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We describe a novel type of blockade in a hybrid mode generated by linear coupling of photonic
and phononic modes. We refer to this effect as hybrid photon-phonon blockade and show how it
can be generated and detected in a driven nonlinear optomechanical superconducting system. Thus,
we study boson-number correlations in the photon, phonon, and hybrid modes in linearly coupled
microwave and mechanical resonators with a superconducting qubit inserted in one of them. We
find such system parameters for which we observe eight types of different combinations of either
blockade or tunnelling effects (defined via the sub- and super-Poissonian statistics) for photons,
phonons, and hybrid bosons. In particular, we find that the hybrid photon-phonon blockade can be
generated by mixing the photonic and phononic modes which do not exhibit blockade.

I. INTRODUCTION

Photon blockade (PB) [1], also referred to as optical
state truncation (see reviews in [2]), or nonlinear quan-
tum scissors (for a review see [3]) is an optical analog of
Coulomb’s blockade. Specifically, it refers to the effect
in which a single photon, generated in a driven nonlinear
system, can block the generation of more photons. The
light generated by an ideal (or ‘true’) PB exhibits both
sub-Poissonian photon-number statistics and photon an-
tibunching. But often even if one of these properties is
satisfied, the term PB is often used.

PB has been demonstrated experimentally in vari-
ous driven nonlinear systems with single [4–10] and
two [11, 12] resonators, in a bimodal cavity [13], or even
in cavity-free systems [14]. The experimental platforms
where PB was observed include: cavity quantum electro-
dynamics (QED) with Fabry-Perot cavities [4], photonic
crystals [5], and whispering-gallery-mode cavities [15],
as well as circuit QED [6, 7]. Note that the possibil-
ity of producing a single-photon state in a driven cav-
ity with a nonlinear Kerr medium was predicted already
in [16–18], but only the publication of Ref. [1], where
the term ‘photon blockade’ was coined, has triggered
much interest in studying this effect both theoretically
and experimentally. Arguably, many studies reported
already in the 1970s and 1980s on photon antibunch-
ing and sub-Poissonian light (see, e.g., reviews in [19–21]
and references therein) are actually about PB-related ef-
fects, although such a relation (to the optical analog of
Coulomb’s blockade) was not mentioned explicitly there.

In addition to the original idea of using PB as a single-
photon turnstile device with single [1, 15, 22] or multi-
ple [23] outputs, PB can have much wider applications in
quantum nonlinear optics at the single-photon level, in-
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cluding single-photon induced nonlinear effects, quantum
noise reduction via antibunching of photons, simulations
of nonreciprocal nonlinear processes, or studying chiral-
ity at exceptional points for quantum metrology, etc.

A number of generalizations of the standard single-PB
were proposed, which include: (i) two- and multi-photon
versions of PB, as first predicted in [24, 25] and demon-
strated experimentally in [10, 26]; (ii) unconventional
PB as predicted in [27] and experimentally demonstrated
in [11, 12]; (iii) Conventional and unconventional nonre-
ciprocal PB effects as predicted in [28, 29] and (at least
partially) confirmed experimentally in [30]; (iv) state-
dependent PB [31], (v) exceptional PB [32], (vi) disper-
sive PB [7], and (vii) linear quantum scissors based on
conditional measurements for: single-PB [33–35], which
was experimentally demonstrated in [36], as well as two-
PB [37], and multi-PB [38, 39] using multiport Mach-
Zehnder interferometers [40]. This probabilistic approach
to PB enables also quantum teleportation and more se-
lective optical-state truncations, e.g, hole burning in the
Hilbert space [41]. Concerning example (ii), note that
PB in two driven Kerr resonators was first studied in
[42], but only for relatively strong Kerr nonlinearities.
Surprisingly, PB remains in such two-resonator systems
even for extremely weak Kerr nonlinearities, as first ob-
served in [27] and explained via destructive quantum in-
terference in [43]. This effect is now referred to as un-
conventional PB [44].

Here we study phonon blockade [45], which is a me-
chanical analogue of the mentioned blockade effects, i.e.,
the blockade of quantum vibrational excitations of a me-
chanical resonator. This effect has not been demon-
strated experimentally yet. However, a number of ex-
perimentally feasible methods have been proposed for
measuring it, including a magnetomotive technique [45],
an indirect measurement of phonon correlations via opti-
cal interferometry [46], or by coupling a mechanical res-
onator to a qubit, which is used not only for inducing the
resonator nonlinearity, but also to detect the blockade ef-
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fect itself, i.e., by measuring qubit’s states [47]. Among
possible applications of phonon blockade, we mention:
testing nonclassicality of meso- or macroscopic mechani-
cal systems [45] and studying single-phonon optomechan-
ics, in addition to offering a source of single- or multiple
phonons [48, 49].

PB can be changed into light transmission [50], e.g.,
by photon-induced tunneling (PIT) [5]. This is another
nonclassical photon-number correlation phenomenon, in
which the probability of observing more photons in a
higher manifold of the system increases with the gen-
eration of the first photon near the resonance frequency
of the system. Multi-PIT effects were also predicted [28],
including those generated by squeezing [51].

For simplicity, we use here the abbreviation PB, when
referring to the blockade of not only photons, but also of
phonons or hybrid photon-phonon bosons. The precise
meaning can be found from its context, e.g., when we re-
fer to a specific mode, including the optical (a), mechan-
ical (b), or hybrid (c) modes. Analogously, PIT denotes
a given particle-induced tunneling among the three types
of excitations.

Nanomechanical resonators can coherently interact
with electromagnetic radiation [52], and quantum corre-
lations between single photons and single phonons were
studied for a single entangled photon-phonon pair [53] or
via photon and phonon blockade effects in optomechan-
ical systems [54]. A mechanical switch between PB and
PIT has been studied recently [55]. PB and PIT effects
in systems comprising mechanical and optical resonators,
which are characterized by the same or similar bare fre-
quencies, to our knowledge, have not been studied exper-
imentally yet, although they seem to be experimentally
feasible and, thus, they are at focus of this paper.

Crucial signatures of PB and PIT can be observed by
measuring the second-order correlation function, g(2)(0).
Specifically for photons, (i) the condition of g(2)(0) <
1 defines the sub-Poissonian photon-number statistics
(also referred to as zero-delay-time photon antibunch-
ing), which indicates the possibility of observing PB,
while (ii) the condition g(2)(0) > 1, defines the super-
Poissonian statistics (also referred to as zero-delay-time
photon bunching), which is a signature of PIT in a given
system. To observe the ‘true’ effects of PB and PIT,
also other criteria should be satisfied, such as nonzero-
delay-time photon antibunching and higher-order sub-
Poissonian photon-number statistics. Indeed, an ideal
conventional PB, which can be served as a single-photon
source, usually should also be verified by studying higher-
order correlation functions, g(n)(0) for n > 2. For exam-
ple, in case of single-PB (1PB) conditions g(2)(0) < 1 and
g(n)(0) < 1 for n > 2 should be fulfilled.

PB can be verified also in other ways via demonstrat-
ing, e.g., a staircase-like dependence of the mean photon
number (or measured power transmitted through a non-
linear resonator) on the energy spectrum of the photons
incident on the resonator [7, 50]. Such a dependence
is the photon analog of the Coulomb staircase. All of

the above criteria are just witnesses of PB, i.e., they are
necessary but not sufficient conditions for demonstrating
PB. A sufficient condition could be, e.g., showing a high
fidelity of a given generated light (with a nonzero mean
photon number) to an ideally truncated two-dimensional
state, which is the closest to the generated one. This ap-
proach was applied in, e.g., [25, 34, 35]. The latter two
types of PB tests are, however, are not applied in this
paper.

Conventional single-PB prevents the absorption of a
second photon with a specific frequency due to the non-
linearity of a given system. Such a nonlinearity can be
described by a Kerr-type interaction and/or can induced
by an atom (real or artificial) coupled to a resonator.
An artificial atom can be realized by, e.g., a quantum
dot [22, 56, 57] in cavity QED [9] or a superconducting
qubit or qudit in circuit QED [50].

Unconventional PB, which is induced by destructive
interference, operates better for very low (or even ex-
tremely low) mean photon numbers [11, 12]. This can
be disadvantageous by considerably decreasing the prob-
ability of generating a single photon. But, at the same
time, it can be an advantage, because a very small mean
photon number usually reduces the chance of generating
multi-photon states and inducing higher-order coherence.
This is not always the case, and even if the probability
of observing two photons is suppressed, higher-order co-
herence might be enhanced, leading to the generation of
multi-photon states [44].

In this paper, we consider an optomechanical system,
which generates photonic and phononic modes. Then we
apply a balanced linear coupling transformation to the
these modes to create hybrid modes (also referred to as
supermodes). We study the interplay between photons
and phonons resulting in their nonclassical number cor-
relation effects. Thus, we find such system parameters to
observe either PB or PIT in the four modes. In particu-
lar, we predict PB in one of the hybrid modes, but not in
the individual (photon and phonon) modes, i.e., this PB
is created from the two modes, which do not exhibit PB.
We refer to this effect as hybrid photon-phonon blockade,
which is the main result reported here.

To show this effect we analyze the system of two
linearly-coupled resonators: a superconducting mi-
crowave resonator (SMR), which might be a transmission
line resonator, and a mechanical resonator, referred to as
a quantum drum (QD), which is capacitively coupled to
the SMR. To generate any kind of PB (including uncon-
ventional PB), one needs to incorporate a nonlinearity
into a given system [16, 58, 59]. This can be done by
coupling one of the resonators (e.g., the SMR) to a qubit
(e.g., an artificial superconducting two-level atom). We
also assume that the system is driven either at the QD
or the SMR.

