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Quantum steering is an important correlation in quantum information theory. A recent work [Nat.
Commun. 12, 2410 (2021)] showed that quantum steering is also beneficial to quantum metrology.
Here, we extend the exploration of this steering-enhanced quantummetrology from a noiseless regime
to a superposition of noisy phase shifts in quantum channels. As concrete examples, we consider
a control system that manipulates the target to pass through superpositions of either dephased
or depolarized phase shifts. We show that the deterioration due to the noise can be mitigated
by selecting the outcome on the control system. Further, we also implement proof-of-principle
experiments for a superposition of the dephased phase shifts on a IBM Quantum computer. Our
experimental results agree with the noise simulations that take into account the intrinsic errors of
the device.

I. INTRODUCTION

Quantum theory allows one party (Alice) to remotely
steer another party (Bob) by her choice of measurements.
Such a quantum phenomenon is called quantum (or Ein-
stein–Podolsky–Rosen) steering. Although the concept
of quantum steering was first proposed by Schrödinger in
early 20th century [1], its information-theoretic descrip-
tion was formulated only quite recently, i.e., in 2007 [2–4].
Nowadays, not only many experimental realizations [5–
10] of quantum steering have been demonstrated, but also
various theoretical applications, such as quantum founda-
tions [11–17], and one-sided device-independent quantum
information tasks [18–24] have been proposed.
Apart from the information-theoretic formulation,

Reid et al. [25, 26] investigated quantum steering from
the viewpoint of the local uncertainty principle [27]. The
idea is that the complementary relations between a pair
of Bob’s non-commutative observables could violate the
Heisenberg’s limit if the correlation shared by Alice and
Bob is steerable. In other words, the local uncertainty
principle can be regarded as a criterion of steering. Re-
cently, Yadin et al. [28] showed that Reid’s criterion can
be extended to the domain of quantum metrology [29–
33], where Bob aims to estimate an unknown phase shift
θ generated by a Hamiltonian H . Their proposal has
also been implemented in an optical system by Gianani
et al. [34]. A main result is that there exists a comple-
mentary relation between the variance of H and the pre-
cision of θ estimation, quantified by the quantum Fisher
information (QFI) [35–40]. This complementary relation
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can be regarded as not only a metrological steering in-
equality, but also a generalized local uncertainty relation.

The metrological steering task has so far been only in-
vestigated under a noiseless scenario, where the phase
shift is generated by a perfect unitary evolution. How-
ever, in a real experimental setup, effects of noise are
ubiquitous, such that the phase shifts could deviate from
a perfect unitary and thus, neutralize quantum advan-
tages in metrology [41–44]. A typical source of noise
comes from the inevitable interaction between a given
system and its uncontrollable environments. A question
arises on how to mitigate the effects of these undesired in-
teractions [45, 46]. Such a question has been addressed by
applying many different methods, e.g., engineered reser-
voirs [47], measurement-error mitigation [45, 48] and dy-
namical decoupling [49].

Recently, a novel approach, termed superposed quan-

tum channels, has been used to enhance quantum capac-
ity in communication tasks [50–54]. In this framework,
multiple quantum channels can be used. Furthermore, an
additional quantum control was introduced to determine
which channel for the target system to pass through; and
hence, when the control system is prepared in a super-
position state, the target system can go through these
channels in a quantum superposition. In this sense, a
superposition of noisy channels induces interference be-
tween alternative noisy processes. One can take advan-
tage of this interference to alleviate the effects of noise
via a suitable post-selection [55–57].

In this work, we consider the cases where the phase
shifts are distorted by either pure dephasing noise or de-
polarizing noise. In this sense, we denote the correspond-
ing noise-distorted phase shifts as dephased phase shifts
and depolarized phase shifts, respectively. Intuitively,
the violations of the metrological steering inequality de-
crease when the noise strengths increase in both cases.
Further, we investigate the influences of post-selection
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on the control system to the superposition of noisy phase
shifts in the metrological steering task. We observe that
for both types of superposed noisy phase shifts, the vio-
lations can be enhanced under a post-selection process.
In addition, for the case of a superposition of depolarized
phase shifts, we show that post-selection is able to delay
the sudden-vanishing of the violation. Finally, we exper-
imentally implement the metrological steering task with
a superposition of dephased phase shifts on a IBM Quan-
tum (IBM Q) computer [58–61]. We clearly observed the
enhancement due to the post-selection of the outcome.
We also provide noise simulations that take the inher-
ent errors within the IBM Q device into account. Our
experimental results agree with the corresponding noise
simulations.

