σzj |C+〉 =
∑
n

c2nσ
z
j |2n〉 =

∑
n

c2n

(
1− 4n

N

)
|2n〉 − 2

∑
n

c2n

√
2n

N
|2n〉⊥j . (S39)

It is seen that the quantum jump σzj distorts the cat state |C+〉, but conserves the excitation-number parity of the
superradiant subspace, although it carries some information about the cat state |C+〉 away from the superradiant to
subradiant subspace. Thus as long as

|α|2κ2at � γloc, (S40)

the two-atom decay and excitation, which act only inside the superradiant subspace (see Fig. S3), can autonomously
steer the dephasing-distorted cat state [i.e., the superradiant component

∑
n c2n (1− 4n/N) |2n〉] back to the target

state |C+〉. This indicates that, as confirmed in Fig. S5, local spin dephasing can be strongly suppressed and,
consequently, that a steady cat state can be achieved in the superradiant subspace.

C. Inhomogeneous broadening

Let us now consider inhomogeneous broadening of the ensemble. Its detrimental effects can, in principle, be
completely canceled by spin-echo pulses [S14]. For ensembles of ultracold atoms [S15], these detrimental effects can
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FIG. S5. Effects of local spin dephasing on the preparation error η of the state |C+〉 of size |α|2 = 2. We integrated the effective

master equation (4) in the main article, with an additional local spin dephasing γloc
∑N

j=1 L(σz
j )ρens. For simplicity, we set

κ1at = 0, so that only the effects of local spin dephasing are shown. Other parameters are set the same as in Fig. S4.

also be minimized through spin self-rephasing collisions, even without the need for spin-echo pulse sequences [S16, S17].
The Hamiltonian modeling inhomogeneous broadening is given by

Hinh =
1

2

N∑
j=1

δjσ
z
j , (S41)

where δj = ωj −ωq. Here, ωj is the transition frequency of the jth qubit spin, and ωq can be viewed as the average of
transition frequencies of all the qubit spins. Under the time evolution, each constituent of the symmetric superradiant
state |n〉 acquires a random phase originating from inhomogeneous broadening. As a result, the superradiant state
|n〉 is coupled to a subradiant state as shown in Fig. S3, thus destroying the cat states.

Nevertheless, according to the action of the operator σzj on the cat state |C+〉, as given in Eq. (S39), inhomogeneous
broadening conserves the excitation-number parity of the superradiant subspace. Thus, the two-atom decay can
strongly suppress inhomogeneous broadening when

|α|2κ2at � ∆inh. (S42)
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FIG. S6. Effects of inhomogeneous broadening on the preparation error η of the state |C+〉 of size |α|2 = 2. We integrated

the effective master equation (4) in the main article, with an additional inhomogeneous broadening Hinh = 1
2

∑N
j=1 δjσ

z
j . For

simplicity, we set κ1at = 0, so that only the effects of inhomogeneous broadening are shown. The frequency shifts δj are
randomly given according to a Lorentzian distribution of linewidth ∆inh. Other parameters are set the same as in Fig. S4.
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To confirm the suppression of inhomogeneous broadening, we perform numerical simulations, as shown in Fig. S6.
Inhomogeneous broadening is assumed to be, as an example, the Lorentzian distribution with a width ∆inh, and similar
results hold for other spectra. It is seen from Fig. S6 that a cat state is stabilized in the presence of inhomogeneous
broadening, as expected.

D. Total effects of collective dephasing, local dephasing, and inhomogeneous broadening

In Fig. S7, we show the total effects of collective dephasing, local dephasing, and inhomogeneous broadening on the
superposition, ρssens, of the even and odd cat states, as a supplement to Fig. 3(a) in the main article which shows the
case of the state |C+〉. As expected, the steady 2D cat-state manifold can be obtained, even when these three sources
of dephasing noise are present simultaneously.

