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We propose a heralded nonlocal protocol for implementing an entangling gate on two stationary
qubits coupled to spatially separated cavities. By dynamically controlling the evolution of the
composite system, the entangling gate can be achieved without real excitations of cavity modes nor
atoms. The success of our protocol is conditioned on projecting an auxiliary atom onto a postselected
state, which simultaneously removes various detrimental effects of dissipation on the gate fidelity.
In principle, the success probability of the gate can approach unity as the single-atom cooperativity
becomes sufficiently large. Furthermore, we show its application for implementing single- and two-
qubit gates within a decoherence-free subspace that is immune to a collective dephasing noise. This
heralded, faithful, and nonlocal entangling gate protocol can, therefore, be useful for distributed
quantum computation and scalable quantum networks.

I. INTRODUCTION

Quantum computation exploiting quantum systems
for information processing has attracted a great deal
of attention [1–5] due to its promising advantages over
classical computation [6–8], and has been experimentally
demonstrated with its superiority in handling well-
defined tasks. These include implementing algorithms
based on quantum gates [9, 10] and quantum an-
nealing [11] using superconducting quantum proces-
sors, and performing boson sampling using linear-
optical interferometers [12–14]. Nontrivial entangling
quantum gates in combination with general single-
qubit rotations in principle enable implementing various
quantum algorithms for practical applications. The
entangling quantum gates always involve direct or
indirect interactions between the systems which they are
applied on. So far, entangling quantum gates have been
proposed for different physical systems, such as photons
[15–20], trapped ions [21, 22], color centers [23–28],
quantum dots [29–32], and superconducting circuits [33–
36]. However, the scalability of quantum computation
is challenging due to the inevitable presence of noise
and decoherence. Fortunately, their influences on
the evolution of quantum systems can be suppressed
by the use of e.g.: dynamical decoupling [37, 38],
holonomic manipulation [39–41], and decoherence-free
subspaces (DFSs) [42–45]. Moreover, a certain amount
of noise and decoherence can be tolerated by harnessing
quantum error correction codes [46], in which the
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overheads and the complexity considerably increase with
the error rate.

For some specific dominant noise or decoherence [42],
DFSs can provide an efficient method for protecting
the logical qubits against noise by encoding quantum
information in a DFS [47–51]. A fundamental and
dominant noise in stationary systems is dephasing due
to the random fluctuations of external fields [50], which
destroy the coherence between two computational basis
states. A simple DFS for tackling this issue can be
constructed by properly encoding a logical qubit with two
physical qubits, which simultaneously suffers from the
same phase noise (i.e., collective dephasing noise) [42].
Exploiting DFS for quantum computation has been
widely studied using various platforms [52–65]. For these
protocols, a DFS can work in a deterministic way by
dynamically controlling the evolution of systems, or in
a heralded way with the detection of single photons
scattered by cavity-coupled platforms. Furthermore,
some significant experimental efforts have been made for
the realization of quantum gates acting on decoherence-
free systems [66–69].

Recently, a heralded method for achieving effective
quantum computation [70–72] has been presented by
dynamically controlling the evolution rather than by
scattering and measuring single photons. Borregaard
et al. [70] proposed a heralded, near-deterministic
protocol for performing quantum gates on natural atoms
trapped in a single optical cavity. Qin et al. [71]
presented heralded, nonlocal-controlled entangling gates
on superconducting qubits coupled to the same cavity,
and introduced a second cavity coupled to an auxiliary
qubit for a heralding operation. These protocols provide
a quadratic fidelity improvement compared to previous
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deterministic cavity-based gates, and can find their
applications in long-distance entanglement distribution
and quantum computation [72–75]. However, it is
noteworthy that nonlocal entangling gates for stationary
qubits coupled to different optical cavities are useful
for distributed quantum computation [76–79] and for
realizing quantum repeater networks [80–86]. Hence
it is important to generalize the heralded schemes of
Refs. [70, 71] to the nonlocal case.

In this paper, we propose a heralded method for
implementing entangling quantum gates of nonlocal
stationary qubits coupled to different cavities by
dynamically controlling the evolution of cavity-coupled
systems. The cavities can be connected by short
fibers or superconducting coaxial cables [87]. A four-
level auxiliary atom is coupled to an additional cavity
as both a virtual-photon source and a detector for
heralding the success of the quantum gate [70, 71].
According to the results of a proper measurement
on the auxiliary atom, the gate errors introduced by
atomic spontaneous emission and cavity photon loss
can be inherently removed, leading to faithful nonlocal
entangling gates. As a result, the detected errors simply
lower the success probability of the gate rather than
its fidelity, which is extremely important for practical
applications [76–86].