The rest of this work is organized as follows. In Sec. II,
we review the metrological steering task proposed in
Ref. [28] and extend the discussions to a scenario with
superposition of noisy phase shifts. In Sec. III, we for-
malize the concept of superposition of noisy phase shifts
and show that the post-selection technique can be used
to mitigate the effects of noise. In Sec. IV, we show our
experimental results obtained on a IBM Quantum com-
puter. Finally, we summarize our results in Sec. V.

II. A METROLOGICAL STEERING TASK

In this section, we briefly recall the steering-enhanced
quantum metrology proposed in Ref. [28]. We then ex-
tend the discussion to a scenario with superposition of
dephased (depolarized) phase shifts.

We start by formulating the noiseless metrological task
that a phase shift θ is generated by a unitary exp (−iHθ),
where H is the “generating” Hamiltonian. We consider
a bipartite state ρAB shared between Alice and Bob. In
each round of the experiment, Alice performs a mea-
surement labelled by A. The probability to obtain the
result a is denoted as p(a|A); and the conditional re-
duced state of Bob’s subsystem is ρB,a|A. After generat-
ing a local phase shift θ, Bob’s conditional reduced state
becomes ρB,a|A(θ) = exp(−iHθ)ρB,a|A exp(iHθ). It is
convenient to summarize the result by defining an as-
semblage as a set of (subnormalized) quantum states,
namely: {Bθ(a,A) = p(a|A)ρB,a|A(θ)}a,A,θ.

After the measurement, Alice sends the classical in-
formation (a,A) to Bob. Based on this information,
Bob can either measure the observable H or estimate
the phase shift θ by measuring an observable M . Note
that for a given message (a,A) from Alice, Bob can freely
choose the observable M to obtain the maximum sensi-
tivity, quantified by the QFI FQ

(

θ|ρB,a|A

)

[41, 43, 62].

Here, FQ (θ|ρ) := Tr
[

L2
θρ(θ)

]

, where Lθ is the symmetric

logarithmic derivate satisfying ∂θρ(θ) =
1
2{Lθ, ρ(θ)} [31].

The optimal QFI and the optimal variance of H can be

FIG. 1. Illustration of steering-enhanced quantum metrol-
ogy with a superposition of quantum channels. Alice (A) and
Bob (B) share a bipartite state ρAB. Alice performs a mea-
surement A and obtains the corresponding outcome a. Then,
Alice sends her information (a,A) to Bob through a classical
communication. A local phase shift θ on Bob’s side is gener-
ated by a Hamiltonian H . Different from Ref. [28], in which a
phase shift is generated noiseless, we use a system C to control
the evolution of system B and create a superposition of noisy
phase shifts. When C is in the state |0〉 (|1〉), represented by
the white (black) dot on the left, the system B interacts with
the environment E1 (E2). After creating the superposition of
noisy phase shifts, we collect the conditional state and mea-
sure on C. According to Alice’s information, Bob can decide
to either measure H or estimate the phase shift θ through the
measurement M . Then, he can obtain the optimal variance
∆Hopt and QFI FQ,opt.

defined, respectively, as [28];

FQ,opt := max
A

∑

a

p(a|A)FQ

(

θ|ρB,a|A

)

, (1)

∆Hopt := min
A

∑

a

p(a|A)∆
[

ρB,a|A(θ), H
]

, (2)

where ∆[ρ,H ] = Tr
[

H2ρ
]

−Tr [Hρ]2. Note that, in gen-
eral, the QFI is evaluated for a given θ [63].
In modern terminology, the concept of local-hidden-

state (LHS) model is utilized to determine whether a
given assemblage is steeerable or not. More specifically,
an assemblage that admits a LHS model can be described
as [2]

BLHS
θ (a,A) =

∑

λ

p(λ)p(a|A, λ)ρB,λ(θ) ∀a,A, (3)

where {ρB,λ(θ)}λ,θ are quantum states and {p(a|A, λ)}λ
constitute a stochastic map, which maps the hidden vari-
able λ into a|A. If a given assemblage can be simulated
by a LHS model, it is unsteerable. Otherwise, it is steer-
able. As reported in Ref. [28], when an assemblage is
unsteerable, the metrological steering inequality (MSI)
can be derived as FQ,opt ≤ 4∆Hopt. Here, we define the
violation V of the MSI, i.e.,

V := max (FQ,opt − 4∆Hopt, 0) . (4)

Therefore, V > 0 implies that the assemblage is steerable.
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A σx σz

a 0 1 0 1

p(a|A) 0.5 0.5 0.5 0.5

ρa|A |+〉 〈+| |−〉 〈−| |0〉 〈0| |1〉 〈1|

TABLE I. Summary of the results for Alice’s measurements
A with outcomes a, which include the probability p(a|A) and
the corresponding post-measurement state ρa|A.