The paper is organized as follows: The hybrid optome-
chanical system and its Hamiltonians are introduced in
Sec. II. We also define the hybrid photon-phonon modes,
which can be generated by the balanced linear coupling
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of photonic and phononic modes. In Secs. III and IV, we
study the correlation effects in the photonic, phononic,
and one of the hybrid modes in the system driven at
either the optical or mechanical resonator, respectively,
for experimentally feasible parameters specified in Ap-
pendix A. In Sec. V and Appendix C, we predict and ana-
lytically explain the generation of unconventional hybrid-
mode blockade via non-Hermitian Hamiltonian method.
In Sec. VI, we systematically study different weaker and
stronger criteria for observing blockade and tunneling ef-
fects in our system. We also find all the eight combina-
tions of the conventional blockade and tunneling effects
in the three modes. In particular, we find a surprising
effect that the hybrid-mode photon-phonon blockade can
be generated by mixing the photonic and phononic modes
exhibiting tunneling effects. In Sec. VII, we discuss two
types of schemes for measuring photon-phonon correla-
tions in the hybrid mode. In addition to this study of the
second-order correlation effects, we discuss also higher-
order effects and their classification in Appendix B. We
conclude in Sec. VIII.

FIG. 1. Schematics of the discussed circuit-QED-based real-
ization of the considered hybrid optomechanical system. It
consists of a superconducting qubit embedded in a supercon-
ducting microwave resonator (SMR), e.g., a transmission-line
resonator, to induce its nonlinearity. A quantum microme-
chanical resonator, which is referred to as a quantum drum
(QD), is coupled to the SMR with a tunable capacitor Cg.
We assume that the system is driven either at the SMR or
QD. Dashed semicircular curves visualize that the QD is os-
cillating. The driving and motion detection of the QD can
be realized by controlling the static magnetic field B, poten-
tial Vg, and alternating current I(t), as described in [45] for
detecting phonon blockade.

II. THE SYSTEM AND HAMILTONIANS

Figure 1 shows the schematics of the studied hybrid
system, which consists of a superconducting two-level ar-
tificial atom (a qubit) embedded in a waveguide and cou-
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FIG. 2. Energy levels ωn versus the QD frequency ωm in units
of the SMR frequency ωSMR for the Hamiltonian Eq. (2) with
the parameters given in Eq. (A1) and g = 7.5γ. The three
manifolds of the lowest energy levels in panel (a) are zoomed
in panels (b-d) near the resonance ωm = ωSMR to reveal the
anticrossing of energy levels. Here, ω(n)

i (with n = 1, 2, 3)
denotes the frequencies of the nth manifold.

pled to an SMR, which might be a transmission-line res-
onator. This qubit induces anharmonicity in the SMR,
which is crucial for observing PB. Our setup includes
also a microwave-frequency mechanical resonator (a QD),
which is capacitively coupled to the SMR. The nonlinear-
ity of the QD is induced indirectly by the linear coupling
of the QD to the effectively nonlinear SMR.

The free Hamiltonian of the SMR is Ha = ~ω
SMR

a†a,
where ω

SMR
is its resonance frequency and a (a†) is the

photon annihilation (creation) operator. We can reason-
ably assume the SMR quality factor as Q

SMR
≈ 104. The

free Hamiltonian of the QD is Hb = ~ωmb†b, where ωm is
its resonance frequency and b (b†) is the phonon annihi-
lation (creation) operator. In our numerical simulations,
we set ωm/2π = 7.8 GHz and the QD quality factor as
Qm ≈ 260. Moreover a two-level quantum system has the
ground state |g〉 and the excited state |e〉 with transition
frequency ωq. The free qubit Hamiltonian is described as
Hq = ~ωqσ+σ−, where σ+ = |e〉〈g| (σ− = |g〉〈e|) is the
atomic raising (lowering) operator. Thus, the total free
Hamiltonian of the system is H0 = Ha + Hb + Hq. The
complete Hamiltonian (without driving) of our coupled
system can be given by (~ = 1)

H ′1 = H0 + g(a†σ− + aσ+)

+gr(b+ b†)a†a+ gl(a− a†)(b+ b†), (1)

which includes the three coupling terms: (i) the Jaynes-
Cummings term describing the interaction between the
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SMR and qubit under the rotating-wave approximation;
(ii) the radiation-pressure term with coupling strength
gr; and (iii) the Hopfield-type nonlinear coupling term
with strength gl. In the typical range of parameters
of analogous superconducting circuits [60], the gl-term
is dominant, so the radiation-pressure term can be ne-
glected [61]. Moreover, although the counter-rotating
terms ab− b†a†, which appear in the gl-interaction, play
an important role in the ultrastrong and deep-strong cou-
pling regimes [62], they can be safely omitted under the
rotating wave approximation, which is valid in the weak
and strong coupling regimes. Indeed, the latter regimes
are solely studied in this paper. Then the Hopfield non-
linear gl-interaction becomes effectively linearized. Thus,
Hamiltonian (1) reduces to

H1 = H0 + g(a†σ− + aσ+) + f(a†b+ ab†), (2)

where the linear-coupling strength is denoted by f , which
replaces the symbol gl. The eigenstates of Hamiltonian
H1 can be referred to as atomic-optomechanical polari-
tons or atom-cavity-mechanics polaritons [63]. It is clear
that Hamiltonian H1 conserves the polariton number
Npolariton = a†a + b†b + σ+σ−. Thus, H1 can be diago-
nalized in each subspace (or manifold) H(n) with exactly
n polaritons.

Moreover, we assume that an optical pump field of
frequency ωp is applied either to the SMR mode a, as
described by

H
(a)
drv(t) = ηa(eiωpta+ e−iωpta†), (3)

or to the QD mode b, as given by

H
(b)
drv(t) = ηb(e

iωptb+ e−iωptb†), (4)

to drive (excite) the system (with coupling strength ηa
or ηb) from its ground state and to induce the emission
of photons and phonons. Thus, the total Hamiltonian
becomes

H(n)(t) = H1 +H
(n)
drv(t) (n = a, b). (5)

Direct driving of the QD can be implemented by a
weak-oscillating current, as considered in Refs. [45, 46],
where the drive strength ηb is proportional to the cur-
rent amplitude I(t) and the magnetic field B shown in
Fig. 1. The SMR can be driven in circuit-QED systems
in various ways [60].

Note that by driving directly the SMR (or alterna-
tively the QD), one also indirectly drives the QD (SMR)
through the capacitive coupling Cg, as shown in the
scheme in Fig. 1. So, by referring to the SMR- or QD-
driven systems, we indicate only the resonator, which
is directly pumped, although finally both resonators are
driven.

The inclusion of an additional nonlinearity in the QD
and/or applying drives to the qubit(s) and both res-
onators is not essential for the prediction of hybrid block-
ade, but this could enable achieving stronger photon-
phonon antibunching and more sub-Poissonian statistics.

Considering the case, where the pump field drives only
the SMR, to remove the time dependence of the Hamil-
tonian H(n)(t) and to obtain its steady-state solution,
we transform the system Hamiltonian into a rotating
frame. By using the frame rotating with the pump
frequency ωp/2π, H(a)(t) reduces the time-independent
SMR-driven Hamiltonian:

H ′ = ∆
SMR

a†a+ ∆mb
†b+ ∆qσ+σ− + g(a†σ− + aσ+)

+f(a†b+ ab†) + ηa(a+ a†), (6)

where ∆i = ωi − ωp for i = a, b, q. So, in particu-
lar, ∆b ≡ ∆m (∆a ≡ ∆

SMR
) is the mechanical (mi-

crowave) resonator frequency detuning with respect to
the pump frequency. Analogously, in the same rotating
frame, H(b)(t) reduces to the QD-driven Hamiltonian:

H ′′ = ∆SMRa
†a+ ∆mb

†b+ ∆qσ+σ− + g(a†σ− + aσ+)

+f(a†b+ ab†) + ηb(b+ b†). (7)

Figure 2 shows the structure of the energy spectrum for
the hybrid system Hamiltonian (2). To study the sub-
Poissonian light generation in hybrid modes, we apply
to the SMR and QD modes a balanced linear coupling
transformation, which is formally equivalent to a bal-
anced (50/50) beam splitter (BS). This transformation
creates the hybrid (or cross) photon-phonon modes:

c =
a+ b√

2
, d =

a− b√
2
. (8)

For example, the Hamiltonian H ′ after the BS transfor-
mation reads

H ′BS = ∆cc
†c+ ∆dd

†d+ ∆qσ+σ−

+δ(c†d+ d†c) +
ηa√

2
(c+ c†) +

ηa√
2

(d+ d†)

+
g√
2

(c†σ− + cσ+) +
g√
2

(d†σ− + dσ+), (9)

which describes the qubit interacting with two hybrid
modes c and d, where ∆c,d = (ωSMR + ωm)/2 − ωp ± f
and δ = (ωSMR − ωm)/2. It is seen that the two modes c
and d have no direct coupling if ωm = ωSMR .

The dynamics of an open system in the presence of
losses under the Markov approximation can be described
within the Lindblad approach for a system reduced den-
sity matrix ρ satisfying the standard master equation,

∂ρ

∂t
= −i[H, ρ] + κaD[a]ρ+ κbD[b]ρ+ γD[σ]ρ, (10)

which is given in terms of the Lindblad superoperator
D[O]ρ = 1

2 (2OρO†−ρO†O−O†Oρ), where κa, κb, and γ
are the decay rates for the SMR, QD, and qubit, respec-
tively.

In our simulations, we assume that the system is pre-
pared in the ground state |n = 0, g〉|m = 0〉 (i.e., with
no photons in the SMR, no phonons in the QD, and the
qubit is in the ground state), such that a given pump
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laser can drive the SMR photons in the microwave fre-
quency range. Note that the choice of initial states affects
the short-time evolution of our system, but has no effect
on the steady-state solutions in the time limit, assuming
the single-photon and single-phonon damping channels,
as described in Eq. (10). However, as shown in [31], ini-
tial states of a system can indeed affect steady states of
the system, thus can also change PB, in case of quantum
engineered dissipation channels allowing for, e.g., two-
photon dissipation only.

