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Entanglement of light and multiple vibrations is a key resource for multi-channel quantum information
processing and memory. However, entanglement generation is generally suppressed, or even fully
destroyed, by dark modes formed by multiple vibrational modes coupled to a common optical mode.
Here we propose how to generate both bipartite and genuine tripartite optomechanical entanglement via
dark-mode (DM) breaking induced by synthetic magnetism. We find that at nonzero temperature, light and
vibrations are separable in the DM-unbreaking regime but strongly entangled in the DM-breaking regime.
Remarkably, its noise tolerance (the threshold thermal phonon number for preserving entanglement) is up
to three orders of magnitude stronger than that in the DM-unbreaking regime. The application of the
DM-breaking mechanism to optomechanical networks can make noise-tolerant entanglement networks
feasible. These results are quite general and can initiate advances in quantum resources with immunity

against both dark modes and thermal noise.

Introduction.—Quantum entanglement [1], allowing for
inseparable quantum correlations shared by distant parties,
is a crucial resource for modern quantum technologies,
including quantum metrology, communication, and com-
putation [2]. So far, efficient entanglement of photons with
atoms [3-9], trapped ions [10, 11], quantum dots [12],
and superconduction qubits [13—15] has been demonstrated
in both microscopic- and macroscopic-scale devices [16,
17]. These entangled states have been used to connect
remote long-term memory nodes in distributed quantum
networks [18-21].

The cavity optomechanical system is an elegant
candidate for implementing quantum information carrier
and memory [22-24]. Owing to the remarkable pro-
gresses in ground-state cooling [25-28] and single-phonon
manipulation [29-32], it has become a more efficient
platform for achieving strong entanglement between two
bosonic modes [33—47]. In particular, macroscopic
quantum entanglement involving two massive mechanical
oscillators has recently been observed in optomechanical
platforms [48-51].  Practically, the applicability of
modern quantum technologies in optomechanical networks
ultimately requires quantum entanglement of light and
multiple vibrations [52-55]. Realization of large-
scale photon-phonon entanglement, however, remains an
outstanding challenge due to the suppression from the
dark modes [56, 57] induced by the coupling of multiple
vibrational modes to a common optical mode [58-66].

In this Letter, we propose to generate strong light-
vibration entanglement by breaking the dark mode via syn-
thetic magnetism, and reveal its counterintuitive robustness
to thermal noise. By introducing a loop-coupled structure,

formed by light-vibration couplings and phase-dependent
phonon-hopping interactions, a synthetic gauge field is
induced, and it breaks dark modes. Note that the realization
of a reconfigurable synthetic gauge field has recently been
reported in phase-dependent loop-coupled optomechanical
platforms [67-75]. We find that, in the dark-mode-
unbreaking (DMU) regime, both bipartite and genuine
tripartite optomechanical entanglement are destroyed by
thermal noise concealed in the dark modes; while in the
dark-mode-breaking (DMB) regime, strong entanglement
is generated via synthetic magnetism. Importantly, the
DMB entanglement is surprisingly noise tolerant, in the
sense that the threshold thermal phonon number for
preserving entanglement is up to three orders of magnitude
stronger than that in the DMU regime. Our work describes
a general mechanism, and it can provide the means
to engineer and protect fragile quantum resources from
thermal noises and dark modes, and pave a way towards
noise-tolerant quantum networks [18, 55].

System and dark-mode control.—We consider a loop-
coupled optomechanical system consisting of an optical
mode and two vibrational modes [see Fig. 1(a)]. To
induce a synthetic magnetism, we introduce a phase-
dependent phonon-hopping interaction between the two
vibrations (with coupling strength y and modulation phase
©). A driving field, with frequency w; and amplitude
Q = /2P /(hwy) (for driving laser power P;, and
optical decay rate k), is applied to the cavity field. In
a rotating frame defined by the unitary transformation
operator exp(—iwycict), the system Hamiltonian reads
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FIG. 1. (a) A loop-coupled optomechanical system consisting
of two vibrational modes d;—1 o (with decay rates ;) coupled
to a common optical mode ¢ (with decay rate x) via radiation-
pressure interactions (with strengths g;). The two vibrations
are coupled to each other through a phase-dependent phonon-
exchange coupling (x and ©). (b) An optomechanical network
consisting of an optical mode coupled to N vibrational modes.
(c) Effective coupling strengths G+ versus the modulation phase
©. By tuning © # nx for an integer n, the dark mode can be
broken (G+ # 0). The solid disks denote the DMU regime, and
the remaining areas correspond to the DMB regime. Here, the
parameters are set as w; = wm and Gj /wm = x/wm = 0.1.