Note that in Fig. S7, the preparation error η, especially for the κ2at = 10γdeph case, is limited by the small number N
which is chosen for the convenience of numerical simulations. Here, we have assumed that γdeph ≡ γcol = γloc = ∆inh.
A larger N leads to a smaller η, until the bosonic approximation is valid well, i.e., until the collective behavior of the
ensemble can be well approximated by a harmonic oscillator. A similar increase in η can also be observed in Figs. S4,
S5, and S6.
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FIG. S7. Total effects of collective dephasing, local dephasing, and inhomogeneous broadening on the preparation error η of the
state ρssens of size |α|2 = 2. We integrated the effective master equation (4) in the main article, with an additional spin dephasing

γcolL(Sz)ρens, local spin dephasing γloc
∑N

j=1 L(σz
j )ρens, and inhomogeneous broadening 1

2

∑N
j=1 δjσ

z
j . The frequency shifts δj

are randomly given according to a Lorentzian distribution of linewidth ∆inh. For simplicity, we set γcol = γloc = ∆inh ≡ γdeph,
and κ1at = 0, so that only the effects of these dephasing processes are shown. Other parameters are set the same as in Fig. S4.

S7. Inhomogeneous broadening in nitrogen-vacancy center ensembles

In Sec. S6, we have discussed three types of dephasing noise for our model. Different types of atomic or spin
ensembles have different dephasing mechanisms. Below, we take ensembles of nitrogen-vacancy (NV) center electron
spins in diamond, as an example, to discuss the source of dephasing. In these systems, the source of dephasing is
inhomogeneous broadening of the NV transition.

The electronic ground state of NV centers is a spin triplet, which has ms = 0 and ±1 sublevels. We use |0〉 and
| ± 1〉 to label these three sublevels. The zero-field splitting between the states |0〉 and | ± 1〉 is ∼ 2.87 GHz. In the
presence of a static field, the degenerate states | ± 1〉 are split with a Zeeman splitting ∆zm. In order to encode a
two-level atom or qubit here, we assume that the state |0〉 is used as the ground state and the state |+ 1〉 as the
excited state. Inhomogeneous broadening of the spin transition can be described by the Hamiltonian in Eq. (S41),
which for convenience is recalled here

Hinh =
1

2

N∑
j=1

δjσ
z
j , (S43)
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where σzj = |+ 1〉j〈+1| − |0〉j〈0|, and δj = ωj − ωq. Here, ωj is the transition frequency of the jth qubit spin, and ωq
can be viewed as the average of transition frequencies of all the qubit spins.

In general, inhomogeneous broadening of NV ensembles originates from the interactions of the NV centers with (A)
the local strain field, (B) the 13C and 14N nuclear spins, and (C) the P1 centers. Thus, the frequency shift δj can be
separated into three parts, i.e.,

δj = δstrj + δnucj + δP1
j , (S44)

which includes contributions from the strain field (δstrj ), the 13C and 14N nuclear spins (δnucj ), and the P1 centers

(δP1
j ).

A. Local strain

The local strain field breaks the C3v symmetry of the NV center, and as a result shifts the frequency of the states
| ± 1〉. The NV electronic spin is coupled to the local strain field via the Hamiltonian [S18]

Hstrain = d‖EzstrS2z + d⊥Exstr
(
S2y − S2x

)
+ d⊥Eystr (SxSy + SySx)

= Πz(|+ 1〉〈+1|+ | − 1〉〈−1|) + (Π⊥|+ 1〉〈−1|+ H.c.) , (S45)

where Πz = d‖Ezstr, Π⊥ = −d⊥ (Exstr + iEystr), and ~S = (Sx,Sy,Sz) is the NV spin operator. Here, ~Estr = (Exstr, E
y
str, Ezstr)

represents the strain field, and d‖ ∼ 2π×0.35 Hz cm/V, d⊥ ∼ 2π×17 Hz cm/V are the axial and non-axial components
of the ground-state electric dipole moment. The first term in Eq. (S45) corresponds to the frequency shifts of the
states | ± 1〉, and the second term describes their coupling. Due to the Zeeman splitting ∆zm, the coupling between
the states | ± 1〉 becomes largely detuned. As a result, the transition frequency of the qubit spin (i.e., the transition
|0〉 → |+ 1〉) is shifted by

δstr = Πz +
|Π⊥|2

∆zm
. (S46)

For a realistic parameter |Π⊥| = 2π×5 MHz [S19], and a common Zeeman splitting ∆zm = 2π×100 MHz, an estimate
of δstr is therefore given by δstr ∼ 2π × 0.3 MHz.

