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We propose a method for the fast generation of nonclassical ground states of the Rabi model in
the ultrastrong and deep-strong coupling regimes via the shortcuts-to-adiabatic (STA) dynamics. The
time-dependent quantum Rabi model is simulated by applying parametric amplification to the
Jaynes-Cummings model. Using experimentally feasible parametric drive, this STA protocol can generate
large-size Schrödinger cat states, through a process that is ∼10 times faster compared to adiabatic protocols.
Such fast evolution increases the robustness of our protocol against dissipation. Our method enables one to
freely design the parametric drive, so that the target state can be generated in the lab frame. A largely
detuned light-matter coupling makes the protocol robust against imperfections of the operation times in
experiments.
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Introduction.—The quantum Rabi model [1–3] is the
lowest-dimensional Hamiltonian describing the light-
matter interaction beyond the rotating-wave approximation
(RWA),

HR ¼ ωca†aþ ωq

2
σz þ σxðga† þ g�aÞ; ðℏ ¼ 1Þ: ð1Þ

Here, ωc ðωqÞ is the frequency of the cavity (qubit), g is the
light-matter coupling strength, a† (a) is the creation (anni-
hilation) operator of the cavity field, and σx and σz are Pauli
operators of the qubit. This model was first introduced
90 years ago and it has been used to describe the dynamics of
a wide variety of physical setups [4], ranging from quantum
optics to condensed matter physics. The popular models of
Dicke [5], Hopfield [6], and Tavis-Cummings [7] are just
multiqubit generalizations of the Rabi model, while the
Jaynes-Cummings (JC) model [8] is its simplified version
[9]. Generally, the Rabi model can be divided into different
coupling regimes [9–11], according to the normalized
coupling strength η ¼ g=ωc. When focusing on the ultra-
strong (jηj ≃ 0.1 ∼ 1) and deep-strong (jηj≳ 1) regimes, the
counterrotating terms in HR cannot be neglected. This leads
to areas of unexplored physics and gives rise to many
fascinating quantum phenomena, such as the asymmetry of
vacuum Rabi splitting [12], nonclassical photon statistics
[13,14], and superradiance transition [15–18].
For instance, the ground state of the Rabi model is a

squeezed-vacuum state and involves virtual cavity photons
[14,19,20]. Specifically, when ωq ≪ g, the ground state of
the Rabi model is

jGi ¼ 1

2
ðN þjgijcatþi −N −jeijcat−iÞ; ð2Þ

which is an entangled Schrödinger cat state. Here,
N � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½1� exp ð−2jηj2Þ�

p
determine the probability

amplitudes of the even (þ) and odd (−) cat states
jcat�i ¼ ðjηi � j − ηiÞ=N �, respectively. The states j �
ηi are coherent states. The state jgi ðjeiÞ is the ground
(excited) state of the qubit. By imposing the system to be in
this ground state, one can generate the maximally entangled
cat state (MECS) when N þ ≃N −. The generation of the
MECSs is significant not only for the demonstration of the
fundamentals of quantum physics, but also has wide
applications in modern quantum technologies, such as
quantum information processing [21–25] and quantum
metrology [26]. For instance, giant cat qubits are robust
against photon dephasing, so that they can be very
promising for fault-tolerant quantum computation [22–24].
To generate the MECS, the system needs to enter the

deep-strong coupling (DSC) regime of jηj≳ ffiffiffi
2

p
, which is,

however, still difficult to achieve in experiments [27–36].
Researchers are encouraged to use simulation protocols
[37–48] based on the JC model [49–51] to study exotic
phenomena in the DSC regime. For instance, using linear
[37] or nonlinear drives [41,42], one can modify the side-
band of a cavity-qubit coupled system, so as to enhance the
effective light-matter coupling to enter the DSC regime. This
opens the possibility to adiabatically control the effective
coupling strength based on, e.g., a time-dependent para-
metric drive, to prepare the target state jGi in the squeezed-
light frame [42]. However, the adiabatic control requires a
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very small changing rate in the control parameters, usually
leading to a long-time evolution. Such a long-time evolution
inevitably increases the effect of dissipation, resulting in a
low-fidelity target state. In addition, how to turn off the
parametric drive without affecting the prepared entangled
state is still an open problem.
In this Letter, we propose to use shortcuts-to-adiabatic

(STA) methods [52–63], e.g., counterdiabatic (CD) driving,
to rapidly generate the target state jGi. The STA methods
are a series of protocols mimicking adiabatic dynamics
beyond the adiabatic limit and have been widely applied for
quantum state engineering [64–79]. Specifically, the CD
driving [55,56] enables controlling a quantum system, such
that the system can accurately evolve along an adiabatic
path (e.g., an instantaneous eigenstate of the reference
Hamiltonian) beyond the adiabatic limit, where nonadia-
batic excitations can be precisely compensated by, e.g.,
adding an auxiliary driving term to a reference Hamiltonian
[80]. Using the STA method allows us to significantly
shorten the evolution time as compared to the adiabatic
protocol. Thus, we can suppress the effect of dissipation
and significantly improve the fidelity of a given state. The
parametric drive can be smoothly turned off in our STA
protocol, because the amplitudes of the parametric drive are
continuously turnable. Additionally, the discussed model is
generic, so our proposal can be realized in many physical
systems, in particular, circuit quantum electrodynamics
(QED) systems [41,42,78] or ion traps [45,47].
Adiabatic limit.—Assuming ωq ≪ g and HR ≡HRðtÞ