In the following sections we show that it is possible
to observe both PB and PIT in the hybrid mode in
the weak, mediate, and strong coupling regimes com-
pared to the decay rates of the SMR, QD, and qubit.
In particular, we show that the system can generate
the hybrid photon-phonon modes with strongly sub-
Poissonian (or super-Poissonian) statistics by mixing the
SMR and QD modes with strongly super-Poissonian (or
sub-Poissonian) statistics.

(a) (b)

0 1 2
g/max( j)

1

0

1

2

lo
g 

g(2
)

j
(0

)

4 7 8

j = a
j = b
j = c

0 1 2 3
g/max( j)

1

0

1
7 4 6

FIG. 3. Two-time second-order correlation functions g(2)i (0)
(in the common logarithmic scale) versus the ratio of qubit-
SMR coupling strength and the largest decay rate. Different
predictions of the sub- and super-Poissonian boson number
statistics, which can be interpreted, respectively, as the PB
and PIT effects, of the photonic (a), phononic (b), and hybrid
(c) modes assuming: (a) the SMR-driven system with param-
eters specified in Eq. (A1) and (b) the QD-driven system with
Eq. (A2). All the shown Cases (i.e., 4, 6, 7, and 8) correspond
to those listed in Table I. The broken line at g = maxκj is the
border line between the strong- and weak-coupling regimes.

III. HYBRID-MODE BLOCKADE IN THE
SMR-DRIVEN SYSTEM

Here we analyze in detail various blockade and PIT
effects in the SMR-driven dissipative system described
by the Hamiltonian H ′ and the master equation (10) for
the parameters specified in Eq. (A1).

Photon/phonon-number statistics of the modes gener-
ated by our hybrid system can be described quantita-
tively by calculating the zero-delay-time kth-order corre-
lation function (kth-order intensity autocorrelation func-

(a) g(2)a (τ)

(b) g(2)b (τ) (c) g(2)c (τ)

FIG. 4. Two-time second-order correlation functions: (a)
g
(2)
a (τ) for the photonic mode, (b) g(2)b (τ) for the phononic
mode, and (c) g(2)c (τ) for the hybrid mode versus the cou-
pling strength g/κa and the delay time τ . We consider here
the SMR-driven system with parameters specified in Eq. (A1),
which enable us to observe the single-photon resonances in the
mode c. For clarity, all the values of the correlation functions
≥ 2 are truncated at 2.

tion),

g(k)
z (0) = lim

t→∞

〈z†k(t)zk(t)〉
〈z†(t)z(t)〉k

, (11)

where z = a, b, c, d and k = 2, 3, .... In the special
case of k = 2, which is of particular interest in testing
single-PB and single-PIT, the three different types of the
boson-number statistics can be considered: the Poisso-
nian [if g(2)(0) = 1], super-Poissonian [if g(2)(0) > 1], and
sub-Poissonian (otherwise). Analogously, one can de-
fine higher-order Poissonian, sub-Poissonian, and super-
Poissonian statistics for k > 2. Such higher-order criteria
are not only crucial in analyzing multi-PB and multi-PIT
effects [10, 28, 51], but they are also important in testing
whether a specific PB effect is a ‘true’ PB, which can be
used for generating single photons. These higher-order
statistics are studied in Appendix B.

Figure 3(a) shows g(2)(0) as a function of the qubit-
SMR coupling for the SMR-driven system with the pa-
rameters specified in Eq. (A1). The regions, when the
sub-Poissonian statistics in the hybrid mode c is accom-
panied by the super-Poissonian statistics in the modes
a and b, are indicated by the yellow background in this
and other figures. This area in yellow color is referred to
as Case 7 in Table I, in which we observe strongly super-
Poissonian photons (phonons) in the SMR (QD); whereas
a single excitation is observed in the hybrid mode. The
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Case fabc PNS in mode a PNS in mode b PNS in mode c color
1 (−,−,−) sub-Poissonian sub-Poissonian sub-Poissonian aquamarine
2 (−,−,+) sub-Poissonian sub-Poissonian super-Poissonian lime
3 (−,+,−) sub-Poissonian super-Poissonian sub-Poissonian light cyan
4 (+,−,−) super-Poissonian sub-Poissonian sub-Poissonian mint cream
5 (−,+,+) sub-Poissonian super-Poissonian super-Poissonian plum
6 (+,−,+) super-Poissonian sub-Poissonian super-Poissonian pink
7 (+,+,−) super-Poissonian super-Poissonian sub-Poissonian yellow
8 (+,+,+) super-Poissonian super-Poissonian super-Poissonian cyan

TABLE I. Different predictions of super- and sub-Poissonian particle (i.e., photon, phonon or hybrid photon-phonon)-number
statistics (PNS) corresponding, respectively, to PIT and PB, for the photon mode a, phonon mode b, and hybrid photon-phonon
mode c, where fabc =

(
sgn[g

(2)
a (0) − 1], sgn[g

(2)
b (0) − 1], sgn[g

(2)
c (0) − 1]

)
and the last column indicates each prediction of the

mode a, b, and c in the specific color that is used in our plots. All these cases can be seen in Figs. 10.

Case Effect Single-time Two-time Example Figure
correlations correlations of g/κa

I stronger form of PB sub-Poissonian PNS phonon antibunching 3.0 7(a)
(‘true’ PB) g

(2)
b (0) < 1 g

(2)
b (τ) > g

(2)
b (0)

II stronger form of PIT super-Poissonian PNS phonon bunching 2.1 7(b)
(‘true’ PIT) g

(2)
b (0) > 1 g

(2)
b (τ) < g

(2)
b (0)

III weaker form of PIT or PB super-Poissonian PNS phonon antibunching 3.8 7(c)
g
(2)
b (0) > 1 g

(2)
b (τ) > g

(2)
b (0)

IV weaker form of PB or PIT sub-Poissonian PNS phonon bunching 2.2 7(d)
g
(2)
b (0) < 1 g

(2)
b (τ) < g

(2)
b (0)

TABLE II. Different single- and two-time phonon-number correlation effects induced in the QD mode, which can be observed
for different values of the qubit-SMR coupling strength g with respect to the SMR decay rate κa, e.g., by setting the other
parameters to be the same as in Eq. (A3). Here, PNS stands specifically for the phonon-number statistics of the mode b. Note
that we also found examples of Cases I, II, and IV for the modes a and c using the same system parameters as for the mode b.

system parameters, which lead to Case 7, are found by
numerical simulations and are discussed below.

Note that Fig. 3(a) shows these effects in the strong
coupling regime [62], i.e., when the qubit-SMR coupling
constant g is larger than the system damping rates:
g/κmax > 1, where κmax = max{κa, κb, γ}. On the other
hand, Fig. 3(b) shows the same yellow region in the weak-
coupling regime, i.e., when g/κmax < 1, but this figure
was calculated for the QD-driven system, which is dis-
cussed in the next section.

By considering the values of Eq. (A1), the SMR decay
rate is κa = 1.5γ, given that the mode a is always in the
strong qubit-SMR coupling regime in the region of our
interest. This results in Rabi-type oscillations of g(2)(0)
that occur in the SMR mode a and the hybrid mode
c. In Fig. 3(a) both weak and strong coupling regimes
are shown corresponding to g smaller or larger than the
maximum decay rate of the whole system.

Given the set of parameters in Eq. (A1), we are in
the good-cavity regime [64], because κa < {κb, g, f}. In
the range g/2π ∈ (4.5, 42) MHz, the hybrid mode c has
the sub-Poissonian statistics, while the SMR mode has
the super-Poissonian statistics in all the shown cases and
a very weak sub-Poissonian statistics occur for phonons

in the QD mode b, but still corresponding to Case 4 in
Table I. This behavior changes to the super-Poissonian
statistics in the mode b, which corresponds to Case 7, as
shown in Fig. 3(a). There is a transition for the mode
c from the sub-Poissonian to super-Poissonian statistics,
which corresponds to switching from Case 7 to Case 8 in
the strong-coupling regime, where the other two modes
are both super-Poissonian. Observing g(2)(0) > 1 wit-
nesses PIT and the quantum nature of this effect is ex-
plored further below.

In order to better probe and understand the dynamics
of the system in specific parameter regimes, we analyze
also the delay-time second-order photon correlation func-
tion, defined as

g(2)
z (τ) = lim

t→∞

〈T : nz(t+ τ)nz(t) :〉
〈nz(t)〉2

= lim
t→∞

〈z†(t)z†(t+ τ)z(t+ τ)z(t)〉
〈z†(t)z(t)〉2

, (12)

where nz(t) = z†(t)z(t) is the boson number in the modes
z = a, b, c, d, and the operator products are written in
normal order (::) and in time order T . With g(2)

z (τ) an-
other quantum optical number-correlation phenomenon
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FIG. 5. Delay-time second-order correlation functions g(2)i (τ)
for the SMR mode a, the QD mode b, and the hybrid mode c
modes assuming: (a,b,c) the SMR-driven system specified in
Eq. (A1) with f = 5.5γ and κmax = κb = 6γ, and (d,e) the
QD-driven system in Eq. (A2) with κmax = 7.5γ, where we
additionally set: (a) g = 1.3κmax = 7.8γ, (b) g = 1.1κmax =
6.6γ, (c) g = 0.2κmax = 1.2γ, (d) g = 0.7κmax = 5.25γ, and
(e) g = 0.758κmax = 5.685γ.

can be investigated. Specifically, in case of photons, it is
referred to as photon antibunching if g(2)

a (0) < g(2)(τ),
photon unbunching if g(2)

a (0) ≈ g(2)(τ), and photon
bunching if g(2)

a (0) > g(2)(τ), which is usually defined
for short or very short delay times τ [65]. It is worth
noting that photon antibunching was first experimen-
tally observed in the 1970s by Kimble, Dagenais, and
Mandel [66]. This was historically the first experimental
demonstration of the quantum nature of an electromag-
netic field, which can be explained semiclassically, unlike
photoelectric bunching.