B. Nuclear spins

Natural diamond samples consist of ∼ 98.9% spinless 12C atoms and ∼ 1.1% 13C isotopes of nuclear spin IC = 1/2.
These 13C atoms are randomly distributed in the diamond lattice. Moreover, the 14N atoms constituting the NV
centers each have a nuclear spin IN = 1. The NV centers are coupled to these 14N and 13C nuclear spins through
hyperfine interactions, given by

Hnuc = ~S · AN · ~IN + ~S ·
∑
j

AC · ~IjC, (S47)

where ~IN and ~IjC are the spin operators for the 14N atom and the jth 13C atom, respectively, while AN and AjC are
the corresponding hyperfine interaction tensors. Working under the secular approximation, i.e., neglecting the Sx and
Sy terms, the Hamiltonian Hnuc becomes approximated by Hnuc ≈ δnucSz [S20, S21], with

δnuc = ANmN +
∑
j

AjCm
j
C, (S48)

where mN = 0, ±1 and mj
C = ±1/2 are magnetic quantum numbers.

The coupling to the 14N nuclear spin splits the state |+ 1〉 (or | − 1〉) into three hyperfine sublevels, equally spaced
by AN ∼ 2π × 2.16 MHz. This results in a linewidth broadening ∼ 2π × 4.3 MHz.

The 13C hyperfine splitting depends on the positions of the 13C nuclear spins relative to the NV center. According
to the studies in Ref. [S22], the coherence time induced by the 13C hyperfine coupling is ∼ 2 µs, implying a
linewidth broadening of ∼ 2π × 80 kHz. If 12C-enriched methane is used as a carbon source to prepare the diamond
samples [S23], then the concentration of 13C nuclear spins (and as a result the corresponding linewidth broadening)
can be significantly reduced.
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C. P1 centers

In diamond samples, single substitutional nitrogen atoms (so-called P1 centers), which were not converted into
the NV centers, are the main paramagnetic impurities and each of them has an unpaired electron. These inevitable
impurities form an electron spin bath, and the NV center is coupled to it through the dipole-dipole interaction, which
is described by the Hamiltonian [S24]:

HP1 =
∑
j

µ0g
2
sµ

2
B

4π |~rj |3
Sz [~nz − 3 (~nz · ~nj)~nj ] · ~Sj , (S49)

where ~Sj is the bath spin located at position ~rj , and ~nj = ~rj/|~rj |. In most experiments implementing the strong
coupling of a high-density NV ensemble to a superconducting resonator [S19, S25–S30], the residual P1 centers are the
main source of decoherence of the NV ensemble, and a typical linewidth broadening is δP1 ∼ 2π×7 MHz [S19, S26, S29].

A solution to reduce the inhomogeneous linewidth induced by the P1 centers is to improve the efficient conversion
of the P1 centers to the NV centers. The inhomogeneous linewidth would therefore be dominated by the hyperfine
interaction with the 14N nuclear spin [i.e., the first term on the right-hand side of Eq. (S48)]. That is, the
inhomogeneous linewidth would be limited to ∼ 2π × 4.3 MHz, as experimentally reported in Refs. [S23, S31].

D. Short summary

The detrimental effects of inhomogeneous broadening mentioned above are reversible and can in principle be
completely eliminated by spin-echo techniques or dynamical decoupling pulse sequences. The residual inhomogeneous
broadening can be further suppressed by the engineered two-atom decay in our proposal (see Sec. S6). Note that
although we discuss the ensembles of NV spins, our model is generic and can be implemented with other types of
ensembles, e.g., ensembles of trapped ultracold atoms. Inhomogeneous broadening of ultracold-atom ensembles, which
arises mainly due to the trapping potential and the atomic interactions [S15], can be strongly reduced through spin
self-rephasing collisions without the use of spin-echo or dynamical decoupling pulses [S16, S17].