III. A SUPERPOSITION OF NOISY PHASE

SHIFTS

Throughout this work, we consider that a noisy phase
shift can be described by a noiseless one followed by a
noisy channel Λ [42], i.e.,

Λθ(ρ) = Λ
(

e−iHθ ρ eiHθ
)

. (5)

We now consider a scenario for superposing two identi-
cal noisy phase shifts, as shown in Fig. 1. Recall that,
as given in Eq. (5), a noisy phase shift (or any quan-
tum process) can be effectively modeled as a quantum
channel. According to Ref. [51], a superposition of multi-
ple channels is well-defined if the implementation of each
member channel is specified. More specifically, accord-
ing to the Stinespring dilation theorem [64–66], there ex-
ist non-unique system-environment models to describe a
quantum channel Λθ, namely

∃UBE, EE s.t Λθ(ρ) = TrE[UBE(ρ⊗ EE)U †
BE)], (6)

where UBE denotes the system-environment global uni-
tary, and EE is an initial state of the environment. The
superposition of two identical channels Λθ for a given
implementation can be described by

Utot = |0〉 〈0|C ⊗ UBE1
+ |1〉 〈1|C ⊗ UBE2

. (7)

Here, we introduce a quantum control C to determine
which environment (i.e., E1 or E2,) affects the system B.
If the total system is initially prepared in

ρtot = |j〉〈j|C⊗ρ⊗ EE1
⊗ EE2

(8)

for j being either 0 or 1, the reduced state of C and B
reads

ρCB(θ) = TrE1,E2

[

Utot (|j〉〈j|C⊗ρ⊗ EE1
⊗ EE2

)U †
tot

]

= |j〉〈j|C⊗TrEj
[UBEj

(ρ⊗ EEj
)U †

BEj
]

= |j〉〈j|C⊗Λθ(ρ). (9)

In other words, when C is prepared in the state |j〉, B
interacts with the corresponding environment Ej .
On the other hand, if the quantum control C is pre-

pared in a superposition state |α〉 = √
α|0〉+

√
1− α|1〉,

with 0 ≤ α ≤ 1, we obtain

ρCB(θ) = [ α |0〉 〈0|C + (1− α) |1〉 〈1|C ]⊗ Λθ(ρ)

+
√

α(1− α)(|0〉 〈1|C + |1〉 〈0|C)⊗ Tρ T †,
(10)

where T = TrE (UBE ρ⊗ E) characterizes the quantum
interference effects between these two channels [51]. Note
that we have omitted the subscripts for the environments
because they are isomorphic to each other. Now, we per-
form a set of projective measurements, {|+〉 〈+| , |−〉 〈−|}
with |±〉 = (|0〉±|1〉)/

√
2, on the quantum control C. The

conditional states of B then read

ρB,±(θ) =
TrC [(|±〉 〈±|C ⊗ 11B) ρCB(θ)]

Tr [(|±〉 〈±|C ⊗ 11B) ρCB(θ)]

=
Λθ(ρ)

2P±
±

√

α(1 − α)

P±
Tρ T †,

(11)

where P± = Tr [(|±〉 〈±|C ⊗ 11B) ρCB(θ)] are the suc-
cessful probabilities of the outcomes ± for the projec-
tive measurements. Equation (11) shows that the post-
measurement state does not only depend on the noisy
phase shift Λθ, but also depends on the quantum inter-
ference effects described by T .
We are now ready to demonstrate the main result of

this work, i.e., the superposition of phase shifts can en-
hance the violations of the MSI. We consider the unitaries
Udeph
w and Udepo

v , with visibilities w and v, to implement
the dephased and depolarized phase shifts, respectively,
i.e.,

Udeph
w |ψ〉 ⊗ |0〉E =

√

1− w

2
|ψθ〉 ⊗ |0〉E

+

√

w

2
σz |ψθ〉 ⊗ |1〉E ,

(12)

Udepo
v |ψ〉 ⊗ |0〉E =

√

1− 3v

4
|ψθ〉 ⊗ |0〉E

+

√

v

4
σx |ψθ〉 ⊗ |1〉E

+

√

v

4
σy |ψθ〉 ⊗ |2〉E

+

√

v

4
σz |ψθ〉 ⊗ |3〉E ,

(13)

where |ψθ〉 = exp (−iZθ) |ψ〉.
According to Eq. (11), the states conditioned on the

result “+” can then be written as

ρdephB,a|A,+(θ) =
Λdeph
θ,w (ρB,a|A) + (1 − w

2 )e
−iZθρB,a|Ae

iZθ

2− w
2

,

ρdepoB,a|A,+(θ) =
Λdepo
θ,v (ρB,a|A) +

(

1− 3v
4

)

e−iZθρB,a|Ae
iZθ

2− 3v
4

.