We show that the fidelity of our two-qubit nonlocal
entangling gate can be further improved by applying
proper single-qubit operations to the qubits after the
entangling gate. Furthermore, we propose an approach
for performing a heralded quantum entangling gate in
a DFS. Each logical qubit consisting of two physical
qubits couples to an individual cavity and suffers from
different dephasing noises. Combining the advantages
of heralded inherent error detection and error-avoiding
DFS, our nonlocal entangling gate can directly find its
applications in distributed quantum computation and
quantum networks.

The remaining of the paper is organized as follows:
In Sec. II, we describe a prototype physical model for
the heralded nonlocal entangling gate on two spatially
separated qubits. In Sec. III, we give an effective master
equation to simulate the quantum dynamics. In Sec. IV,
we describe an implementation of a heralded nonlocal
CPHASE gate and analyze its performance. In Sec. V,
we present heralded nonlocal entangling gates operating
on logical qubits in a DFS immune to collective dephasing
noise. Finally, we conclude with a brief discussion and
summary in Sec. VI.

II. PROTOTYPE PHYSICAL MODEL FOR A
HERALDED ENTANGLING GATE

An essential building block for heralded nonlocal
entangling gates is the use of cavity-coupled systems [87].
They can be implemented by various natural or
artificial atoms [4] coupled to optical cavities (including
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FIG. 1: Schematics of a heralded nonlocal entangling gate.
(a) Implementation of the gate with a cavity-coupled system.
Two stationary qubits are distributed in two separated
cavities that are connected to an auxiliary cavity via short
fibers or superconducting coaxial cables. (b) Level structure
of two qubit-encoding atoms coupled to the cavities A and C.
(c) Level structure of the auxiliary atom that couples to the
cavity B and works as a heralding system.

transmission-line resonators), which can be connected by
short optical fibers (or superconducting coaxial cables).

The schematics of our heralded nonlocal entangling
gate protocol is shown in Fig. 1. Two qubit-encoding
atoms couple to two separated cavities A and C that
are connected via short optical fibers, and an auxiliary
atom couples to the cavity B in the middle. The
effective coupling between two neighboring cavities can
be described by a coupling rate J when the fiber length
L is small and two cavities are resonant [88, 89]. Each
qubit-encoding atom has two ground levels (|0〉 and |1〉),
which can encode a qubit, and one excited level |e〉, shown
in Fig. 1(b).

We assume that the transition |1〉 ↔ |e〉 of both qubit-
encoding atoms is coupled to the cavity mode with a
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coupling rate g > 0 and a detuning ∆e, and that the
excited level |e〉 decays to a level |d〉, which may or may
not be |0〉 or |1〉.

The auxiliary atom has two ground states |g〉 and |f〉
and two excited states |E1〉 and |E2〉, shown in Fig. 1(c).
The |f〉 ↔ |E1〉 transition couples to the cavity mode
aB with a coupling rate gf > 0 and a detuning ∆E1 .
The transition between states |E2〉 and |E1〉 (|g〉 and
|E2〉) is driven by a classical field with frequency ωm
(ωL) and Rabi frequency Ωm (Ω). Therefore, a three-
photon resonant transition, resulting in a flip of two
ground states of the auxiliary atom, can be achieved by
tuning the driving frequency Ωm and Ω.

The states |E1〉 and |E2〉 spontaneously decay to the
states |f〉 and |g〉 with rates γf and γg, respectively.
Therefore, the total Hamiltonian of the composite
system, consisting of the three atoms and three cavities,
can be written as

HT = H0 +H1, (1)

where H0 and H1 represent the free and interaction
Hamiltonians, respectively. The free Hamiltonian H0 is
detailed as

H0 =
∑
k=1,2

(
ωe|e〉k 〈e|+ ω1|1〉k 〈1|+ ω0|0〉k 〈0|

)
+ ωE1

|E1〉 〈E1|+ ωE2
|E2〉 〈E2|+ ωf |f〉 〈f |

+ ωg |g〉 〈g|+ ωc(a
†
AaA + a†BaB + a†CaC), (2)

where ωx is the frequency of the atomic level |x〉, except
ωc, which is the common resonance frequency of the three
cavities. The interaction Hamiltonian H1 (including the
cavity-cavity coupling, the atom-cavity coupling, and the
classical driving) becomes

H1 =
[
g(aA|e〉1 〈1|+ aC |e〉2 〈1|) + gfaB |E1〉 〈f |

+
1

2

(
Ωe−iωLt |E2〉 〈g|+ Ωme

−iωmt |E1〉 〈E2|
)

+J(aAa
†
B + aCa

†
B)
]

+ H.c., (3)

where H.c. represents the Hermitian conjugate, and we
have assumed a symmetry coupling between two qubit-
encoding atoms and their corresponding cavities.