Analogously, one can also investigate the antibunching
and bunching of phonons and/or hybrid-mode bosons.
Note that photon antibunching is also interchangeably
with the sub-Poissonian photon-number statistics [20].
However, to avoid confusion, one can refer to single-time
(or zero-delay-time) photon antibunching if defined by
g(2)(0) and two-time (or delay-time) photon antibunching
if defined via g(2)(τ).

In Fig. 4, we plotted g(2)(τ) for the range [0.15, 1.43] of
g/κmax. This range is also shown in Fig. 3(a), where the

(a) log g
(2)
a (τ)

(b) log g
(2)
b (τ) (c) log g

(2)
c (τ)

FIG. 6. Same as in Fig. 4, but for the QD-driven system with
parameters given in Eq. (A2). We observe here single-PRs
and the corresponding single-PB effects.

examples of Cases 4 and 7 can be identified. As expected,
one can see oscillations in the SMR and hybrid modes
in Figs. 4(a) and 4(c), respectively. These oscillations
are induced by the competition between the qubit-SMR
coupling g and the SMR-QD hopping f in our system.
Apparently, by analyzing g(2)(τ) in the weak-coupling
regime, the frequency of the oscillations is smaller than
that in the strong-coupling regime, in which the oscilla-
tions are caused by both couplings g and f . Moreover
in a very weak coupling regime, where g � 1 oscilla-
tions occur due to the hopping strength f , with the pe-
riod 2π/f [67]. This means that, in the weak-coupling
regime, also the coupling between the SMR and QD can
generate oscillations in our system, where in this case the
period of oscillations, which are induced by f = 5.5γ, is
approximately equal to τ ≈ 0.036, which coincides with
the period deduced from the graph, as seen in Fig. 5(c).
These detrimental oscillations should be suppressed on
a time scale longer than the SMR lifetime τ = 1/κa to
enable boson antibunching to survive in the area of our
interest.

Various combinations of correlations effects are shown
in Fig. 5. All panels in Fig. 5 show that the photon
mode a is super-Poissonian and bunched, while the hy-
brid mode c is sub-Poissonian and antibunched. How-
ever, the properties of the phonon mode b are dif-
ferent in every panel. Specifically, the mode b is in
panel: (a) super-Poissonian and unbunched, (b) Poisso-
nian and unbunched, (c) sub-Poissonian and unbunched,
(d) super-Poissonian and bunched, and (e) Poissonian
and bunched, as usually considered for very short delay
times τ . Note that panels (a,b,c) are for the SMR-driven
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FIG. 7. (a–d) Delay-time second-order correlation functions
g
(2)
i (τ) (in the logarithmic scale) for the SMR mode a, the
QD mode b, and the hybrid mode c modes in the QD-driven
system assuming that g/κmax is equal to: (a) 3, (b) 2.1, (c)
3.8, and (d) 2.2. The four different predictions of correlations
for the QD mode b correspond to all the cases listed in Ta-
ble II. (e–f) Same as in Fig. 4, but for the parameters given in
Eq. (A3). Note that panels (a–d) show the cross-sections of
the 3D plot in (f) at the values of g/κmax marked by broken
lines.

system, while the remaining panels (d,e) are for the QD-
driven system, which are discussed in detail in the next
section.

In particular, it is seen that by decreasing the cou-
pling at g/κb = 1.1 in Fig. 5(b), the QD mode b is un-
bunched with the Poissonian statistics, while the hybrid
mode c exhibits antibunching g(2)(0) < g(2)(τ) and the

(a)

18 9 0 9 18
SMR/
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g(2
)

i
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)

1 8 1

i=a
i=b
i=c

(b)
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1

0

1

2
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lo
g 

g(2
)

i
(0

)
1 4 7 8 1

FIG. 8. Correlation functions log g
(2)
i (0) versus the frequency

detuning ∆SMR (in units of the qubit decay rate γ) between
the drive and SMR for: (a) the resonance case ωSMR = ωm =
ωq (so also ∆SMR = ∆m = ∆q) and (b) the nonresonance case
ωSMR 6= ωm 6= ωq, where ωb/γ = 1560 MHz. Note that by
changing the pump frequency, different detunings appear with
respect to the modes a and b, and qubit. We set g = 7.5γ and
other parameters are given in Eq. (A1). The numbering of
the colored regions correspond to the cases listed in Table I.

sub-Poissonian statistics g(2)(0) < 1, in both cases. The
role of the auxiliary mode b is, in a sense, to convert
the super-Poissonian into sub-Poissonian statistics in the
mode c.

The destructive interference of both modes a and
b, at the balanced linear coupler, can result in the
sub-Poissonian statistics of the hybrid modes. We ob-
serve this effect even in the weak-nonlinearity (or weak-
coupling) regime, which witnesses unconventional PB,
as discussed in detail in Sec. V and Appendix C. It is
worth noting that in this study we are aiming at observ-
ing g(2)(τ) < 1 not only at τ = 0, but also for non-zero
delay times (e.g., τ ∈ [0, 0.1]), as in standard experi-
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FIG. 9. Resonance distances, as defined in Eq. (17), versus
the frequency detuning ∆SMR (in units of the qubit decay
rate γ) between the drive and SMR for: (a) the SMR-driven
system with parameters specified in Eq. (A1) with g = 7.58γ
and (b) the QD-driven system with Eq. (A2) with g = 4.5γ.

mental demonstrations of the sub-Poissonian statistics
reported in, e.g., Refs. [6, 68]. Thus, the cases shown
in Figs. 4(a) and 4(c) can hardly be considered as con-
vincing demonstrations of the sub-Poissonian statistics,
because of the oscillations, which occur in g

(2)
a,c(τ) with

increasing τ . More convincing demonstrations of these
effects without such oscillations (or by considerably sup-
pressing them) are presented in Figs. 6 and 7, as analyzed
in detail in Sec. IV.

To explain the super-Poissonian phonon-number
statistics and phonon bunching in the mode a for the sys-
tem pumped in the SMR mode, let us analyze Fig. 5(a)
with g ≈ κm concerning the anharmonicity of the energy
levels in these cases.

The g-term in H1 with H0 = Ha is the stan-
dard Jaynes-Cummings model with the familiar eigen-
values [60]:

E±n ≡ E(|n,±〉) = nω
SMR
± 1

2

√
∆2

1 + Ω2
n (13)

with the corresponding eigenstates:

|n,+〉 ≡ cos
(
θn
2

)
|n〉|e〉+ sin

(
θn
2

)
|n+ 1〉|g〉,

|n,−〉 ≡ − sin
(
θn
2

)
|n〉|e〉+ cos

(
θn
2

)
|n+ 1〉|g〉, (14)

which are often referred to as dressed states or dressed-
state dublets, where θn = Ωn/∆1 is the mixing angle,
∆1 = ωq − ωSMR

is the detuning between the SMR and
qubit. Moreover, Ωn = 2g

√
n+ 1 can be interpreted as

the n-photon Rabi frequency on resonance, so, in partic-
ular, Ω0 = 2g is the vacuum Rabi frequency. Thus, the
energy spectrum is clearly anharmonic, which is a nec-
essary condition to observe PB. Note that the Jaynes-
Cummings interaction can be effectively described in the
dispersive limit (i.e., far off resonance) as a Kerr nonlin-
earity (for a detailed derivation see, e.g., [48]), which is
the standard nonlinearity assumed in many predictions
of PB effects.

To demonstrate the anharmonic energy levels of the
complete Hamiltonian H1 on resonance (see Fig. 2), we
assume a weak drive coupling strength ηa. Given that,
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FIG. 10. Correlation functions log g
(2)
i (0) versus the fre-

quency detuning ∆SMR (in units of the qubit decay rate γ)
between the drive and SMR for the QD-driven system for:
(a,b) the resonant case with ωSMR = ωm = ωq (so also
∆SMR = ∆m = ∆q), and (c) the nonresonant case with
ωSMR 6= ωm 6= ωq. Parameters are set in: Eq. (A2) with
g = 4.5γ for (a,c), and Eq. (A3) with g = 9.5γ for (b). Eight
different predictions, which correspond to all the cases listed
in Table I, are marked for the sub- and super-Poissonian num-
ber statistics in the photonic (a), phononic (b), and hybrid
photon-phonon (c) modes.

the system Hilbert space can be truncated. We assume
that the polariton number is at most equal to two in this
weak-drive regime. The ground state is |ψ0〉 = |0, 0, g〉
with the corresponding eigenvalue E0 = 0. The three
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FIG. 11. Correlation functions log g
(2)
i (0) versus the fre-

quency detuning ∆SMR in units of γ for the QD-driven system
for the resonant case with ωSMR = ωm = ωq = γ × 1560 MHz
(so also ∆a = ∆b = ∆q). The thin curves in each mode
are obtained using the master equation in Eq. (10) and the
thick curves are obtained from the non-Hermitian Hamilto-
nian method using Eqs. (20) and (21). Parameters are set in
Eq. (A2) except g = 4.5γ and κa = κb = 6γ.
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FIG. 12. Second-order correlation functions log g
(2)
i (0) versus

the drive strengths: (a,b) ηa for the SMR-driven system and
(c,d) ηb for the QD-driven system. Parameters are given in:
(a) Eq. (A1) with g = 7.5γ and ωp = 1554γ, which implies
∆q = −3γ, ∆b = 6γ, ∆a = 0; (b) Eq. (A1) with g = 7.5γ and
ωp = 1551γ, which implies ∆q = 0, ∆b = 9γ, and ∆a = 3γ;
(c) Eq. (A2) with ωp = 1568γ, which implies ∆q = 0, ∆b =
−8γ, and ∆a = 2γ; and (d) Eq. (A2) with ωp = 1570γ, which
implies ∆q = −2γ, ∆b = −10γ, and ∆a = 0.

eigenvalues of the first manifold (with eigenstates con-

taining a single polariton), as shown in Fig. 2(b), are:

E
(1)
1,3 = ∆∓

√
g2 + f2, E

(1)
2 = ∆, (15)

while the five eigenvalues of the second manifold (with
eigenstates containing two polaritons), which are shown
in Fig. 2(c), read:

E
(2)
1,2 =

1

2

[
4∆−

√
2(3g2 + 5f2 ± f1)

]
,

E
(2)
3 = 2∆,

E
(2)
4,5 =

1

2

[
4∆ +

√
2(3g2 + 5f2 ∓ f1)

]
, (16)

where f1 =
√

3f2(10g2 + 3f2) + g4. In particular, by
assuming f = 5 and g = 7.5, the eigenenergies of the
first and second manifolds are, respectively: (i) ∆, ∆ ±
9.01388 ≈ ∆ ± 9, and (ii) 2∆, 2∆ ± 5.82965 ≈ 2∆ ± 6,
and 2∆± 16.11725 ≈ 2∆± 16.