(14)
One can find that, for both cases, the results of the post-
selection can be effectively characterized by a mixture of
a noisy phase shift and a noiseless one, implying that the
effects of noise can be probabilistically decreased. How-
ever, if we do not select the result, we obtain the state
corresponding to a direct trace-out of the dimension of C
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in Eq. (10). Therefore, the reduced state only depends on
a single-use of the noisy phase shift, i.e., ρB = Λθ(ρ). In
Fig. 2, we present the violations for the cases; (1) a super-
position of dephased (depolarized) phase shifts without
selecting the result on C as V deph

w (V depo
v ) and (2) with

post-selection on the result “+”, i.e., Ṽ deph
w (Ṽ depo

v ). For
the case with the superposition of pure dephased phase
shifts, as shown in Fig. 2(a), one can observe that post-
select the results on C has a clear enhancement on the
violations for a given visibility w. Although the system
is completely dephased, we still can find the violation
≈ 0.11. In addition, without a post-selection of the depo-
larized one, as shown in Fig. 2(b), the sudden-vanishing
of the violation occurs when v ≈ 0.29, while post-select
the result on “+” extends the effect to v ≈ 0.48.

0 1
w

0
0.11

1

V

(a)
Ṽ deph
w

V deph
w

0 0.29 0.48 1
v

0

1

V

(b)
V depo
v

Ṽ depo
v

FIG. 2. Violations of the metrological steering inequality for
the case with a superposition of (a) pure dephased and (b) de-
polarized phase shifts. We take θ = 0 and plot the violations
in Eq. (4) with respect to the visibilities w and v. One can ob-
serve the enhancement due to the post-selection on the result
for a given visibility. Additionally, for the case of dephased
phase shift (a), we can observe that although the system is
fully dephased, we still can witness the violation ≈ 0.11 in the
post-selection case. Also, for the case with depolarized phase
shift (b), the sudden-vanishing effect of the violation can be
extended from v ≈ 0.29 to v ≈ 0.48.

IV. EXPERIMENTAL DEMONSTRATION

In this section, we propose a circuit model of super-
position of dephased phase shift that only consists of 12
CNOT gates and 17 single-qubit gates, and demonstrate
the enhancement on a IBM Q processor. Additionally,
we use a model to simulate the device-intrinsic noise to
identity the effects of noise in our experimental data.
To further decrease the circuit depth, we consider a

scenario known as temporal quantum steering [67–69].
Therein, the initial maximally entangled state shared by
Alice and Bob can be replaced by a prepare-and-measure
scenario [70–72]. More specifically, instead of performing
local measurements on the bipartite state |ψAB〉, Alice
now measures σx and σz on a maximally mixed state 11/2.
Then, the probability p(a|A) and the post-measurement
state ρa|A are exactly the same as those in Table I.
Since the IBM Q does not allow us to obtain the post-
measurement state, we directly prepare the eigenstates of
σx and σz . Further, we assume that p(a|A) = 1/2 ∀a,A.

A. Circuit implementation on the IBM Q

As shown in Fig. 3, we provide a circuit model to exper-
imentally implement the metrological steering task with
the superposition of dephased phase shifts described in
the previous section [Eqs. (7) and (12)]. This circuit
involves four qubits, which serve as the control C, the
system B, and the two environments, E1 and E2, respec-
tively. Because CNOT gates on the IBM Q are restricted
by the connectivity of the devices, we find that the im-
plementation of the circuit on the devices with the cou-
pling map shown in Fig. 3(b) can minimize the number
of CNOT gates.
This circuit can be divided into three parts: (i) state

preparation, (ii) the superposition of dephased phase
shifts, and (iii) measurement on the qubits C and B.
In part (i), the qubits C, B, and E1,(2) are prepared in
the states |+〉 〈+|, ρa|A, and |0〉 〈0|1,(2), respectively. In