[with a controllable parameter η≡ ηðtÞ] to be time depen-
dent, the Rabi Hamiltonian in Eq. (1) can be diagonalized
by the unitary operator [9,10]

UðtÞ ¼ jþxihþxjD½−ηðtÞ� þ j−xih−xjD½ηðtÞ�; ð3Þ

where j�xi are the eigenstates of σx and D½ηðtÞ� ¼
exp½ηðtÞa† − η�ðtÞa� is the displacement operator. To avoid
the nonadiabatic transitions between the instantaneous
eigenstates fjEmðtÞig [eigenvalues ξmðtÞ] of HRðtÞ,
the system needs to satisfy the adiabatic condition
jhEmðtÞj _En≠mðtÞij ≪ jξmðtÞ − ξnðtÞj.
CD-driving Hamiltonian.—According to Eq. (3) and

Berry’s transitionless algorithm [56], the CD-driving
Hamiltonian for the reference Hamiltonian HRðtÞ is

HCDðtÞ ¼ i _UðtÞU†ðtÞ ¼ iσx½_η�ðtÞa − _ηðtÞa†�: ð4Þ

The desired STA process can be realized by adding the
CD-driving Hamiltonian HCDðtÞ into the reference
Hamiltonian HRðtÞ to construct a feasible total
Hamiltonian; i.e., HtotðtÞ ¼ HRðtÞ þHCDðtÞ [57]. In this
case, we can predict an ideal evolution along the instanta-
neous eigenstate jEmðtÞi, as HtotðtÞ ideally satisfies the
Schrödinger equation ij _EmðtÞi ¼ ½ξmðtÞ þHCDðtÞ�jEmðtÞi
[68]. Thus, assuming the initial state to be jE0ð0Þi ¼ jgij0i,

we obtain the target state jE0ðtfÞi ¼ jGi at the final time tf.
However, realizing a time-dependent Rabi model in the
DSC regime is still a major challenge in experiments. In the
following, we illustrate how to simulate HtotðtÞ based on a
parametrically driven JC model, so as to realize the STA
protocol and generate the state jGi.
Model and effective Hamiltonian.—As shown in Fig. 1,

our STA proposal is realized in the JC model. The cavity is
subjected to two time-dependent (two-photon) drives, with
the same frequency ωp, but with different real amplitudes,
ΩrðtÞ and ΩiðtÞ. The drive ΩiðtÞ is π=2 dephased from
ΩrðtÞ. The Hamiltonian in a frame rotating at ωp=2 reads

H0ðtÞ¼Δa†a−
�
ΩrðtÞþ iΩiðtÞ

2
a2−λa†σþH:c:

�
; ð5Þ

where Δ ¼ ωc − ωp=2, σ ¼ jgihej, λ ≪ ωc=q is the
qubit-cavity coupling strength, and we have assumed
ωq ¼ ωp. By performing the unitary transformation SðtÞ ¼
exp ½rðtÞða†2 − a2Þ=2�, with rðtÞ satisfying tanh ½2rðtÞ� ¼
ΩrðtÞ=Δ, we obtain the effective Hamiltonian

HSðtÞ ≈ Δsech½2rðtÞ�a†aþ λerðtÞσxða† þ aÞ=2; ð6Þ

where we have neglected the undesired terms by assuming
ΩiðtÞ ¼ _rðtÞ and λ ≪ Δ. The condition ΩiðtÞ ¼ _rðtÞ has
been applied according to the transitionless algorithm
to counteract the nonadiabatic transition caused by
the time-dependent unitary transformation SðtÞ (see the
Supplemental Material [81] for details). The effective
normalized coupling strength of HSðtÞ is

η̃ðtÞ ¼ λ

4Δ
fexp ½3rðtÞ� þ exp ½−rðtÞ�g: ð7Þ

Squeezed
vacuum reservoir

Δ

⟩|

⟩|

( )

FIG. 1. Schematic illustration of a cavity QED system
containing a single-mode cavity, a qubit, a χð2Þ-nonlinear
medium, and an optical parametric amplifier (OPA). The qubit
(jgi ¼ ground state and jei ¼ excited state) coupled to the cavity
with coupling strength λ and large detuning Δ. The nonlinear
driveΩrðtÞ induces a time-dependent squeezed-cavity mode. The
other nonlinear drive ΩiðtÞ [π=2 dephased from ΩrðtÞ] is applied
to counteract the nonadiabatic transition induced by mapping the
system dynamics into the time-dependent squeezed-light frame.
The OPA is used to generate a squeezed-vacuum reservoir, which
couples to the cavity mode to minimize the influence of the
squeezing-induced noise.
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To show the advantages of our STA protocol, as compared
to the adiabatic scheme [42], in the following discussion we
denote �̃ and � (� ¼ η; λ; r;…) to represent all the para-
meters in the adiabatic and STA processes, respectively.
Here, �̃ and � have the same physical meaning.
Adiabatic protocol.—When j _̃ηðtÞj ≪ Δsech½2r̃ðtÞ�, one

can achieve the adiabatic evolution along the ground
eigenstate of HSðtÞ [42]. The adiabatic condition requires
_̃rðtÞ=Δ → 0, thus leading to slow evolution. Figure 2(a)
shows the relationship between the total evolution time T̃
and the logarithmic negativity ẼN ¼ log2jjρΓq jj1 [82] of the
adiabatic process. Here, Γq denotes the partial transpose
with respect to the qubit, and jj · jj1 is the trace norm. The
evolution time T̃ significantly increases when the desired
entanglement cost grows. To achieve the MECS with
ẼN ≳ 99.99%, one needs T̃ ≳ 200=Δ via the adiabatic
process.
According to Eq. (7), a fixed final squeezing parameter