A simple way to probe the pumped mode is to record
the second-order correlation g(2)(0) as a function of
∆

SMR
, where the pump frequency ωp is changing (see

Fig. 8). To do so, we first consider the resonance case
as ωSMR = ωm = ωq = ω in Eq. (6) and ω − ωp = ∆.
As depicted in Fig. 8(a), one can see local minima with
negative values in log g(2)(0) for the three modes, which
indicate Case 1 in Table I, at ∆SMR/γ = ±9, which corre-
spond to ∆ = ±

√
g2 + f2 ≈ ±9.0, given Eq. (15). This

means that the pump frequency is located at the two
dressed state dublets: |ψ−1 〉 with energy E1

1 and |ψ+
1 〉 with

energy E1
3 . And we are off-resonance from the second en-

ergy manifold, which implies the possibility of observing
PB at these frequencies.

Furthermore, our simulations predict a maximum of
log g(2)(0) ≈ 3 showing a strong super-Poissonian statis-
tics in the three modes (corresponding to Case 8 in Ta-
ble I) as ∆

SMR
→ 0. In particular, at ∆

SMR
/γ ≈ ±6, the

pump frequency is near E(2)
1 ≈ 6 and E(2)

4 ≈ −6, respec-
tively, of the second manifold, in which the probability of
the two-photon resonance is maximized, as a signature of
PIT. It signifies that the pump is in resonance with one
of the levels in the second manifold of the hybrid system
energy levels, here specifically E(2)

1 and E(2)
4 . One can see

in Fig. 8, peaks (global maxima in the analyzed range) of
log g

(2)
n (0) > 0 for n = a, b, c at ∆SMR = 0. In particular,

the probability of absorbing a single photon decreases
here. However, if a photon is absorbed, it enhances the
probability of capturing subsequent photons, this effect
produces the super-Poissonian statistics, which is due to
the fact that the probability of observing a single pho-
ton is also very small (P10g � 1) and smaller than the
probability of observing two photons [5, 69].

It is seen that, by tuning the drive frequency to the
transition E2 − E0 in the energy spectrum of the to-
tal nonlinear system, the probability of admitting two
photons increases. This results in the super-Poissonian
statistics, which is opposite to the case, when the drive
frequency is tuned to the transition E1 − E0, when the
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probability of admitting subsequent photons decreases
resulting in PB.

By assuming the off-resonance condition, ωSMR 6=
ωm 6= ωq, we show in Fig. 8(b) the correlation func-
tions the three modes (a, b, c) as a function of ∆SMR in
the case, when the drive is tuned in-between the dressed
state eigenenergies of the hybrid system.

The PB and PIT effects observed in Fig. 8 can be ex-
plained by considering some measures of the distances
from resonances, as shown in Fig. 9(a). The distances of
the single-, two-, and three-photon resonances (PRs) are
defined here, respectively, as:

D1PR = min
i
|ωp − ω(1)

i |
2,

D2PR = min
i
|2ωp − ω(2)

i |
2,

D3PR = min
i
|3ωp − ω(3)

i |
2, (17)

where ωp is the frequency of the pump that is tuned with
respect to the energy of the hybrid system. Here ω(n)

i
are the frequencies (labelled with subscript i) in the nth
manifold, so the minimalization is performed over ω(n)

i
for a given manifold n. Figure 9 shows the resonance
distances versus ∆

SMR
, where ωp is tuned with respect

to the energy of the whole system. The dip in g(2)(0) at
∆

SMR
/γ = 10 [see Fig. 8(b)], which is characteristic for

PB, corresponds to the resonance for a single excitation,
as seen from D1PR, and is off-resonance for higher excita-
tions at that frequency [see Fig. 9(a)]. The second-order
correlation function g

(2)
c (0) for the hybrid mode has a

dip as a signature of PB around ∆
SMR

/γ = −3.4, while
the modes a and b exhibit the super-Poissonian statis-
tics (witnessing PIT), as shown in Fig. 8(b). This effect
is witnessed as a dip in D1PR and it is off-resonance for
D2PR and D3PR, as illustrated in Fig. 9(a), while the
modes a and b exhibit PIT. This type of unconventional
PB is discussed further in Sec. V.

By decreasing ∆SMR/γ from 0 to -2, the correlation
function g(2)

a (0) for the SMR mode in Fig. 8(a) resembles
a shoulder in shape. We observe PIT at this point or
region, as expected from our findings in the resonance-
distant diagram in Fig. 9(a). Indeed, there is a dip in
D2PR for higher resonances at this point, which explains
the occurrence of PIT.

Let us consider now ∆
SMR

/γ → 3 in Fig. 8(b) for the
pump frequency in resonance with the qubit, ∆q = 0,
which is close to the resonance frequency of the hybrid
mode. In this case multi-photon transitions are induced,
which result in PIT at ∆SMR/γ = 3, and we observe a
peak in log g(2)(0) > 0 at this frequency in Fig. 8(b).
Clearly, we are here in resonance with higher-energy lev-
els, while the drive strength is very small, ηa/γ = 0.7.
The probability of observing a single photon is also small
as the peak for ∆c = 0, but if a single photon is absorbed,
then the probability of capturing subsequent photons in-
creases, as for PIT.

The analyzed system parameters are found by opti-
mizing our system to observe the super-Poissonian statis-
tics in the SMR and QD modes. At the sub-Poissonian
statistics area of g(2)(0), it is possible to observe that
g(3)(0) > 1, as a local maximum, which is another sig-
nature of higher-order photon/phonon resonances and
multi-PIT (see Appendix B). Actually, by calculating the
second-order correlation function to witness the PB and
PIT phenomena, higher-order correlation functions can
be used to test whether a given effects is indeed: (1)
single-PB or single-PIT, (2) multi-PB or multi-PIT, or
(3) nonstandard versions of these effects, as discussed
in Appendix B and, e.g., in Refs. [28, 51]. As men-
tioned above, these parameters allow us to achieve the
sub-Poissonian statistics for a relatively long delay times.

IV. HYBRID-MODE BLOCKADE IN THE
QD-DRIVEN SYSTEM

In this section, we analyze steady-state boson-
correlation effects, including the hybrid-mode blockade
and PIT, in the QD-driven dissipative system, as de-
scribed by the Hamiltonian H ′′ and the master equa-
tion (10) for the parameters specified mostly in Eqs. (A2)
and (A3).

To eliminate or at least to suppress the undesired os-
cillations in g(2)(τ), we assume in this section that our
system is driven classically at the QD. Moreover, we
assume that the SMR is in the bad-cavity regime, as
κSMR � g2/κSMR � γ [64]. So, we apply the effective
system Hamiltonian in the rotating frame, as given by
Eq. (7). Even if the lifetime τSMR = 1/κSMR of the SMR
is much shorter than that assumed in the SMR-driven
system, which was discussed in Sec. III, the hybrid mode,
as we show below, reveals no oscillations for quite long
delay times, which is due to driving the QD.

To study boson-number statistics of our system, we
compute the second-order correlation function g(2)(0) for
the optimized parameters, which enables us to demon-
strate Cases 4, 6, and 7 of Table I in Fig. 3(b). In
Case 7, which is of our special interest, the modes a and
b are super-Poissonian, as log g(2)(0) > 0, while the hy-
brid mode c is sub-Poissonian, as log g

(2)
c (0) < 0. By

increasing the coupling g between the SMR and qubit,
the mode b becomes sub-Poissonian, as being affected by
the nonlinearity of the mode a.

To check the second criterion for PB, the second-order
correlation function g(2)(τ) is considered below. Figure 6
shows g(2)(τ) corresponding to g(2)(0) plotted in Fig. 3(b)
showing Cases 4, 6, and 7. As expected, boson anti-
bunching is observed for the hybrid mode, as shown in
Fig. 6(c), while the SMR mode reveals bunching, as illus-
trated in Fig. 6(a). Moreover both phonon antibunching
and bunching, in addition to unbunching, have been ob-
served in the studied region of the QD mode, as shown
in Fig. 6(b). It is clear from Fig. 6 that the antibunching
of bosons in the three modes survives in some specific
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coupling regime (around g = 0.7κm) for a relatively long
delay time τ > 1/κ and oscillations in g

(2)
c (τ) are ab-

sent in the hybrid mode c. Moreover, boson bunching
is observed, when g

(2)
a (τ) drops rapidly for delay times

greater than the cavity photon lifetime, as considered in
Figs. 5(d) and 5(e).

To understand the delay-time dependence of the hy-
brid mode c, we consider Eq. (7), when the SMR, QD,
and qubit have the same resonance frequency, ωSMR =
ωm = ωq = ω and g = 4.5γ. As illustrated in Fig. 10(a),
there are three dips (local minima) in g(2)

b (0) < 0 for the
mode b of the QD, where we assumed g < min{κa, κb}
and f > g. For these parameters, only a weak non-
linearity is induced in the mode b. Thus, the anhar-
monicity of energy levels cannot explain the PB effect
observed as a dip at these three dips [see Fig. 9(b)]. Ac-
tually, these dips in log g

(2)
b (0) are due to single-photon

resonant transitions, which correspond to unconventional
PB, as explained by the non-Hermitian effective Hamil-
tonian method in Sec. V and Appendix C.