the IBM Q device, all qubits are initially in state |0〉.
The state preparation can be achieved by applying single-
qubit gates on each qubit. For instance, we can obtain a
|+〉C by applying a Hadamard gate on the control system
C.
In part (ii), the circuit model of the superposition of

dephased-noise phase shifts is shown in Fig. 3(a). The
qubit topology of the four qubits that we chose in IBM-
Cairo is shown in Fig. 3(b). Through the control qubit C,
the system B can interact with alternative environments.
We divide the total unitary in Fig. 3(a) into a gate se-
quence which is shown in Fig. 3(c). In this sequence, we
use control-rotation with angle φ on the system B and its
respective environment. After we trace out its environ-
ment, this control-rotation gate is effectively equal to the
pure dephasing noise on the system B. Here, the visibility
of the pure dephasing noise w is tuned by the angle φ,
such that φ = 2 sin−1(

√

w/2), with φ ∈ [0, π/2]. In part
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(a) (b)

(c)

FIG. 3. Circuit model for steering-enhanced quantum metrology with a superposition of noisy phase shifts. Schematics: (a)
circuit model without and (c) with details. (b) In the topology of the four qubits we chose in the IBM-Cairo device device,
the numbers are the labels of the qubits #24, #25, #26, #22, representing the system C, B, E1, E2, respectively. Here, the
visibility w is tuned by the angle φ such that w = 2 sin2(φ/2). We use the standard symbols for quantum gates (see Appendix
A).

(iii), we measure σx on qubit C and measure σz or σy on
qubit B. Note that IBM Q only allow us to conduct mea-
surement σz , therefore, we can apply a Hadamard gate
(H) on the qubit before the IBM Q-measure to measure
σx, and a phase gate (S) plus Hadamard gate to obtain
the measurement σy.

Let us now elaborate how to obtain the Fisher infor-
mation (FI) and the variance from the measurement re-
sults. The measurement data can be summarized by a set
of probabilities {pθ,φ(b, c|M,ρa|A)}, where M ∈ {σz , σy}
denotes Bob’s measurement with the outcome b ∈ {0, 1},
and c ∈ {0, 1} is the outcome of measuring σx on C.
Note that {Mb}b is the set of positive operators that sat-
isfy

∑

bMb = 11. The probability p(b|M) is given by
the Born rule, that is, p(b|M) = Tr[Mbρ]. As aforemen-
tioned, we can decide whether to select the outcome c = 0
associated with the eigenstate |+〉C. However, if we take
both the outcomes c = 0 and c = 1 into account, we
obtain the result without post-selection. The marginal
probabilities then reads

pθ,φ(b|M,ρa|A) =
∑

c

pθ,φ(b, c|M,ρa|A). (15)

For the case of post-select the result on |+〉C, we fix c = 0

to obtain the probability

pθ,φ(b|M, c = 0, ρa|A) =
pθ,φ(b, c = 0|M,ρa|A)

∑

b pθ,φ(b, c = 0|M,ρa|A)
.

(16)
We can then obtain the optimal variance ∆Hopt by
Eq. (2).
In addition, the optimal FI can be expressed as

Fopt := max
A

∑

a

p(a|A)F
(

θ|M,ρa|A
)

. (17)

Here, F
(

θ|M,ρa|A
)

denotes the FI of a conditional state
ρa|A, which is defined as

F
(

θ|M,ρa|A
)

:=
∑

b

[

∂θpθ(b|M,ρa|A)
]2

pθ(b|M,ρa|A)
. (18)

Note that the FI for a given measurementM is a lower
bound of QFI i.e., F

(

θ|M,ρa|A
)

≤ FQ(θ|ρa|A) [31], and
thus, Fopt ≤ FQ,opt.
We implement our proposal on IBM-Cairo device be-

cause it has longer relaxation and coherence times, i.e.,
T1, T2, and lower gate errors than other available IBM Q
devices (see Table. II and the information from IBM Q
website [73]). In addition, we choose the qubits, labeled
by #25, #24, #26, and #22 in the device, to represent
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0 0.38 1
w

0

0.27

0.69

1 (a)
F

deph
opt,w(Sim)

F
deph
opt,w(Exp)

4∆Z
deph
opt,w(Sim)

4∆Z
deph
opt,w(Exp)

0 0.74 1
w

0
0.08

0.20

0.76

1 (b)
F̃

deph
opt,w(Sim)

F̃
deph
opt,w(Exp)

4∆̃Z
deph
opt,w(Sim)

4∆̃Z
deph
opt,w(Exp)