r̃ðtfÞ ¼ r̃max is needed to obtain the target state jGi. As a
result, the MECS only can be prepared in the squeezed-
light frame rather than the lab frame; i.e., the final state is
SðtfÞjGi. To obtain a MECS in the lab frame, one needs to
turn off the parametric drive immediately when t > tf.
However, rapidly decreasing the squeezing parameter rðtÞ
induces an undesired nonadiabatic transition, which pumps
many photons into the cavity in a very short time [81].
Then, the final state might be unpredictable.
STA protocol.—We assume HtotðtÞ ¼ HSðtÞ, resulting

in Δsech½2rðtÞ�∶ ⇒ ωc and λ exp ½rðtÞ�∶ ⇒ 2½g − i_ηðtÞ�,

where ηðtÞ ¼ g=ωc. Thus, we obtain the equations of
motion for the coherent state amplitude ηðtÞ,

Re½_ηðtÞ� ¼ ΔIm½ηðtÞ�sech2rðtÞ;

Im½_ηðtÞ� ¼ λ

2
exp½rðtÞ� − ΔRe½ηðtÞ�sech2rðtÞ; ð8Þ

where Re½�� (Im½��) denotes the real (imaginary) part of the
parameter “�.” Note that ηðtÞ ¼ g=ωc is different from the
definition of η̃ðtÞ in Eq. (7), thus the HamiltonianHSðtÞ can
drive the system to evolve along the ground eigenstate
jE0ðtÞi of the Hamiltonian HRðtÞ. According to Eq. (8),
ηðtÞ relies on the time integration of the squeezing
parameter rðtÞ. This allows one to rapidly achieve a large
value of ηðtfÞ without any restrictions on the final squeez-
ing parameter rðtfÞ. Thus, the STA process can achieve the
target state jGi in the lab frame, i.e., rðtfÞ ¼ 0.
In Fig. 2(b), we display the total evolution time T

required for the STA process to obtain the target state
versus the logarithmic negativity EN. We find that T is
significantly shortened when we increase the coupling
strength λ and the peak squeezing parameter rmax. For
an experimentally feasible gain of 10log10½exp ð2rmaxÞ� ∼
20 dB [83–85] (corresponding to rmax ∼ 2.3), the evolution
time to achieve the MECS with EN ≳ 99.99% via the STA
process is T ∼ 20=Δ, which is ∼10 times shorter than that
via the adiabatic process.
In the above numerical calculation of Fig. 2(b), we have

used the parameter rðtÞ ¼ rmax=f1þ exp ½fðtÞ�g with
fðtÞ ¼ f0 cos ð2πt=TÞ, where f0 ≫ 1 controls the initial
and final values of the squeezing parameter rðtÞ. With these
parameters, the pulses ΩrðtÞ and ΩiðtÞ have finite dura-
tions, so that we can smoothly turn off the parametric drive
[see Fig. 3(a)].
In Fig. 3(b), we show the desired mean photon number

n̄d ¼ hGja†ajGi versus the peak squeezing parameter rmax
(red-dotted curve with þ). We find that, for a fixed
evolution time T, n̄d increases sharply when rmax increases.
Experimentally, a parametric gain of ∼20 dB (rmax ∼ 2.3)
has been achieved [45], and ∼30 dB has also been pre-
dicted under experimentally feasible conditions [83–85].
These realistic parameters allow for generating a high-
fidelity (F > 90%) target state with n̄d ¼ 4 ∼ 10 (large-
amplitude nonclassical states), as shown by the blue,
solid curve in Fig. 3(b). Here, the fidelity of the state jGi
is defined as F ¼ jhGjρðtfÞjGij. When rmax ¼ 2.3 and
λ ¼ 0.045Δ, we find that the target state jGi can be
generated with F ≃ 99% and n̄d ≃ 4 [see purple circle in
Fig. 3(b)].
Robustness of the STA approach.—In the following, we

focus on discussing the robustness of the STA protocol
when rmax ¼ 2.3 and λ ¼ 0.045Δ. We first assume the
imperfection of a parameter � as δ� ¼ �0 − �, where �0 and
� denote the actual and ideal values, respectively. Because
of large detuning λ ≪ Δ, when the parametric drive

FIG. 2. Total evolution time required for (a) the adiabatic
process and (b) the STA process, to achieve the MECS versus
the desired entanglement cost [characterized by the logarithmic
negativity ẼN (EN)]. For (a), the squeezing parameter is
r̃ðtÞ ¼ r̃max=f1þ exp ½f̃ðtÞ�g, where r̃max is the peak value of
r̃ðtÞ and f̃ðtÞ ¼ f̃0ð1=2 − t=T̃Þ, with f̃0 ¼ 10. For (b), the para-
meters are ηð0Þ ¼ ð1þ iÞ=100 and rðtÞ ¼ rmax=f1þ exp ½fðtÞ�g,
with fðtÞ ¼ f0 cos ð2πt=TÞ and f0 ¼ 10, resulting in rð0Þ ¼
rðtfÞ ≃ 0 and _rð0Þ ¼ _rðtfÞ ≃ 0. The light-matter coupling
(λ̃; λ ≪ Δ) are chosen to satisfy the condition to neglect the
undesired terms to obtain the effective Hamiltonian in Eq. (6).
The comparison between the panels shows that the time required
in the STA process to achieve the target state is ∼10 times shorter
than that required in the adiabatic process. The yellow-shaded
area in each panel shows ðẼN; EN ≳ 99%Þ, indicating that the
target state in this area is maximally entangled.
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vanishes, the mean photon number and the entanglement of
the system can remain unchanged for a long time in the
absence of dissipation. Thus, our STA protocol is robust
against the imperfect parameters of the total evolution time.
As shown in Fig. 4(a), a 20% imperfection of the total
evolution time only causes ≲1% and ≲5% changes of the
logarithmic negativity EN and the mean photon number n̄d,
respectively.
Then, we compare the entanglement preparation via the