In order to explicitly describe the dynamics of
the composite system, we perform a Bogoliubov
transformation for the three cavity modes and introduce
three delocalized bosonic modes as:

c1 =
1

2
(aA −

√
2aB + aC),

c2 =
1

2
(aA +

√
2aB + aC),

c3 =
1√
2

(aA − aC). (4)

The total Hamiltonian in the new basis can be described,
in a proper rotating frame, as

HT = He + V + V †, (5)

where He and V describe the evolution of the single-
excitation subspace and its coupling to the ground space,
respectively. Specifically, they can be expressed as

He =∆E1 |E1〉 〈E1|+ ∆E2 |E2〉 〈E2|

+

[
Ωm
2
|E1〉 〈E2|+ H.c.

]
+He1, (6)

where

He1 =
∑
k=1,2

[g
2

(c1 + c2 +
√

2Skc3)|e〉k 〈1|+ H.c.
]

+ ∆e|e〉k 〈e|+
{[ gf√

2
(c2 − c1) |E1〉 〈f |+ H.c.

]
+
√

2J(2c†2c2 + c†3c3)
}
, (7)

with Sk = (−1)k+1 and V = Ω
2 |E2〉 〈g|. Here, for

simplicity, we have defined some detunings as follows:

∆E1 = ωE1 − ωL − ωm − ωg,
∆E2

= ωE2
− ωL − ωg,

∆e = ωe − ωL − ωm + ωf − ωg − ω1. (8)

For large detunings (i.e., ∆E1 � Ω and ∆E2 � Ωm) and
a large coupling strength (i.e., J � gf ) between two
neighboring cavities, we can effectively eliminate the
excited states |E1〉 and |E2〉 and then obtain a three-
photon resonant Raman transition from |g〉 → |f〉, which
is mediated by the mode c1 rather than the modes c2,3 if
the driving field frequency is tuned to

ωL = ωc − ωm + ωf − ωg −
√

2J. (9)

The evolution of the composite system consisting of two
qubit-encoding atoms, a single auxiliary atom, and three
cavities connected by optical fibers can in principle be
identical to that of two qubit-encoding atoms and one
auxiliary atom, all coupled to the same cavity.

By adiabatically eliminating the state |E2〉 of the
auxiliary atom and moving into a proper rotating frame,
the effective Hamiltonian of the composite system can
be described by H ′T = H ′e + V ′ + V ′†, with an effective
three-level auxiliary atom. Here,

H ′e =
(

∆E1
+

Ω2 − Ω2
m

4∆E2

)
|E1〉 〈E1|

+
(

∆E2
+

Ω2

4∆E2

)
|E2〉 〈E2|+He1, (10)

and

V ′ = −Ω̃ |E1〉 〈g| , Ω̃ =
ΩmΩ

2∆E2

. (11)

When all qubit-encoding atoms are in the state |0〉 that
is decoupled from the mode c1, an adiabatic excitation of
the auxiliary atom results in the dark zero-energy state:

|ψ〉d =
1√

g2
f + 2Ω̃2

(
gf |0, 0, 0, g〉 −

√
2Ω̃|1, 0, 0, f〉

)
, (12)
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where |0, 0, 0, g〉 represents that the three cavity modes
are in the vacuum state and the auxiliary is in the state
|g〉, while |1, 0, 0, f〉 represents that the mode c1 has a
single photon, the modes c2 and c3 are in the vacuum
state, and the auxiliary atom is in the state |f〉.

In contrast, when either or both qubit atoms are in
the state |1〉, they couple to the mode c1 and introduce
an ac Stark shift, which causes a dynamical phase
after applying the driving. Therefore, all the qubit
states except the uncoupled one acquire a phase that is
determined by the duration of the driving field, which
is essential for constructing various heralded entangling
gates (as shown below).