Figure 10(c) shows log g(2)(0) for the three modes as
a function of ∆

SMR
. In this case, we assume that the

resonance frequencies of the SMR, QD, and qubit are not
the same, and the detuning of each mode with respect to
ωp is different. It is shown that, when ∆

SMR
/γ → 2,

multiphoton transitions (and so PIT or multi-PB) can
be induced in the mode a, where the pump frequency is
in the resonance with the qubit, ωp = ωq. This effect
is seen in Fig. 14(b) [in Appendix B] corresponding to
a local maximum in higher-order moments g(3)

i (0) and
g

(4)
i (0). Likewise the resonance case, unconventional PB
in the modes b and c can be explained by the method
applied in Sec. V and Appendix C.

In Fig. 12, we study how the second-order correla-
tion functions reveal the PIT regime, which corresponds
to Case 8 in Table I, as a function of the SMR-pump
strength ηa [in panels (a) and (b)] and the QD-pump
strength ηb [in panels (c) and (d)]. The hybrid mode
c is super-Poissonian for all the shown cases and pump
strengths. The modes a and b are super-Poissonian [ex-
cept the mode a in panel (c)] for small pump strengths
ηa,b. By increasing the driving power at least to some
values, which can be identified in the figures for specific
modes, we observe that the correlation functions g(2)(0)
also decrease for all the modes (except the mentioned
case). This property confirms the nonclassicality of the
predicted PIT in the hybrid system according to an ad-
ditional criterion of ‘true’ PIT of Ref. [13].

V. UNCONVENTIONAL BLOCKADE
EXPLANATION VIA NON-HERMITIAN

HAMILTONIAN APPROACH

In this Section, we apply the analytical mathemati-
cal formalism of Ref. [43], based on an non-Hermitian
Hamiltonian, to identify the quantum interference effect

that is responsible for inducing unconventional PB, i.e.,
strongly sub-Poissonian statistics in the weak-coupling
regime or the weak-nonlinearity regime. We stress that
this is an approximate approach, where the effect of quan-
tum jumps is ignored [70, 71].

By considering the system studied in Sec. IV under
the weak-pump condition, we can truncate the Hilbert
spaces for the modes a and b and the qubit at their
two excitations in total. This allows us to consider the
total-system Hilbert space of dimension 3 × 3 × 2 =
18. Moreover, the weak-pump condition implies that
C00g � C10g, C01g, C00e � C11g, C10e, C01e, C20g, C02g.
Thus, the steady-state of the coupled system can be ex-
pressed as

|Ψabq(t)〉 = C00g|00g〉+ e−iωdt
(
C00e|00e〉+ C10g|10g〉

+ C01g|01g〉
)

+ e−2iωdt
(
C10e|10e〉+ C01e|01e〉

+ C11g|11g〉+ C20g|20g〉+ C02g|02g〉
)
, (18)

where |na, nb, g/e〉 is the Fock state with na photons in
the SMR, nb phonons in the QD, and the lower (|g〉)
or upper (|e〉) state of the qubit. The effective non-
Hermitian Hamiltonian of the system can be written as

Heff = H ′′ − iκa
2
a†a− iκb

2
b†b− iγ

2
σ+σ−, (19)

where H ′′ is given by Eq. (7). Analogously, one can con-
sider the non-Hermitian Hamiltonian with H ′, given by
Eq. (6).

In the weak-pump regime, the mean number of photons
and phonons in the SMR and QD can be approximated
as 〈na〉 ≈ |C10g|2 and 〈nb〉 ≈ |C01g|2, respectively. As
derived in detail in Appendix B, the second-order cor-
relation functions for generated photons and phonons,
under the same weak-pump conditions, can be given by:

g(2)
a (0) =

〈a†a†aa〉
〈a†a〉2

≈ 2|C20g|2

|C10g|4
,

g
(2)
b (0) =

〈b†b†bb〉
〈b†b〉2

≈ 2|C02g|2

|C01g|4
, (20)

where the superposition coefficients Cn,m,g are given in
Eqs. (C8) and (C10).

The hybrid photon-phonon modes, which are defined in
Eq. (8), are the output modes of the balanced linear cou-
pler with the SMR and QDmodes at its inputs. As shown
in Appendix B, we find, analogously to Eq. (20), the
second-order correlation function for the hybrid mode c
reads:

g(2)
c (0) =

〈c†c†cc〉
〈c†c〉2

≈
2|C ′20g|2

|C ′10g|4
, (21)

where the superposition coefficients C ′n,m,e/g are given in
Eqs. (C9) and (C10), and the sixth formula in Eq. (C3).

This approach enables us to explain unconventional
PB generated in the hybrid system, which is the result
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of a destructive quantum interference effect that assures,
together with other conditions, that the probability am-
plitude of having two photons in the SMR and QD is
zero. This method can also be used to find some optimal
parameters to observe PB in the system.

Figure 11 presents a comparison of our predictions
based on the precise numerical solutions of the mas-
ter equation in Eq. (10), as shown by thin curves, with
those calculated from Eqs. (20) and (21) using the non-
Hermitian Hamiltonian approach, as shown by thick
curves. The locations of the maxima and minima of the
correlation functions are found similar according to both
formalisms. However, these extremal values can differ
more distinctly, especially for the two global minima in
the sub-Poissonian statistics of the mode b and the super-
Poissonian maximum of the mode a. The differences re-
sult from the effect of quantum jumps, which are properly
included in the master-equation approach and totally ig-
nored in the non-Hermitian Hamiltonian approach.

VI. DIFFERENT TYPES OF BLOCKADE AND
TUNNELING EFFECTS

The sub-Poissonian statistics of a bosonic field, as
described by g(2)(0) � 1, is not a sufficient criterion
for observing a ‘true’ PB, which can be a good single-
photon or single-phonon source. In fact, other crite-
ria, such boson antibunching, g(2)(0) < g(2)(τ), and
the sub-Poissonian statistics of higher-order correlation
functions, g(n)(0) � 1, should also be satisfied (see Ap-
pendix B). Anyway, most of the studies of PB, and espe-
cially those on unconventional PB, are limited to testing
the second-order sub-Poissonian statistics described by
g(2)(0) < 1.

As explicitly discussed in [20, 65, 72, 73], photon
antibunching and sub-Poissonian statistics are different
photon-number correlation effects. So, the four cases
listed in Table II, can be considered as different types
of PB and PIT. We show that all these effects can be
observed in the studied system. For brevity, Table II is
limited to phononic effects. PB, as defined in Case I and
often referred to as a ‘true’ PB, can be a good single-
photon sources; but, as mentioned above, other higher-
order criteria should also be satisfied B.

To show these four different effects, we use the param-
eters set in Eq. (A3), where κb � κa at the κb = 0.002 γ,
which indicates that the quality factor is Q ≈ 200, and
so ηb/κb ≈ 100 in the case of a strong pump driving
the QD mode with ηb = 0.22 γ. Apart from the pre-
viously mentioned phenomena, such as observing the
super-Poissonian statistics and bunching in the SMR and
QD modes, while a hybrid mode exhibiting the sub-
Poissonian statistics and boson antibunching, we find the
four types of PB/PIT in the mode b in different coupling
regimes, as shown in Table II, which includes the exam-
ples of specific experimentally feasible values of g/κa.

Case I corresponds to a stronger form of PB, which

we refer to as a ‘true’ PB, when the nonclassical na-
ture of bosons is revealed by both their antibunching
and super-Poissonian statistics. Case II corresponds to a
stronger form of PIT, which can be called a ‘true’ PIT,
when bosons exhibit both classical effects: the super-
Poissonian statistics and bunching. In Case III, one can
talk about a weaker form of PIT or, equivalently, an-
other weaker type of PB, as such bosons are character-
ized by the classical super-Poissonian statistics and their
nonclassical nature is revealed by antibunching. Case IV
represents another weaker form of PB or, equivalently,
of PIT, which is characterized by the nonclassical sub-
Poissonian statistics of classically bunched bosons. These
results imply that one cannot say in general that the an-
tibunching of bosons leads to their sub-Poissonian statis-
tics and vice verse’a [20, 72].

Therefore, g(2)(τ) > g(2)(0) does not necessarily im-
ply g(2)(0) < 1, as in Case III, which can be seen in
Figs. 7(c) and 7(f). In addition, as another example re-
lated to Case IV, let us consider a Fock state |n〉 with
n ≥ 2, for which g(2)(0) = 1 − 1/n, such that if n = 2
then g(2)(0) = 0.5, so g(2)(0) < 1 and it is not accompa-
nied by boson antibunching, but bunching in this case.

Our focus in this paper is on the generation of PB
in the hybrid mode, while the other two modes exhibit
PIT. Note that this a very special case of Table I, which
shows that eight combinations of boson number correla-
tion phenomena in the modes a, b, and c can be gener-
ated in our system, as specified by the numbered colored
regions in various figures corresponding to the cases in
Table I. Thus, we found all the eight possible combina-
tions of the PIT and PB effects in the hybrid system for
the parameters specified in Eqs. (A1), (A2), and (A3).

VII. DETECTION OF THE HYBRID-MODE
CORRELATION FUNCTIONS

Here, we describe two detection schemes for measur-
ing the intensity autocorrelation functions for the hybrid
photon-phonon modes c and d, as shown in Fig. 13.