STA and the adiabatic processes in the presence of cavity
and qubit losses. Because of the relatively strong squeez-
ing, the difference of the frequencies of the photons
(ωp=2) pumped by the two-photon drives and those of
the squeezed-cavity mode (ωp=2þ Δsech½2rðtÞ�) is very
small, such that the influence of the quantum fluctuation
of the photons cannot be ignored. Thus, the two-photon
drives may effectively excite the squeezed-cavity mode,
so as to induce thermal noise and two-photon correlation
noise in the squeezed-cavity mode [41–44]. To minimize
the influence of such noises, besides accelerating the
dynamical evolution [45,46], one can couple the cavity to
a squeezed-vacuum reservoir [86–88] with re ¼ rmax and
φe ¼ π during T=4≲ t≲ 3T=4 [81]. Here re and φe are
the squeezing parameter and the reference phase of the
reservoir, respectively. In this case, the dynamics in the
squeezed-light frame can be approximatively described by
the standard Lindblad master equation

_ρSðtÞ ≈ i½ρSðtÞ; HSðtÞ� þ γD½σ�ρSðtÞ þ κD½a�ρSðtÞ; ð9Þ

where D½o�ρSðtÞ ¼ oρSðtÞo† − ½o†oρSðtÞ þ ρSðtÞo†o�=2
is the standard Lindblad superoperator, ρSðtÞ ¼
S†ðtÞρðtÞSðtÞ is the density operator in the squeezed-light

frame, γ is the spontaneous emission rate of the qubit, and
κ is the cavity decay rate.
We define the cooperativity as C ¼ λ2=κγ and assume

κ ≃ γ for simplicity. By considering the same initial
parameters λ ¼ λ̃ ¼ 0.045Δ and rð0Þ ¼ r̃ð0Þ ¼ 0, we com-
pare the robustness of the STA and that of the adiabatic
protocols [see Fig. 4(b)] [89]. The STA protocol is
much more robust against dissipation than the adiabatic
scheme, because (i) the evolution time is significantly
shortened in the STA protocol; (ii) the squeezing-induced
noise xcan be well reduced by coupling the cavity to
the squeezed-vacuum reservoir in the STA protocol.
For experimentally realistic cavity QED parameters,
Δ=2π ¼ 1 GHz, λ=2π ¼ 45 MHz, and κ=2π ¼ γ=2π ¼
2.25 MHz, the STA protocol can achieve the target state
with F ∼ 90% and EN ∼ 85%, while the adiabatic protocol
fails (F̃ ∼ 60% and ẼN ∼ 45%). Then, by measuring
the qubit, we can achieve high-fidelity cat states in the
lab frame.
Conclusion.—We have investigated how to simulate the

STA dynamics of a cavity QED system in the strong
coupling regime (λ > κ, γ) to prepare a maximally
entangled cat state in the lab frame via parametric ampli-
fication. A significantly accelerated dynamics (∼10 times
faster than its adiabatic counterpart) makes the system
much robust against dissipation. The target state is prepared
in a large-detuned JC model, which is driven by finite-
duration parametric pulses. Such a setup makes our STA
protocol robust against the imperfection of the evolution
time. Our proposal is feasible in circuit QED systems,
where a transmission line resonator cavity interacts with
a superconducting qubit in the JC model [27,28,90,91].

FIG. 3. STA protocol when ηð0Þ ¼ ð1þ iÞ=100, λ ¼ 0.045Δ,
and T ¼ 20=Δ: (a) Finite-duration drives ΩrðtÞ, ΩiðtÞ and
squeezing parameter rðtÞ when the peak squeezing parameter
rmax ¼ 2. (b) Fidelity (the blue vertical axis on the left side) of the
target state versus rmax. The red vertical axis on the right side
denotes the mean photon number n̄d (red-dotted curve with marks
“+”) of the target state. The yellow-shaded area in (b) shows
n̄d ≥ 4, indicating that the target state in this area can be called a
large-size entangled cat state. To generate the large-size entangled
cat state with F ≳ 99% and n̄d ≃ 4.3, one can choose rmax ¼ 2.3
(the purple circle).