S8. Spin relaxation, thermal noise, and the maximum cat state lifetime

In the main article, we discussed the effects of spin dephasing, and also showed that it can be strongly suppressed
by the engineered two-atom decay. In this section, let us consider the effects of spin relaxation and thermal noise,
and also the maximum cat state lifetime limited by them. Here, we proceed with the bosonic approximation. Such an
approximation maps the spin coherent states |θ, φ〉 and |θ, φ+ π〉 to the bosonic coherent states | ± α〉, respectively.
Correspondingly, the cat states |C±〉 = A± (|θ, φ〉 ± |θ, φ+ π〉) become |C±〉 = A± (|α〉 ± | − α〉), as given in Eq. (S2).

Spin relaxation and thermal noise can be described by the Lindblad dissipators, γrelax(nth + 1)L (b) ρ and

γrelaxnthL
(
b†
)
ρ. Here, γrelax is the spin relaxation rate, and nth = [exp (~ωq/kBT )− 1]

−1
is the thermal average

boson number at temperature T . The Purcell decay rate of the cat state coherence, which is induced by single-photon
loss of the signal cavity, is given by

Γ1at = 2 |α|2 κ1at, (S50)

with κ1at = (gcol/∆)
2
κs as given in Eq. (S12). At the same time, for a thermal background at T 6= 0, an additional

decay rate of the cat state coherence, which is induced by spin relaxation and thermal noise, is given by [S32]

Γrelax =
[
2 |α|2 (1 + 2nth) + 2nth

]
γrelax. (S51)

By assuming realistic parameters ωq = 2π × 3 GHz, T = 100 mK, |α|2 = 4, and γrelax = 2π × 4 mHz [S25, S28], we
have Γrelax ≈ 2π×54 mHz, much smaller the decay rate, Γ1at ≈ 2π×8.0 Hz, which is obtained with κs = 2π×10 kHz
and ∆/gcol = 100. This means that the effects of both spin relaxation and thermal noise on the cat states |C±〉 can
be safely neglected. In this case, the lifetime of these cat states is determined only by the Purcell single-atom decay
rate κ1at, and is given by

τat = Γ−11at =

(
∆

gcol

)2
1

2 |α|2 κs
. (S52)
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On the other hand, the intracavity photonic cat states |C±〉ph in Eq. (S3) mainly suffer from single-photon loss, e.g,

with a rate κs, and thus their lifetime is given by [S33],

τph =
1

2 |α|2 κs
. (S53)

It is found from Eqs. (S52) and (S53) that τat is longer than τph by a factor of (∆/gcol)
2
, i.e.,

τat
τph

=

(
∆

gcol

)2

. (S54)

According to the analysis in the main article, the factor (∆/gcol)
2

can be tuned to be ∼ 104 under modest parameters.
This indicates that the lifetime of our atomic cat states is longer than that of intracavity photonic cat states by up to
four orders of magnitude for cat sizes of |α|2 ≥ 4.

In fact, the decoherence rate Γ1at can be further decreased with the smaller single-photon loss rate κs (i.e., the
longer Tc). This results in a longer cat state lifetime. When Γ1at is comparable to or even smaller than Γrelax, the
lifetime τat is given by

τat = (Γ1at + Γrelax)
−1
. (S55)

For a single-photon loss rate of κs/2π = 30 Hz, we have Γ1at = 2π×24 mH, which is smaller than Γrelax ∼ 2π×54 mHz.
In this case, Eq. (S55) gives a cat state lifetime of τat ∼ 2 sec. Ultimately, when decreasing the rate κs, the lifetime
τat increases to its maximum value,

τmax
at = Γ−1relax. (S56)

Using the parameters given above, we can predict a maximum lifetime of τmax
at ∼ 3 sec.
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