(h=1
H; = Acte+ Z [wjd;-dj + ngTC(dj + d;)]
Jj=1,2
—|—(QC + Q*CT) + Hx7
My = x(¢0didy + e Odydy), M

where ¢ (c) and d; (d;) are the creation (annihilation)
operators of the cavity-field mode (with resonance fre-
quency w,) and the jth vibrational mode (with resonance
frequency wj), respectively. The g; terms describe
optomechanical interactions between the cavity-field mode
and the two vibratinal modes, with g; being the single-
photon optomechanical-coupling strength. The 2 term
denotes the cavity-field driving with detuning A, = w, —
wr. The H, term depicts the phase-dependent phonon-
hopping interaction, which is introduced to create synthetic
gauge fields and control the dark-mode effect.

To demonstrate the dark-mode effect, we expand the
operators o €{c, d;, cf, dj} as a sum of their steady-
state average values and fluctuations, i.e., 0 = (0) + do.
Then we obtain the linearized Hamiltonian in the rotating-
wave approximation (RWA) as: Hrwa = Adcide +

> i1 olw;odiod; + G (desdt +H.c.)] + x(e7©6d] 6dy +

2

H.c.), where A is the normalized driving detuning and
Gj—12 = g;j(c)s are the linearized optomechanical-
coupling strengths. Here (c)s = —iQ2*/(k + 1A) is
assumed to be real by choosing a proper (2.

When the synthetic magnetism is absent (i.e., x = 0)
and w; = wy, the system possesses two hybrid mechanical
modes: a bright mode (D, ) and a dark mode (D_) defined
by

DJr == (G15d1 + G25d2)/ G% + G%, Brlght (23.)
D_ = (G25d1 - G15d2)/ G% + G%, Dark (Zb)
which satisfy the bosonic commutation relation
[D.,DL] = 1. The dark mode D_, which

decouples from the system and destroys all quantum
resources, can be broken by employing the synthetic

magnetism (i.e., x # 0 and © # 0). To clarify
this, we introduce two superposition-vibrational
modes associated with the synthetic magnetism:

D, = Fod; — ¢®Kddy and D_ = e "©Kd; + Fods,
where F = [0w_|/+/(00_)? 4+ x? and K = xF/ow_,
with 0&0_ = @&_ — w; and the redefined resonance
frequencies W = (w; + wy £ /(w1 — wa)? + 4x2)/2.
The linearized Hamiltonian becomes

HRWA:AécT(SC +Z[(Dlﬁjﬁl + (éﬂsléCT + HC)],(3)

==+

where the effective coupling strengths are given by é+ =
]:Gl — e_iQICGQ and G_ = eiQICGl + ]:GQ

In Fig. 1(c), we show G versus © when w; = wy and
G1 = G5. We can see that only when © = nw (ie.,
the DMU regime), either D [for an odd n, G, = 0 (blue
disks)] or D_ [for anevenn, G_ = 0 (red disks)] becomes
a dark mode. Tuning © # nr (for an integer n, i.e., the
DMB regime) leads to a counterintuitive coupling of the
dark mode to the optical mode, which indicates dark-mode
breaking. Physically, a reconfigurable synthetic gauge field
is realized by modulating the phase ©, which results in a
flexible switch between the DMB and DMU regimes.

The Langevin equations and their solutions.—
By defining the optical and mechanical quadratures
6X, = (dof + 60)/v/2 and §Y, = i(Jo! — 60)/V/2,
and the corresponding Hermitian input-noise operators
X = (ol + ow)/V2 and V" = i(of, — 0m)/V2
we obtain the linearized Langevin equations as
u(t) = Au(t) + N(t), where we introduce the
fluctuation operator vector u(t) = [0X,,0Yy,,
6X4,,0Y4,,0X,.,0Y.]", the noise operator vector N(t) =

VAKX, VR X8 Y, VRXE, RV,



and the coefficient matrix

-7 W X+  X- 0 0
—wi =M —X- X+ —2Gi 0
X+ X- T2 W2 0 0

A = 4
—X- —X+ —w2 —72 —2Gy 0 [’ @
0 0 0 0 -k A

-2G, 0 -2G, 0 —-A —&

with Y, = xsin® and y_ = xcos®. The formal
solution of the Langevin equation is given by u(t) =
M(t)u(0) + [y M(t — s)N(s)ds, where M(t) =
exp(At). Note that the parameters used in our simulations
satisfy the stability conditions derived from the Routh-
Hurwitz criterion [76]. The steady-state properties of the
system can be inferred based on the steady-state covariance
matrix V, which is defined by the matrix elements V; =
[(ug(00)w;(20)) + (w(00)uy(0))]/2 for k,l = 1-6.
Under the stability conditions, the covariance matrix 'V
fulfills the Lyapunov equation AV + VAT = —Q [33],
where Q = diag{v: (27, + 1),71(2n1 + 1),72(2n2 +
1), ’72(2771/2 + 1), R, K/}.