FIG. 4. (a) Deviations δn̄d and δEN versus δT. The STA
protocol is robust against the imperfection of the total evolution
time T. Parameters are the same as in Fig. 3(a). (b) Fidelity F (F̃)
and logarithmic negativity EN (ẼN) of the STA (adiabatic)
protocol versus 1=

ffiffiffiffi
C

p
. Here, C ¼ λ2=κγ is the cooperativity,

and we assume the dissipation rates γ ¼ κ for simplicity. The STA
and the adiabatic protocols are initially equivalent by assuming
λ ¼ λ̃ ¼ 0.045Δ. The total evolution times for the entanglement
generation are T ¼ 20=Δ and T̃ ¼ 250=Δ, respectively. The
squeezing-induced noise is minimized by coupling the cavity
to the squeezed-vacuum reservoir [81]. As a result, our STA
protocol is much more robust against dissipation than the
adiabatic protocol.
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By attaching a superconducting quantum interference
device (SQUID) to the end of the resonator [92–94], one
can realize a two-photon drive (the Josephson parametric
amplification process) by modulating in time the flux
through the SQUID [48,78,95–100]. The squeezed vacuum
(reservoir) is also produced by Josephson parametric
amplifiers, but with a much larger linewidth than that of
the cavity [84,98,100–104]. This is possibly the first
application of the STA protocols for the Rabi model and
we hope that our protocol can find wide applications in
studying light-matter interactions, specially, for the ultra-
strong and deep-strong coupling regimes [9,10].
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In this Supplemental Material, we first discuss the influence of the nonadiabatic transition
caused by mapping the system dynamics into the time-dependent squeezed-light frame. Using
the transitionless algorithm, we show how to counteract such a nonadiabatic transition with an
additional drive, so as to design a shortcuts-to-adiabatic passage to rapidly generate giant entangled
cat states. Then, we show how to minimize the influence of the squeezing-induced fluctuation noise
by coupling the cavity to a squeezed-vacuum reservoir. Thirdly, we present a possible problem in
turning off the parametric drive when the target state is generated in the squeezed-light frame via
the adiabatic process.

The parameters and operators in this supplemental material are defined to be the same as those of the main text.

S1. EFFECTIVE HAMILTONIAN AND DISSIPATION DYNAMICS OF THE SYSTEM

A. Counteracting the nonadiabatic transition caused by the time-dependent unitary transformation

We begin with a largely detuned Jaynes-Cummings (JC) Hamiltonian driven by a time-dependent parametric
(two-photon) drive Ωr(t),

H1(t) = ∆a†a−
[

Ωr(t)

2
a2 − λa†σ + h.c.

]
. (S1)

In the time-dependent squeezed-light frame determined by the squeezing operator S(t) = exp [r(t)(a†2 − a2)/2], with
a real squeezing parameter r(t) satisfying tanh [2r(t)] = Ωr(t)/∆, the Hamiltonian of the system is composed of the
following terms:

HS1(t) = S†(t)H1(t)S(t)− iS†(t)Ṡ(t)

= HS−Rabi(t) +Herr(t) +HNA(t),

HS−Rabi(t) = ∆sech[2r(t)]a†a+ λexp [r(t)]σx(a† + a)/2,

Herr(t) = −iλexp [−r(t)]σy(a† − a)/2,

HNA(t) = −iṙ(t)(a†2 − a2)/2. (S2)

The Hamiltonian HS−Rabi describes the σxX Rabi interaction in the squeezed-light frame, where X = (a + a†)/2 is
the canonical position operator. The Hamiltonian Herr(t) describes the σyY interaction, where Y = i(a† − a)/2 is
the canonical momentum operator, and can be considered an error term, which can be neglected when λ � ∆ and
λ/∆ � r(t). When r(t) ∼ λ/∆, the error term Herr(t) can be neglected by applying a strong drive Ωσx (Ω & ∆),
which induces the coupling of Herr(t) with a large detuning in the σy-direction.

The last term in HS1(t), i.e., HNA(t) = −iS†(t)Ṡ(t), describes a nonadiabatic transition induced by mapping the
system dynamics into the time-dependent squeezed-light frame. It describes the population transfer between different
basis in the squeezed-light frame. According to Berry’s transitionless algorithm, we can add a term

HSA(t) = iS†(t)Ṡ(t) = iṙ(t)(a†2 − a2)/2, (S3)

into the Hamiltonian HS1(t) to counteract the nonadiabatic transition. Then, in the laboratory frame, the additional
Hamiltonian HSA reads

Hadd(t) = S(t)HSA(t)S† = iṙ(t)(a†2 − a2)/2. (S4)
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This implies that the cavity mode is subject to another two-photon drive, which has an amplitude Ωi(t) = ṙ(t), a
frequency ωp, and is π/2-dephased from Ωr(t). By adding this additional Hamiltonian Hadd(t) into the Hamiltonian
H1(t), we obtain the Hamiltonian H0(t) required for the STA protocol, i.e., the Hamiltonian of Eq. (6) of the main
text:

H0(t) = ∆a†a+ Ωσx −
[

Ωr(t) + iΩi(t)

2
a2 − λa†σ + h.c.

]
. (S5)

Then, we are allowed to rapidly change the squeezing parameter r(t), such that we can quickly adjust the effective
qubit-cavity coupling λ exp [r(t)]/2 in the squeezed-light frame.

This is very important, because applying the STA protocol requires to rapidly change the control parameter, i.e.,
the normalized coupling strength.