FIG. 4. Experimental results and noisy simulations of: (a) Superposition of dephased phase shifts without post-selection, and
(b) Superposition of dephased phase shifts with post-selection. The red-x (blue-circle) data points are the experimental results
of optimal Fisher information (optimal variance) with respect to the visibility w of superposition of dephased phase shifts.
Here, the error bars are calculated by 40 rounds of experiments and we choose θ = 0. The solid curves represent the noisy
simulations for the post-selected outcome “+” on the control system C; the dashed curves represent the noisy simulations
without post-selection. Our experimental results agree with the noise simulations in both cases (a) and (b). We observe that
by post-selecting the outcome “+” on the control system C can clearly enhance the optimal Fisher information and decrease
the optimal variation; and thus, enhance the violations of the metrological steering inequality from w ≈ 0.38 to w ≈ 0.74.

B, C, E1, and E2, respectively because of their connec-
tivities [see Fig. 3(b)]. As shown in Fig. 4, we provide
the results by conducting experiments on the IBM-Cairo
device with 10, 000 shots for each data point.
To calculate the partial derivative of the probability in

Eq. (18), we use a fitting function g(θ) = 0.5+α sin(2θ+
β) to interpolate the pθ,φ, where α and β are fitting pa-
rameters. Also, we take θ = 0 to obtain the maximum
value of the optimal FI. We observe that the superposi-
tion can increase Fopt and decrease ∆Zopt. The threshold
of the MSI violations can be increased by post-selection,
i.e., from w ≈ 0.38 to w ≈ 0.74.

FIG. 5. The model of noisy simulations. We model the qubit
relaxation and qubit dephasing effect that occurs after per-
forming a total unitary evolution. After that, we apply depo-
larizing channels to describe gate errors and bit-flip channels
both on B and C to simulate the readout errors.

B. Noise simulations

Here, we also provide noise simulations by using
NumPy and QuTip [74–76] (see also the similar discus-

sion in Ref. [77, 78]). In our noise model, we consider
three different sources of the intrinsic noise from the
device: qubit relaxation and qubit dephasing (QRQD),
CNOT error, and readout error.
First, the QRQD is modeled by the following Lindblad

master equation [79]:

∂ρ(t)

∂t
=

n
∑

m

γ
(m)
T1

2

[

2σ
(m)
− ρ(t)σ

(m)
+ − {σ(m)

− σ
(m)
+ , ρ(t)}

]

+
n
∑

m

γ
(m)
T2

2

[

2σ(m)
z ρ(t)σ(m)

z − {σ(m)2
z , ρ(t)}

]

,

(19)

where γ
(m)
T1

= 1/T
(m)
1 and γ

(m)
T2

= 1/T
(m)
1 −1/(2T

(m)
2 ) are

the mth qubit relaxation and decoherence rates, respec-
tively. Here, σ+(σ−) denotes the atomic creation (anni-
hilation) operator, and the corresponding relaxation (de-
phasing) time T1 (T2) are summarized in Table. II. We
model the QRQD effect that occurs after performing a
total unitary evolution (see Fig. 5) and simulate it us-
ing the master equation solver MESOLVE in QuTip. We
sum over all the gate times in the circuit and obtain the
total gate time ≈ 3, 725 ns. Note that each Pauli X gate
in IBM-Cairo device takes 21.3 ns, and the Hadamard
gate H (phase gate S) gate takes 5 (3) times longer than
that of the Pauli X gate, respectively.
Second, the gate error is determined from the random-

ized benchmarking [80, 81]. In a quantum assembly sim-
ulator, the gate error for the n-qubits system can be mod-
eled by depolarizing noise [82], i.e.,

Gerr(ρ) = (1 − ΓG)ρ+ ΓG
11

2n
, (20)
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Qubits T1 (µs) T2 (µs) ΓX (10−4) ΓR (10−2)

B 118.4 194.5 1.5 1.0

C 122.2 196.5 4.7 1.5

E1 84.1 44.1 1.7 0.1

E2 102.3 138.4 3.0 2.1

CNOT gate CNOT error (10−3) Gate time (ns)

B − C 6.8 309.3

B − E1 6.6 248.9

B − E2 9.0 202.7

TABLE II. Error parameters in the IBM-Cairo device. The
number of the four qubits in IBM-Cairo device are labeled
as: #25, #24, #26, and #22, representing the systems B,
C, E1, and E2, respectively. Where T1 (T2) is the relaxation
(dephasing) time, ΓX is the Pauli gate error, and ΓR is the
readout error. Note that these error rates are public informa-
tion on the IBM Q website [73]. These numbers are presented
here for completeness.