The measurements of g2(τ) for the photonic mode a
and the phononic mode b are quite standard and are
usually based on the Hanbury-Brown and Twiss (HBT)
optical interferometry and its generalized version for
phonons [74], respectively. However, the measurement
M [as schematically shown in Fig. 13(a)] of g(2)(τ), or
even g(2)(0), for the hybrid photonic-phononic modes c
and d is quite challenging if applied directly. Here we
propose two methods, as shown in Figs. 13(b) and 13(c),
for indirect measuring of g(2)

c,d(0).
The first operation of the measurement unitM in both

schemes is a linear-coupler transformation of the hybrid
modes (c, d) into (a′, b′), which, assuming that the pro-
cess is perfect, should be equal to the original purely
photonic (a) and phononic (b) modes.

We consider a linear coupler (formally equivalent to a
beam splitter) described by a unitary operation ULC(θ),
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which transforms the input operators a and b into:

c(θ) = U†LC(θ)aULC(θ) = a sin θ + b cos θ,

d(θ) = U†LC(θ)bULC(θ) = a cos θ − b sin θ, (22)

for a real parameter θ, where T = cos2 θ and R =
1 − T = sin2 θ are the transmission and reflection co-
efficients of the linear coupler, respectively. The stud-
ied hybrid modes are the special cases of Eq. (22) for
c ≡ c(θ = π/4) and d ≡ d(θ = π/4). Clearly, the first
transformation ULC(−π/4) in Figs. 13(b) and 13(c), is
the transformation inverse to that in Fig. 13(a).

A. Method 1 based on measuring photons and
phonons

The correlation functions g(2)
c,d(0) in the hybrid photon-

phonon modes can be measured indirectly, as indicated
in Fig. 13(b), by measuring the observables:

fkl = (a†)kal, gmn = (b†)mbn, (23)

where k, l,m, n = 0, 1, 2, by using the relations:

〈c†c〉 =
1

2

(
〈f11〉+ 〈g11〉+ 〈f01g10〉+ 〈f10g01〉

)
, (24)

〈c†2c2〉 =
1

4

(
〈f22〉+ 4〈f11g11〉+ 〈g22〉

+2〈f01g21〉+ 2〈f10g12〉+ 〈f20g02〉+ 〈f02g20〉

+2〈f21g01〉+ 2〈f12g10〉
)
, (25)

and analogous relations for the hybrid mode d. The mea-
surement units M ′a and M ′b in this method, as shown in
Fig. 13(b), describe the measurements of photons and
phonons, respectively. It is seen that, in this approach,
to determine g(2)

c,d(0), one has to measure the following
observables: f01, f10, f11, f02, f20, f12, f21, and f22.
Almost each observable fkl should be measured simul-
taneously with a specific observable gmn, which can be
realized by a coincidence and count logic (CCL) unit in
Fig. 13(b).

The measurements of all the required photonic observ-
ables fkl can be performed by using, e.g., the Shchukin-
Vogel method, which is based on balanced homodyne cor-
relation measurements [75]. According to that method,
a photonic signal is superimposed on a balanced beam
splitter with a local oscillator, which is in a coherent
state |α = |α| exp(φ)〉 with a tunable phase φ. A de-
sired mean value of the observable fkl can be obtained by
linear combinations of the coincidence counts registered
by specific detectors for different local-oscillator phases
φ. This part of the method corresponds to a Fourier
transform. The simplest nontrivial configuration, which
enables the measurement of the observables f10, f10, f20,
and f02, requires four detectors and three balanced BSs,
where additional input ports are left empty, i.e., allowing

only for the quantum vacuum noise. By replacing the
four detectors with four balanced BSs with altogether
eight detectors at their outputs, one can measure any
observable fkl for k + l ≤ 4. These include the desired
observables f21, f12, and f22. Of course, the observable
f22 can be measured in a simpler way via the HBT in-
terferometry. The measurement of phononic observable
gmn can be performed analogously just by replacing the
balanced BSs by balanced phonon-mode linear couplers
and using phonon detectors as, e.g., in Ref. [74]. The
measurement of two-mode moments 〈fklgmn〉 is, at least
conceptually, a simple generalization of the single-mode
methods relying on proper coincidences in photonic and
phononic detectors. Note that a multimode optical ver-
sion of the original single-mode method was described
in [76].

B. Method 2 based on measuring only photons

Figure 13(c) shows another realization of the measure-
ment unit M , to determine g

(2)
c,d(0), and even g

(2)
c,d(τ).

This method is, arguably, simpler and more effective
than Method 1, because it is based on measuring only
photons and using standard HBT interferometry. Our
approach was inspired by Ref. [46], where the measure-
ment of single-mode phonon blockade was described via
an optical method instead of a magnetomotive technique,
which was described in Ref. [45], where phonon blockade
was first predicted.

Our measurement setup realizes the following three
transformations: (i) converting the phononic mode b′

into a photonic mode b′′, (ii) mixing the optical modes
a′ and b′′ on a balanced BS to generate the modes c′ and
d′, which, in an ideal case, have the same boson-number
statistics as the original hybrid photon-phonon modes c
and d; and finally, (iii) applying the conventional optical
HBT interferometry for these two optical modes. In unit
(i), this conversion corresponds to a multi-level SWAP
gate, which can be implemented by a photonic-phononic
linear coupler for θ = π/2, assuming that the auxiliary
input mode e′ is in the photonic vacuum state, while the
output mode e′′ is in the phononic vacuum state. In unit
(iii), the balanced BS action on the optical modes a′ and
b′′ in Fig. 13(c) corresponds to the transformation of the
balanced linear coupler on the photonic (a) and phononic
(b) modes, as shown in Fig. 13(a).

Clearly, the linear-coupler transformation ULC(θ) is
applied not only to the modes (a, b), but also to other
modes. Thus, Eq. (22) should be adequately modified
by replacing (a, b) by (c, d), (e′, b′), and (a′, b′′). For
brevity, we omit their explicit obvious definitions here.
Note that ULC(π/2) and ULC(π/4) correspond to a multi-
level SWAP and Hadamard-like gates, respectively; while
the balanced BS in Fig. 13(c) corresponds to ULC(π/4).
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FIG. 13. Schematics of the proposed detection schemes: (a)
General scheme for the generation of the photonic mode a,
phononic mode b, and hybrid modes c, d, and their detection
in the measurement unit M , which is shown in specific im-
plementations using: (b) Method 1 and (c) Method 2. Key:
ULC(θ) stands for the linear-coupler transformation, which in
special cases corresponds to multi-level SWAP (for θ = π/2)
and Hadamard-like (for θ = ±π/4) gates; BS is the balanced
beam splitter, which corresponds to ULC(π/4), M ′a (M ′b) is a
measurement unit for detecting photons (phonons), CCL is
a coincidence and count logic unit, HBT stands for the stan-
dard Hanbury-Brown and Twiss optical interferometer. Mode
e′ (e′′) is in the photonic (phononic) vacuum state.

VIII. CONCLUSIONS

We proposed a novel type of boson blockade, as re-
ferred to as hybrid photon-phonon blockade, which is a
generalization of the standard photon and phonon block-
ade effects. We predicted the new effect in a hybrid mode
obtained by linear coupling of photonic and phononic
modes. We described how hybrid photon-phonon block-
ade can be generated and detected in a driven nonlinear
optomechanical superconducting system. Specifically, we
considered the system composed of linearly coupled mi-
crowave and mechanical resonators with a superconduct-
ing qubit inserted in one of them.

We studied boson-number correlations in the photon,
phonon, and hybrid modes in the system. By analyz-
ing steady-state second-order correlation functions, we
found such parameter regimes of the system for which
four different types of boson blockade and/or boson-
induced tunneling can be observed. Thus, we showed
that bosons generated in the studied system can exhibit

the sub-Poissonian (or super-Poissonian) boson-number
statistics accompanied by boson antibunching in some
cases or bunching in others. These results can be inter-
preted as four different types of blockade or tunneling
effects, as summarized in Table II.

By tuning the pump frequency with respect to the en-
ergy levels of the hybrid system, which is driven via the
SMR, we showed that it is possible to observe PB and
PIT that can be explained by a large energy-level anhar-
monicity in the strong-coupling (or large-nonlinearity)
regime. However, the time evolution of the second-order
correlation function g(2)(τ) oscillates due to the coupling
g between the SMR and qubit as well as the hopping f
between the SMR and QD. We showed that it is possi-
ble to induce PB in the hybrid mode c that survives for
much longer delay times by driving the QD instead of the
SMR.

We also predicted unconventional PB in the three
modes in the weak-coupling (or weak-nonlinearity)
regime using a non-Hermitian Hamiltonian approach
based on neglecting quantum jumps. Our analytical
approximate predictions are in a relatively good agree-
ment with our precise master-equation solutions (includ-
ing quantum jumps).

Moreover, as summarized in Table I, we showed the
possibility to observe eight different combinations of ei-
ther PB or PIT in the three modes (a, b, and c) in differ-
ent coupling regimes of this system. Thus, in particular,
we found that the tunneling effects in the photonic and
phononic modes can lead, by their simple linear mixing,
to the hybrid photon-phonon blockade effect.

Finally, we discussed two methods of detecting hybrid-
mode correlations. One of them is based on measuring
various moments of photons and phonons via balanced
homodyne correlation measurements. While the other
method is based on converting phonons of the hybrid
mode into photons, by using a linear coupler acting as a
multi-level SWAP gate, and then applying the standard
optical HBT interferometry.

We believe that our study of the interplay between
photons and phonons can lead to developing new experi-
mental methods for controlling and testing the quantum
states of mechanical systems with atom-cavity-mechanics
polaritons. We hope that our work can also stimulate
research on quantum engineering with hybrid photon-
phonon modes.
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Appendix A: Parameters used in our simulations

Our figures, as indicated in their captions, are plotted
for the SMR-driven dissipative system described by the
Hamiltonian H ′, given in Eq. (6), assuming:

A1 = {∆a = −3γ,∆b = 3γ,∆q = −6γ, f = 5γ,

ηa = 0.7γ, ηb = 0, κa = 1.5γ, κb = 6γ}, (A1)

and for the QD-driven dissipative system for the Hamil-
tonian H ′′, given in Eq. (7), assuming either

A2 = {∆a = 5γ,∆b = −5γ,∆q = 3γ, f = 7γ,

ηa = 0, ηb = 0.5γ, κa = 7.5γ, κb = 6γ}, (A2)

or

A3 = {∆a = 4γ,∆b = −4γ,∆q = 7γ, f = 6.4γ,

ηa = 0, ηb = 0.22γ, κa = 3.5γ, κb = 0.002γ},(A3)

where γ = 10π. Minor modifications of these parameters
are specified in figure captions.