B. STA process with parametric drivings

To construct the STA passage, we divide the Hamiltonian HS(t) into two parts:

HS(t) = Href(t) +Haux(t). (S6)

Here, the Hamiltonian

Href(t) = ∆sech[2r(t)]a†a+ σx[χ(t)a† + χ∗(t)a], (S7)

is considered as the reference Hamiltonian [with an undetermined parameter χ(t)] for constructing shortcuts,

Haux(t) =
λer(t)

2
σx(a† + a)− σx[χ(t)a† + χ∗(t)a], (S8)

is an auxiliary Hamiltonian. The reference Hamiltonian Href(t) takes the same form as the Rabi Hamiltonian HR(t)
[Eq. (1) of the main text], i.e., Href(t) :⇒ HR(t), by setting:

ωq � ωc, ωc :⇒ ∆sech[2r(t)], g :⇒ χ(t). (S9)

Then, when we choose the parameters to satisfy

η(t) =
g

ωc
=

χ(t)

∆sech[2r(t)]
, η̇(t) =

i

2

[
λer(t) − 2χ(t)

]
, (S10)

Haux(t) is exactly the CD driving Hamiltonian for the reference Hamiltonian Href(t), i.e., Haux(t) :⇒ HCD(t). Hence,
according to the transitionless algorithm, the CD driving Hamiltonian Haux(t) can actually drive the system to evolve
along an eigenstate of Href(t). The evolution path for our STA protocol is then given as (in the squeezed-light frame)

|E0(t)〉S =
1√
2

[|+x〉| − η(t)〉+ |−x〉|η(t)〉] , (S11)

where |±x〉 are the eigenstates of the Pauli matrix σx. In the lab frame, the STA evolution path is S[r(t)]|E0(t)〉S .
After some algebra, we can counteract the undetermined parameter χ(t) and obtain the equations of motion for the
coherent state amplitude η(t):

Re[η̇(t)] =∆Im[η(t)]sech2r(t),

Im[η̇(t)] =
λ

2
exp[r(t)]−∆Re[η(t)]sech2r(t). (S12)

Thus, Eq. (9) of the main text is obtained. The final state in the laboratory frame is

S(tf )|E0(tf )〉S =
1√
2

(|+x〉| − η(tf )〉+ |−x〉|η(tf )〉) , (S13)

which is an entangled cat state. Here, S(tf ) = 1 is given according to r(tf ) = 0.
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FIG. S1: Parameters (a) NS and (b) MS characterizing the squeezing-induced noise for rmax = 2.3 and Ω = 0. Blue-dotted
curve in (a) [(b)]: Parameter NS (MS) without coupling the cavity to the squeezed-vacuum reservoir (i.e., re = 0); Red-solid
curve in (a) [(b)]: Parameter NS (MS) when the system is coupled to the squeezed-vacuum reservoir during T/4 . t . 3T/4
[i.e., re is given according to Eq. (S21)]. The yellow-shaded area in (a) or (b) denotes when the cavity is coupled to the

squeezed-vacuum reservoir. (c) Fidelities of the ground state |G〉 versus 1/
√
C calculated by: (blue-dotted curve representing

F0) the noise-included master equation in Eq. (S16) when re = 0; (red-solid curve representing F ) the noise-included master
equation when coupling the cavity to the squeezed-vacuum; (green-dashed curve representing Fd) the effective master equation
in Eq. (S23). The parameter C = λ2/κγ is the cooperativity, and we assume the dissipation rates γ = κ for simplicity.

C. Minimizing the influence of the squeezing-induced fluctuation noise

The Markovian master equation, for a cavity interacting with a broadband squeezed-vacuum reservoir (at zero
temperature with squeezing parameter re and reference phase ϕe), has been well studied (see, e.g., Ref. [S1]). For
our STA protocol, when the cavity couples to the squeezed-vacuum reservoir, the master equation in the laboratory
frame is

ρ̇(t) =i[ρ(t), H0(t)] +
1

2

[
2Lγρ(t)L†γ − L†γLγρ(t)− ρ(t)L†γLγ

]
+

1

2
(N + 1)

[
2Lκρ(t)L†κ − L†κLκρ(t)− ρ(t)L†κLκ

]
+

1

2
N
[
2L†κρ(t)Lκ − LκL†κρ(t)− ρ(t)LκL

†
κ

]
− 1

2
M
[
2L†κρ(t)L†κ − L†κL†κρ(t)− ρ(t)L†κL

†
κ

]
− 1

2
M∗ [2Lκρ(t)Lκ − LκLκρ(t)− ρ(t)LκLκ] . (S14)

Here, Lγ =
√
γσ and Lκ =

√
κa describe the qubit and cavity decays, with decay rates γ and κ, respectively. The

parameters

N = sinh2(re), and M = cosh (re) sinh (re) exp (−iϕe), (S15)

describe thermal noise and two-photon correlation noise caused by the squeezed-vacuum reservoir, respectively.
By mapping the system dynamics into the time-dependent squeezed-light frame with S(t), the master equation

becomes

ρ̇S(t) =i[ρS(t), HS−Rabi(t) +Herr(t)] +
1

2

[
2LγρS(t)L†γ − L†γLγρS(t)− ρS(t)L†γLγ

]
+

1

2
(NS + 1)

[
2LκρS(t)L†κ − L†κLκρS(t)− ρS(t)L†κLκ

]
+

1

2
NS
[
2L†κρS(t)Lκ − LκL†κρS(t)− ρS(t)LκL

†
κ

]
− 1

2
MS

[
2L†κρS(t)L†κ − L†κL†κρS(t)− ρS(t)L†κL

†
κ

]
− 1

2
M∗S [2LκρS(t)Lκ − LκLκρS(t)− ρS(t)LκLκ] , (S16)
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FIG. S2: blue Fidelities F of the entangled cat state for the STA protocol with T = 20/∆ and λ = 0.045∆: (a) [(b)] Fidelity
F versus the cooperativity C and the predicted mean photon number n̄d = |η|2, when the cavity is coupled (decoupled) to the
squeezed-vacuum reservoir. For the panels (a) and (b), we choose the squeezing parameter rmax ∈ [0, 3] corresponding to the
n̄d = |η|2 ∈ [0, 17]. (c) Fidelity F versus imperfections of the parameters re and Te. For the panel (c), the squeezing parameter
is rmax = 2.3.