where ΓG is the gate error rate. In our model, we assume
that the gate errors are sequentially accumulated; thus,
we multiply the different error rates which appear in the
circuit. Inserting the CNOT-gates error rate and the
single-qubit Pauli-gates error rate ΓX shown in Table. II,
we obtain this gate error rate effect to about 9.2%.
Finally, the readout error occurs because quantum de-

vices have the probability of misrecording the ideal result
0(1) as 1(0), respectively. Therefore, it can be modeled
by a bit-flip channel, i.e.,

Rerr(ρ) = (1− ΓR)ρ+ ΓR σxρσx, (21)

where ΓR is the probability of the readout error.
As a result, the primary source causing errors is the

number of CNOT gates, because they create a signifi-
cant error rate compared to single-qubit gates. More-
over, the CNOT-gates also take longer time [76], meaning
that they also increase the error effects from the QRQD.
Although we have “only” used 12 CNOT-gates and 17
single-qubit gates in our circuit implementation of a su-
perposition of the dephased phase shifts, it still creates
errors greater than 21.6% with post-selection and 27.0%
without post-selection. For the depolarized phased shift,
the used Toffoli gates implemented by numerous CNOT-
gates, we find that the number of CNOT gates needed
is ≥ 328. With this number of CNOT gates, the circuit
depth and gate errors can destroy any kind of quantum
advantages, which we discuss in Appendix A.

V. SUMMARY

In this work, we generalized the metrological steering
task described in Ref. [28] to a scenario with noisy phase

shifts. We show that the violations of the MSI, given
in Eq. (4), monotonically decreases for the superposi-
tion of dephased or depolarized phase shifts. Further, we
show that by post-select the outcome “+” on the con-
trol system, we can enhance the violations of the MSI in
comparison with the case without the post-selection.
Moreover, we proposed a circuit model for superpos-

ing two dephased phase shifts and experimentally im-
plemented the circuit on IBM Quantum computer. We
clearly observe the violations of the MSI, and the exper-
imental results agree with our noise simulations.
Finally, it is known that the order of channels can also

be coherently controlled [83, 84]. Therefore, it would be
promising to apply this framework to the noisy metro-
logical steering task.
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Appendix A: Circuit model of a superposition of

depolarized phase shifts

In this Appendix, we aim to construct a circuit that
satisfies the depolarized phase shifts implementing the
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FIG. 6. Circuit implementing a superposition of depolarized phase shifts. We assume that all the environments E and control
C are initialized to |0〉.

operations in Eq. (13). A direct way to design a depolar-
izing phase shift circuit is that we can use three different
kinds of Toffoli gates to represent the system transfor-
mation errors modeled by σx, σy, and σz with different
probabilities [86]. As shown in Fig. 6, we use a two-qubit
system, which plays a role of a four-level environment in
Eq. (13), i.e.,

|0〉E → |0〉 |0〉E , |1〉E → |0〉 |1〉E ,
|2〉E → |1〉 |0〉E , |3〉E → |1〉 |1〉E .

(A1)

To fit the factors
√

1− 3v
4 and

√

v
4 in Eq. (13), we apply

FIG. 7. Circuit implementing the unitary operation U(ζ, ξ),
which maps |0〉 |0〉

E
onto the state in (A3).

a unitary U(ζ, ξ), which maps the two-qubit environment
|0〉 |0〉E into

√

1− 3v/4 |0〉 |0〉E +
√

v/4 (|0〉 |1〉E + |1〉 |0〉E + |1〉 |1〉E)
(A2)

with two rotation parameters ζ and ξ on the environmen-
tal system (see also Fig. 7). After mapping U(ζ, ξ), we

obtain the initial state

|0〉 |0〉E → cos
ζ

2
cos

ξ

2
|0〉 |0〉E +

√

1

2
sin

ζ

2
|0〉 |1〉E

+cos
ζ

2
sin

ξ

2
|1〉 |0〉E +

√

1

2
sin

ζ

2
|1〉 |1〉E .

(A3)

One can find that if we let ζ = 2sin−1
√

v/2 and ξ =

2sin−1
√

v/(4− 2v), we can obtain the red (blue) box in

Fig. 6, which is equal to Udepo
v in Eq. (13).