Generating bipartite and genuine tripartite entangle-
ments via dark-mode breaking.—The logarithmic negativ-
ity Ejr; and the minimum residual contangle ET*!* [77-
80], which can be used to quantify bipartite and genuine
tripartite entanglement, are, respectively, defined as

E./\/'J = maX[O, _1n(2Cj_)]7 (Sa)
B = min [E]) — BIF — B[ (5b)

(r,s,t)
Here (; = 27 Y3{S(V)) — [B(V})? — ddetV]/2}1/2,
with 3(V)) = detA; + detB — 2detC;, is the
smallest eigenvalue of the partial transpose of the reduced
correlation matrix V;- = (é} % ),whichis obtained by
removing in V the rows and columns of the uninteresting
mode [81]. In Eq. (5b), (r,s,t) € {d;,ds,c} denotes
all the permutations of the three mode indices. FE7!(s*)
(Erls or El) is the contangle of subsystems of r and
st (s or t), and it is defined as the squared logarithmic
negativity [78, 81]. The residual contangle satisfies the
monogamy of quantum entanglement E7I(59) > Erls 4
ET, which is based on the Coffman-Kundu-Wootters
monogamy inequality [80]. Ej; > 0 and Erllt > 0
mean, respectively, the emergence of bipartite and genuine
tripartite entanglement.

We display in Figs. 2(a) and 2(b) the bipartite
entanglement F, ; of the optical mode with the jth
vibration and the tripartite entanglement E’!*/* of the
system as functions of the driving detuning A, when
the system operates in both DMU and DMB regimes.
This demonstrates that light and vibrations are separable
in the DMU regime (Ex; = E’*It = 0, see the
lower horizontal solid lines), but strongly entangled in
the DMB regime [Ey 12y = 0.14 (0.12) and E7lI" =
0.013, see the upper dashed curves and symbols]. In
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FIG. 2. (a) Bipartite entanglement measure Exs j—1 2 and (b)

genuine tripartite entanglement measure E:‘S“ versus A/wp, in
the DMU (x = 0, horizontal solid lines) and DMB (x = 0.1wm,
and © = 7/2, dashed curves and symbols) regimes. Here we take
w1 = wo = wm. (¢) Exr; and (d) ETS versus wa /w1 in both
DMU and DMB regimes under the optimal drivings A = w; for
Epj and A = 0.6w; for ETE (o) E) j and (f) ETI versus
x and ©. Other parameters are Gj /wm = 0.2, vj/wm = 1075,
k/wm = 0.2, and n; = 100.

the DMU regime, thermal phonons concealed in the dark
mode cannot be extracted by the optomechanical cooling
channel, and then quantum entanglement is completely
destroyed by the residual thermal noise [35, 58, 63]. In
the DMB regime, a large entanglement is achieved around
the red-sideband resonance (A = w,,), corresponding to
the optimal cooling. These results indicate that fragile
quantum resources can be protected via dark-mode control.

The dependence of quantum entanglement on the dark-
mode effect can also be seen by plotting E ; and E7/*!t
as functions of the frequency ratio wo/w; [see Figs. 2(c)
and 2(d)]. We find that in the DMU regime, there exists a
disentanglement valley around the degeneracy point w, =
w1, corresponding to the emergence of the dark-mode
effect (see the lower solid curves). However, in the DMB
regime, the valley becomes smooth, which means that
both bipartite and genuine tripartite entanglement fully
survive owing to dark-mode breaking (see the upper dashed
curves and symbols). Physically, the width of the valley
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FIG. 3. (a) Epr j—1,2 versus n; = 7 in the DMU (solid curves)
and DMB (dashed curves) regimes. (b) s ; versus x when

7 = 100. Here we take x = 0.lw,, and © = /2, and other
parameters are the same as those in Fig. 2.

is determined by the spectral resolution in the three-mode
system. Here, it is mainly determined by the cavity-field
decay rate, because the decay rates of the mechanical
modes are much smaller than that of the cavity field.