where ρS(t) = S†(t)ρ(t)S(t) is the density operator of the system in the squeezed-light frame, and

NS = cosh2[r(t)] sinh2(re) + sinh2[r(t)] cosh2(re) +
1

2
sinh[2r(t)] sinh(2re) cos(ϕe),

MS = {sinh[r(t)] cosh(re) + exp (−iϕe) cosh[r(t)] sinh(re)}
× {cosh[r(t)] cosh(re) + exp(iϕe) sinh[r(t)] sinh(re)} , (S17)

characterize additional noises of the system in the squeezed-light frame. When re = 0, NS and MS characterize the
squeezing-induced noise. For simplicity, we can assume ϕe = π, and obtain

NS = sinh2 [rS(t)] , and MS = cosh [rS(t)] sinh [rS(t)] , (S18)

where rS(t) = r(t)−re. Then, to minimize the parameters |NS | and |MS |, we need to minimize the parameter |rS(t)|.
The waveform of r (t) of the STA protocol is approximately a square wave when

r(t) =
rmax

1 + exp [f0 cos (2πt/T )]
, (S19)

where f0 = 10 controls the initial and final values of the squeezing parameter r(t). Substituting Eq. (S19) into Eq. (S18)
and assuming re = 0, in Figs. S1(a) and S1(b), we show the parameters NS and MS describing the squeezing-induced
noise (see the blue-dotted curves). As shown, the squeezing-induced noise affects the system dynamics especially when
r(t) reaches its maximum value rmax, i.e., r(t) ≈ rmax. We accordingly calculate the fidelity F0 = |〈G|ρS(tf )|G〉| to
show the influence of the squeezing-induced noise [see the blue-dotted curve in Fig. S1(c)]. Here, |G〉 is the ground
state of the Rabi model in the DSC regime [see Eq. (2) of the main text]. The fidelity F0 decreases very fast when
the dissipation increases.

To minimize the parameter |rS(t)|, according to the properties of cos(2πt/T ), we can choose

re =


0, (0 . t . T/4)

rmax, (T/4 . t . 3T/4)

0, (3T/4 . t . T )

(S20)

i.e., the total interaction time between the cavity and the squeezed-vacuum reservoir is Te = T/2, resulting in

rS(t) =



rmax

1 + exp [f0 cos (2πt/T )]
, (0 . t . T/4)

−rmax

1 + exp [−f0 cos (2πt/T )]
, (T/4 . t . 3T/4)

rmax

1 + exp [f0 cos (2πt/T )]
. (3T/4 . t . T )

(S21)
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FIG. S3: Parameters (a) ÑS and (b) M̃S characterizing the squeezing-induced noise for r̃max = 1.8. Blue-dotted curve in (a)

[(b)]: parameter ÑS (M̃S) without coupling the cavity to the squeezed-vacuum reservoir (i.e., r̃e = 0); Red-solid curve in (a)

[(b)]: parameter ÑS (M̃S) when the system is coupled to the squeezed-vacuum reservoir during T̃ /2 . t . T̃ [i.e., r̃e is given
according to Eq. (S25)]. The yellow-shaded area in (a) or (b) denotes that the cavity is coupled to the squeezed-vacuum reservoir.

(c) Fidelities of the squeezed ground state |SG〉 = S(tf )|G〉 versus 1/
√
C calculated by: (blue-dotted curve representing F̃0) the

noise-included master equation in Eq. (S16) when re = 0; (red-solid curve representing F̃ ) the noise-included master equation

when coupling the cavity to the squeezed-vacuum reservoir; (green-dashed curve representing F̃d) the effective master equation
in Eq. (S23).

Then, substituting Eq. (S21) into Eq. (S18), we plot the parameters NS and MS [see the red-solid curves in Fig. S1(a)
and S1(b)]. We can accordingly calculate the average values

ANS
=

1

T

∫ tf

0

|NS |dt ≈ 0.08, and AMS
=

1

T

∫ tf

0

|MS |dt ≈ 0.14, (S22)

which means that the additional noises in Eq. (S16) weakly affect the system dynamics. Thus, the fidelity of the
target state |G〉 is significantly improved [see the red-solid curve in Fig. S1(c)], e.g., from ∼ 65% to ∼ 89% when

1/
√
C = 0.05. When the desired mean photon number n̄d of the target state increases, the influence of the cavity loss

increases [see Figs. S3(a) and S3(b)]. These figures show the fidelities of the target state when the cavity is coupled
and decoupled to the squeezed-vacuum reservoir, respectively. According to the comparison between Figs. S1(a) and
S1(b), coupling the cavity to the squeezed-vacuum reservoir can effectively suppress the influence of the cavity loss.
Thus, the giant (n̄d & 10) entangled cat states can be generated with a high fidelity. By defining the imperfection of a
parameter ∗ as δ∗ = ∗′−∗, the influence of the imperfections of the parameters Te and re is shown in Fig. S1(c). This
figure shows that, slightly decreasing the squeezing parameter re or increasing the interaction time Te can improve
the fidelity F . Note that a 10% imperfection of the parameter re only causes a 3% change in the fidelity, thus the STA
protocol is mostly insensitive to the imperfections of the parameter re. When the interaction time Te between the
cavity and the squeezed-vacuum reservoir is long enough, our STA protocol is mostly insensitive to the imperfections
of the parameter Te.