In general, to implement a superposition of quantum
channels in a gate-based quantum simulation requires us-
ing many Toffoli gates [87, 88]. For the superposition of
two depolarized phase shifts, we require an additional
control system. Therefore, there are six controlled Tof-
foli gates required to simulate the desired dynamics (see
Fig. 6). Since a Toffoli gate can be decomposed into six
CNOT gates and nine single-qubit gates [86], therefore,
a single controlled Toffoli gate contains 52 CNOT gates
and needs ≈ 16, 400 ns to operate.
In total, there are 328 CNOT gates in our circuit, cre-

ating the gate-error rates of at least 94.3%, and a total
gate time ≈ 111, 945 ns. The noise simulations of the
depolarized noise phase shifts are shown in Fig. 8. We

note that 4∆̃Zdepo
opt,v is larger than 0.99 and the F̃ depo

opt,v is
less than 0.01. Thus, we do not observe the violation of
the metrological steering inequality in Eq. (4) on IBM Q
devices since the circuits error is too large and destroys
the quantum advantages.
For clarity and completeness, we recall the meaning

of standard gates used in our implementation both in
Fig. 3 and Fig. 6. Specifically, X , Y , Z, represent Pauli
gates, H the Hadamard gate, and S the phase gate,
defined as S = diag(1, i). Also, Rz(θ) is the rotation
gate along the z-axis with angle θ, written as Rz(θ) =
diag[exp (−iθ/2), exp (iθ/2)]. The black-dot two-qubit
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0 1
v

0

1

(a)

F
depo
opt,v

4∆Z
depo
opt,v

0 1
v

0

1

(b)

F̃
depo
opt,v

4∆̃Z
depo
opt,v

FIG. 8. Noise simulations of the superposition of depolarized phase shifts for: (a) without post-selection and (b) with post-
selection. We find that both optimal Fisher information in (a) and (b) are less than 0.01 and both optimal variations are larger
than 0.99, such that there is no violation of the metrological steering inequality for all visibility v.

gates in Fig. 3 are the controlled-NOT (CNOT) gates, while the three-qubit gates in Fig. 6 are different types
of Toffoli gates, i.e., the double CNOT gates [86].
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[11] M. T. Quintino, T. Vértesi, and N. Brunner, Joint mea-

surability, Einstein-Podolsky-Rosen steering, and bell
nonlocality, Phys. Rev. Lett. 113, 160402 (2014).

[12] R. Uola, T. Moroder, and O. Gühne, Joint measura-
bility of generalized measurements implies classicality,
Phys. Rev. Lett. 113, 160403 (2014).

[13] R. Uola, C. Budroni, O. Gühne, and J.-P. Pellonpää,
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R. Demkowicz-Dobrzański, Tensor-network approach for
quantum metrology in many-body quantum systems,
Nat. Commun. 11, 250 (2020).

[36] L. J. Fiderer, J. Schuff, and D. Braun, Neural-network
heuristics for adaptive bayesian quantum estimation,
PRX Quantum 2, 020303 (2021).

[37] S. Zhou and L. Jiang, Asymptotic theory of quantum
channel estimation, PRX Quantum 2, 010343 (2021).

[38] K. Xu, Y.-R. Zhang, Z.-H. Sun, H. Li, P. Song,
Z. Xiang, K. Huang, H. Li, Y.-H. Shi, C.-T.
Chen, X. Song, D. Zheng, F. Nori, H. Wang,
and H. Fan, Metrological characterization of non-
gaussian entangled states of superconducting qubits,
Phys. Rev. Lett. 128, 150501 (2022).

[39] M. Yu, Y. Liu, P. Yang, M. Gong, Q. Cao, S. Zhang,
H. Liu, M. Heyl, T. Ozawa, N. Goldman, and J. Cai,

Quantum Fisher information measurement and verifica-
tion of the quantum cramér–rao bound in a solid-state
qubit, npj Quantum Inf. 8, 56 (2022).

[40] A. Fallani, M. A. C. Rossi, D. Tamascelli, and M. G.
Genoni, Learning feedback control strategies for quantum
metrology, PRX Quantum 3, 020310 (2022).

[41] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum
metrology, Phys. Rev. Lett. 96, 010401 (2006).

[42] B. M. Escher, R. L. de Matos Filho, and L. Davi-
dovich, General framework for estimating the ultimate
precision limit in noisy quantum-enhanced metrology,
Nat. Phys. 7, 406 (2011).

[43] V. Giovannetti, S. Lloyd, and L. Maccone, Advances in
quantum metrology, Nat. Photon. 5, 222 (2011).

[44] R. Demkowicz-Dobrzański and L. Maccone, Us-
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