In Figs. 2(e) and 2(f), we plot Eyr ; and E:‘S” versus ©
and . We can see that, at a finite value of ), E ; and
E7lsI reach the peak value at © = 7/2 and 37 /2, which
are related to the maximal quantum interference effect.
In addition, both bipartite and tripartite entanglement
completely vanish, i.e., Ey; = 0 and E’l*t = 0 at
© = nm, corresponding to the emergence of the dark
mode. In particular, Ex 1 (Er2) is larger than Ey o
(Epr1) inthe region 0 < © < 7w (m < © < 2m). This
asymmetrical feature is caused by the modulation phase
in the coupling loop, which corresponds to an effective
synthetic magnetism [70-75]. These findings mean that we
can switch a multimode quantum device between separable
and entangled states by tuning ©.

Noise-tolerant  optomechanical  entanglement—The
DMB entanglement provides a feasible way to create and
protect fragile quantum resources against dark modes,
and can enable the construction of noise-tolerant quantum
devices. We can see from Fig. 3(a) that, in the DMU
regime, quantum entanglement emerges only when 1 < 1
(see solid curves), while in the DMB regime, it can persist
for a threshold value near 7 ~ 10? (see dashed curves),
which is three orders of magnitude larger than that in
the DMU regime. In Fig. 3(b), we plot Es ; versus the
cavity-field decay rate s in both the DMB and DMU
regimes. In the DMU regime, quantum entanglement
is fully destroyed (E,r; = 0) by the thermal noise in
the dark mode, and it is independent of x (see the lower
horizontal solid lines). However, in the DMB regime,
strong entanglement is generated owing to dark-mode
breaking, and E ; exist only in the resolved-sideband
regime k/w,, < 1 (see the upper dashed curves). The
maximal entanglement is located at x ~ 0.2w,,, which
is consistent with the typical deep-resolved-sideband
conditions [25-28, 33].
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FIG. 4. (a,b) Exr ; versus A in the DMU (x; = 0, horizontal
solid lines) and DMB (xj/wm = 0.1and ©1 = 7, O ¢z n—_1] =
0, marked by symbols) regimes, for (a) N = 3 and (b) N = 4.
(c) Epr,; versus x; when ©1 = m. (d) Ea; versus ©1 when
X;j/wm = 0.1. Here n; = 10 and other parameters are the same
as those in Fig. 2.

Entangled optomechanical networks.—We generalize
the DMB approach for optomechanical networks where an
optical mode couples to N > 3 vibrational modes via the
optomechanical interactions Hpe = Zjvzl g;cte(d;+db).
and the nearest-neighbor vibrational modes are coupled
through the phase-dependent phonon-exchange couplings
Hyee = Z;V:_ll x; (€79 d;-djﬂ + H.c.) [see Fig. 1(b)]. We
have confirmed that these phases are governed by the term

,J;ll O, (j € [2, N]) [81], and hence we assume ©; = 7
and © jc[2,y—1) = 0 in our simulations.

We demonstrate that when turning off synthetic mag-
netism (ie., x; = 0), there exists only a single
bright mode B = Zjvzl 6d;/v/N and (N — 1)
dark modes, with the [th dark mode expressed as
DlE[LN—l] = Zjvzl (5d] 627”.0‘7 NJI)Z/N/\/N. In the
presence of synthetic magnetism (i.e., x; # 0), all the
dark modes are broken by tuning ©; # 2nm for an integer
n [81]. This provides a possibility of switching between
the DMB and DMU regimes in optomechanical networks.

We reveal that light and all the vibrational modes
are separable (F,; = 0, see the lower horizontal
solid lines) in the DMU regime, but they are strongly
entangled (Fxr ; > 0, see the upper symbols) in the DMB
regime [see Figs. 4(a) and 4(b)]. Larger entanglement
for optomechanical networks can be achieved for the red-
sideband resonance (i.e., A ~ w,,) and x; Jwm €
[0.1,0.15] when ©; = 7 [see Figs. 4(a), 4(b), and 4(c)].
Physically, the resulting synthetic gauge fields lead to
breaking all the dark modes, and make the light-vibration




entanglement networks feasible [see Fig. 4(d)]. This
indicates that the entanglement networks, with immunity
against dark modes, can be realized by applying the DMB
mechanism to optomechanical networks. These findings
provide a way to protect large-scale fragile quantum
resources from thermal noises and dark modes.

Conclusion.—We showed how to achieve both dark-
mode-immune and noise-tolerant optomechanical entan-
glement via synthetic magnetism. This is realized by
introducing a loop-coupling configuration with a combina-
tion of optomechanical interactions and phase-dependent
phonon-hopping couplings. We revealed that both bipartite
and genuine tripartite light-vibration entanglement arise
from the DMB mechanism, without which they vanish.
In particular, we found that the threshold thermal phonon
number for preserving the DMB entanglement can be up to
three orders of magnitude of that in the DMU regime. This
study could enable constructing large-scale entanglement
networks with dark-mode immunity and noise tolerance.
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