When coupling the cavity to the squeezed-vacuum reservoir during T/4 . t . 3T/4, the evolution can be
approximately described by the standard Lindblad master equation

ρ̇S(t) ≈i[ρS(t), HS−Rabi(t)] +
1

2

∑
m=κ,γ

[
2LmρS(t)L†m − L†mLmρS(t)− ρS(t)L†mLm

]
, (S23)

which is Eq. (10) of the main text. As shown in Fig. S1(c), the Lindblad master equation can well describe the
dynamics when the cavity is coupled to the squeezed-vacuum reservoir.

This strategy is also applicable in the adiabatic protocol to minimize the influence of the squeezing-induced noise.
For the adiabatic protocol, the squeezing parameter r̃(t) is

r̃(t) =
r̃max

1 + exp [f̃0(1/2− t/T̃ )]
, (S24)

where f̃0 = 10 controls the initial and final values of r̃(t). Substituting Eq. (S24) into Eq. (S17) and assuming r̃e = 0,

we plot the parameters ÑS and M̃S in Figs. S3(a) and S3(b). We denote ∗̃ (∗ = r, T, . . .) to represent the parameters
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FIG. S4: System evolution during turning off the parametric drive in the adiabatic protocol for t > tf . (a) Amplitude of
the parametric drive Ωr(t) and the changing rate ˙̃r(t) of the squeezing parameter r(t). (b) Mean photon number 〈a†a〉 of

the system. (c) Blue-solid curve: the population P̃SG of the squeezed state |SG〉; Green-dotted curve: the population P̃G of

the ground state |G〉; Red-dashed curve: the entanglement cost (characterized by the logarithmic negativity ẼN ). The time

required to turn off the parametric drive is assumed to be T̃off = 5/∆.

used in the adiabatic protocol. The parameter ∗̃ has the same physical meaning as ∗. Due to the squeezing-induced
noise, the adiabatic protocol becomes unreliable for the finite cooperativity C [see the blue-dotted curve in Fig. S3(c)].

To minimize the parameters |ÑS | and |M̃S |, we can assume

r̃e =

 0, (0 . t . T̃ /2)

r̃max, (T̃ /2 . t . T̃ )
(S25)

resulting in

r̃S(t) =


r̃max

1 + exp [f̃0(1/2− t/T̃ )]
, (0 . t . T̃ /2)

−r̃max

1 + exp [−f̃0(1/2− t/T̃ )]
. (T̃ /2 . t . T̃ )

(S26)

Accordingly, the average values of |ÑS | and |M̃S | are

ÃNS
=

1

T̃

∫ tf

0

|ÑS |dt ≈ 0.14, and ÃMS
=

1

T̃

∫ tf

0

|M̃S |dt ≈ 0.3, (S27)

respectively. Thus, the additional noises characterized by ÑS and M̃S can be suppressed as shown in Fig. S3(a) and
S3(b). The fidelity of the squeezed ground state |SG〉 = S(tf )|G〉 is improved [see the red-solid curve in Fig. S3(c)].
However, due to

ÃNS
> ANS

, ÃMS
> AMS

, and T̃ � T, (S28)

the squeezing-induced noise still affects the adiabatic protocol more seriously than the STA protocol. Thus, the fidelity
of the adiabatic protocol is much lower than the STA method, according to the comparison between Figs. S1(c) and
S3(c).

S2. A POSSIBLE PROBLEM CAUSED BY TURNING OFF THE PARAMETRIC DRIVE IN THE
ADIABATIC PROTOCOL

The nonadiabatic transition HNA(t) also causes the main problem of how to turn off the parametric drive. In the
adiabatic protocol discussed in the main text, the amplitude of the parametric drive Ωr(t) reaches the peak value at
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the time tf , i.e., Ωr(tf ) = Ωmax. Meanwhile, the maximally entangled cat state is prepared in the squeezed frame. In
the laboratory frame, the final state corresponds to the qubit being entangled with the squeezed and displaced cavity
pointer states, i.e., |SG〉. To smoothly and rapidly turn off the parametric drive, we can assume

r̃(t) =
1

2

arctanh(Ωmax/∆)

1 + exp {10[−(t− tf )/T̃off + 1/3]}
, (t ≥ tf ) (S29)

corresponding to

r̃(tf ) =
1

2
arctanh(Ωmax/∆), r̃(tf + T̃off) ' 0, ˙̃r(tf ) ' 0, ˙̃r(tf + T̃off) ' 0. (S30)

Here, T̃off is the operation time required to turn off the parametric drive.
Assuming T̃off = 5/∆ as an example, we show Ωr(t) and ˙̃r(t) versus time in Fig. S4(a). Due to ˙̃r(t) 6= 0, the

nonadiabatic transition HNA(t) can pump many photons into the cavity. By substituting Eq. (S29) into Eq. (S2), and
assuming the system is in the squeezed ground state |SG〉 at the time tf , we show the instantaneous mean photon
number 〈a†a〉 when t > tf in Fig. S4(b). We find that 〈a†a〉 increases sharply when Ωr(t) decreases. When the
parametric drive is turned off, i.e., Ωr(t) = 0, the desired entangled state does not exist any longer [see in Fig. S4(c)].

Both populations of the squeezed ground state |SG〉 (P̃SG) and the state |G〉 (P̃G) reach 0 when the parametric drive
is turned off [see the blue-solid and green-dotted curves in Fig. S4(c)]. The entanglement cost (characterized by the

logarithmic negativity ẼN ) decreases to a low value, i.e., ẼN ∼ 70%. That is, the state of the system after turning
off the parametric drive is unpredictable.

[S1] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).