Appendix B: Higher-order correlation effects

Here we briefly study the kth-order boson-number cor-
relation functions g

(k)
z (0), as defined in Eq. (11) for

k = 3, 4, in comparison to the standard second-order
function g

(2)
z (0) for the photon (z = a), phonon (b) hy-

brid photon-phonon (c) modes.
Our results are shown in Fig. 14, where g(4)

z (0) is de-
picted by the thickest curves and g

(3)
z (0) by medium

curves, which are shown in comparison to the thin curves
for g(2)

z (0). Note that the same curves for g(2)
z (0) are also

shown in Figs. 10(a) and 10(c), but we repeat them for a
better comparison with g(3,4)

z (0). It is seen that the eight
cases of Table I can be divided into a number of sub-
cases depending on the signs g(3)

z (0) and g
(4)
z (0). Such

a classification is quite complex as includes, in princi-
ple, 83 = 512 cases. So, instead of that, we present an-
other much-simplified classification of eight cases only,
as shown in Table III using the auxiliary function g234

defined as:

g234 =
[
sgn log g(2)

z (0), sgn log g(3)
z (0), sgn log g(4)

z (0)
]
.

(B1)
In particular [−,−,−] means that the second-, third- and
fourth-order sub-Poissonian photon number-statistics are
observed in a given mode, which are the necessary con-
ditions for observing a ‘true’ single-PB. This case can
be easily identified in both panels of Fig. 14. One can
also find the case when [+,+,+], which corresponds
to the super-Poissonian statistics of orders k = 2, 3,
and 4, which might be interpreted, as the induced tun-
nelling by one, two, and three photons. However, we can
also find intermediate four out of six cases, which can
be interpreted as non-standard types single-PB and/or

single-PIT, and in some cases can be identified as multi-
PB [10, 25, 28, 29, 51]. However, a detailed classifica-
tion of such multi-PB and their interpretation is not at
the focus of this paper. The presented results show only
the possibility of generating in our system a plethora of
various photon-phonon correlation effects, which can be
revealed by higher-order correlation functions for the ex-
perimentally feasible parameters.
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FIG. 14. Correlation functions log g
(n)
i (0) of various orders

[second (thinnest curves), third (medium), and forth (thick-
est)] versus the detuning between the drive and SMR (in units
of the qubit decay rate γ) for the QD-driven system. Param-
eters in panels (a) and (b) are the same as in Figs. 10(a)
and 10(c), respectively.

Appendix C: Analytical approach via non-Hermitian
Hamiltonian in Eq. (19)

Here, we follow the method of Ref. [43] to derive the
coefficients Cn,m,k and C ′n,m,k for n,m ∈ 0, 1, 2 and k =

e, g, which appear in Eqs. (20) and (21).
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Case g234 Mode a Mode b Mode c
1 (−,−,−)

√ √ √

2 (−,−,+) ×
√ √∗

3 (−,+,−) × × ×
4 (+,−,−)

√ √ √

5 (−,+,+) ×
√ √

6 (+,−,+) × × ×
7 (+,+,−)

√ √ √

8 (+,+,+)
√ √ √

TABLE III. Different predictions of the nth-order super-
and sub-Poissonian statistics with n = 2, 3, 4 for the pho-
ton (z = a), phonon (b) hybrid photon-phonon (c) modes,
where g234 is defined in Eq. (B1). The cases marked with

√

can be identified under both (i) nonresonance conditions, as
shown in Fig. 14(b), and (ii) resonance conditions, as shown
in Fig. 14(a) except the case marked with ∗.

First we recall that the balanced linear coupler (or a
balanced beam splitter) transformation, which leads to
Eq. (22), if applied to the input Fock states |na, nb〉 for
na + nb ≤ 2 yields:

|10〉 → 1√
2

(|10〉 − |01〉),

|01〉 → 1√
2

(|10〉+ |01〉),

|11〉 → 1√
2

(|20〉 − |02〉),

|02〉 → 1

2
(|20〉+

√
2|11〉+ |02〉),

|20〉 → 1

2
(|20〉 −

√
2|11〉+ |02〉), (C1)

So, for the input state |Ψabq(t)〉, given in Eq. (18), the
output state of the balanced linear coupler can be repre-
sented as follows:

|Ψcdq(t)〉 = C00g|00g〉+ e−iωdt
(
C00e|00e〉+ C ′10g|10g〉,

+C ′01g|01g〉
)

+ e−2iωdt
(
C ′10e|10e〉+ C ′01e|01e〉

+C ′11g|11g〉+ C ′20g|20g〉+ C ′02g|02g〉
)
,

(C2)

where the superposition coefficients are:

C ′10g =
1√
2

(C10g + C01g),

C ′01g =
1√
2

(C10g − C01g),

C ′10e =
1√
2

(C10e + C01e),

C ′01e =
1√
2

(C10e − C01e),

C ′11g =
1√
2

(C20g − C02g),

C ′20g =
1

2
(C20g +

√
2C11g + C02g),

C ′02g =
1

2
(C20g −

√
2C11g + C02g). (C3)

We can calculate the coefficients Cna,nb,g/e itera-
tively [43]. For a single excitation and assuming the reso-
nance case ∆

SMR
= ∆m = ∆q = ∆ and κa = κb = κ, the

steady-state superposition coefficients can be calculated
from:

0 =

(
∆− iκ

2

)
C01g + fC10g + ηC00g,

0 =

(
∆− iκ

2

)
C10g + fC01g + gC00e,

0 =

(
∆− iγ

2

)
C00e + gC10g, (C4)

where η = ηb, ∆ = ωi − ωp and ω
SMR

= ωm = ωq = ω.
Moreover, we assume the weak-driving regime. So, in
the first iteration, the contributions from the states with
more than a single excitation, such as C01e, C11g, ..., are
negligible. From Eq. (C4), by comparing the coefficients
with a single excitation, we can see that C10g and C00e

are much larger than C01g, because of a weak-pump am-
plitude η, and they can be written as

C10g =
f(24∆− 2iκ)C01g

(24g2 − 24∆2 + 14iκ∆ + κ2)
,

C00e = − 24fgC01g

(24g2 − 24∆2 + 14iκ∆ + κ2)
. (C5)

In the second iteration, to include states with two exci-
tations in total, the steady-state coefficients can be cal-
culated from:

0 = 2∆κC11g +
√

2fC20g +
√

2fC02g + gC01e + ηC10g,

0 = ∆κC10e + ∆γC10e + fC01e +
√

2gC20g,

0 = ∆κC01e + ∆γC01e + fC10e + gC11g + ηC00e,

0 = 2∆κC20g +
√

2fC11g +
√

2gC10e,

0 = 2∆κC02g +
√

2fC11g +
√

2ηC01g,

(C6)

where ∆κ = ∆ − iκ/2 and ∆γ = ∆ − iγ/2. As can be
seen from Eq. (C6), we have

C02g = −(
√

2fC11g +
√

2ηC01g)/(2∆κ). (C7)
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So, to minimize C02g, the minimalization of C11g and
C01g is also required. Destructive interference between
the direct and indirect excitation paths in the energy lad-
ders of the total system can enable us minimizing C02g.
This explains the occurrence of the dip in g(2)(0) in the
mode b, as a signature of PB. As clearly seen in Fig. 11(a),
the optimal PB in this mode occurs at ∆

SMR
/g = ±1.2.

The above equations lead us to analytical optimal con-
ditions for the system parameters to maximize the sub-
Poissonian character of the QD mode and, thus, to op-
timize the parameters for observing PB in the mode b.
Given Eq. (C8) for a single excitation and Eq. (C10) for
two excitations, which are calculated from Eq. (C6), we
show that the second-order correlation function calcu-
lated by this method and the master equation method
both give very similar predictions, as shown in Fig. 11,
where the thick curves are calculated based on the non-
Hermitian Hamiltonian approach and the thin curves cor-
respond to the master-equation approach for the modes
a, b, and c.

Thus we find

C01g = (∆κ∆γ − g2)ηX−1
5 ,

C10g = −∆γfηX
−1
5 ,

(C8)

which yields

C ′10g =
(∆κ∆γ −∆γf − g2)η√

2X5

,

(C9)

Analogously, we find

C02g =
η2[−2∆3

κ∆γX1 + ∆2
κX2g

2 −X6g
4 + g6]√

2X5(X3 −X4)
,

C20g = −η
2f2[2∆κ∆γX1 + (2∆κ −∆γ)∆κγg

2 − g4]√
2X5(X3 −X4)

,

C11g =
η2f(2∆2

κ∆γX1 +X7g
2 + ∆γg

4)

X5(X3 −X4)
,

(C10)

where ∆κγ = ∆κ + ∆γ and the auxiliary functions Xn

read:

X1 = ∆2
κγ − f2,

X2 = ∆κγ(2∆κ + 5∆γ)− 4f2,

X3 = 2∆κ(∆2
κ − f2)X1,

X4 =
[
3∆2

κ∆κγ + (∆κ −∆γ)f2
]
g2 −∆κg

4,

X5 = ∆2
κ∆γ −∆γf

2 −∆κg
2,

X6 = 3∆2
κ + 4∆κ∆γ + f2,

X7 = ∆κ(2f2 − 3∆γ∆κγ). (C11)

These formulas, together with C ′20g in Eq. (C3), enable
us to calculate analytically the correlations functions in
Eqs. (20) and (21).
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