III. EFFECTIVE MASTER EQUATION

So far, we have described our nonlocal heralded
entangling gate protocol for an ideal case in which the
composite system is decoupled from its environment.
Here we use the master equation in the Lindblad form
to study the dissipative dynamics of our system. We
assume that the dissipation of the system is described by
the Lindblad operators: Lcl =

√
κcl with l = 1, 2, 3

represents the photon loss of the cavity modes with
the same dissipation rate κ; Lf =

√
γf |f〉 〈E1| and

Lg =
√
γg |g〉 〈E2| describe the decay of the auxiliary

atom with rates γf and γg; and Lk =
√
γ |d〉 〈e| (k = 1, 2)

describes the decay of the qubit-encoding atoms with rate
γ. We assume that the excited level |e〉 decays to some
level |d〉, which, in fact, may or may not be |1〉 or |0〉, since
the decay of either a cavity or an excited atom leads to
a heralded error.

The standard master equation in the Lindblad form
for the composite system described by the Hamiltonian
in Eq. (5) can be given by

ρ̇T (t) =i [ρT (t) , HT ] +
1

2

∑
j

[
2LjρT (t)L†j

−ρT (t)L†jLj − L
†
jLjρT (t)

]
, (13)

where ρT (t) represents the density matrix of the total
system.

For a weak classical driving field, i.e., {Ω/∆E2 ,Ω/g} �
1, the excitations of the cavity modes and the excited
states of the atoms can be adiabatically eliminated,
when the system is initially prepared in the ground-state
subspace. Therefore, the ground-state evolution of the
composite system can be described by an effective master
equation as follows [90, 91]:

ρ̇ =i [ρ,Heff ] +
1

2

∑
j

{
2Ljeffρ

(
Ljeff

)†
−
[(
Ljeff

)†
Ljeffρ+ ρ

(
Ljeff

)†
Ljeff

]}
. (14)

Here ρ denotes the ground-space density matrix of
the composite system; Heff represents an effective
Hamiltonian given by

Heff = −1

2
V †
[
H−1

NH +
(
H−1

NH

)†]
V, (15)

and Ljeff are the effective Lindblad operators with

Ljeff = LjH
−1
NHV, (16)

while the non-Hermitian Hamiltonian HNH governing the
dynamics of the decaying excited states [91] can be given,
in the quantum jump formalism, as

HNH = He −
i

2

∑
j

L†jLj

=
∑
k=1,2

[∆̄e

2
|e〉k 〈e|+

g

2
(c1 + c2 +

√
2Skc3)|e〉k 〈1|

+ H.c.
]

+ ∆̄E1
|E1〉 〈E1|+ ∆̄E2

|E2〉 〈E2| −
iκ

2
c†1c1

+
∑
l=2,3

J̄lc
†
l cl +

gf√
2

[(c2 − c1) |E1〉 〈f |+ H.c.]

+
Ωm
2

(|E1〉 〈E2|+ H.c.) , (17)

where ∆̄E1
= ∆E1

− iγf/2, ∆̄E2
= ∆E2

− iγg/2, ∆̄e =

∆e − iγ/2, J̄2 = 2
√

2J − iκ/2, and J̄3 =
√

2J − iκ/2.
To achieve the nonlocal heralded gate, the composite

system is confined within the zero- and single-excitation
subspaces. The effective Hamiltonian Heff and the
effective Lindblad operators Ljeff can be directly derived
from Eqs. (15)–(17). Specifically, Heff is given as follows:

Heff = |g〉 〈g| ⊗
2∑

N=0

∆NPN , (18)

where PN is a projection operator that projects the two
qubit-encoding atoms onto a state with N qubits in
|1〉, while ∆N represents the N -dependent ac Stark shift
which can be expressed as

∆N =− Ω2

γ
Re

{
1

XN

[
C∆̃e (m+ n)

(
S1 + J̃2S2

)
−2∆̃2

eJ̃2S1 − 2mnC2S2

]}
, (19)

where Re denotes the real part of an argument, m (n) ∈
{0, 1} denotes the number of the qubit-encoding atoms
in the state |1〉, and coupled to cavity A (C). Moreover,

C = g2/(γκ), Cf = gf
2/(γκ), ∆̃E1

= ∆E1
/γ − iγf/ (2γ),

∆̃E2 = ∆E2/γ − iγg/ (2γ), ∆̃e = ∆e/γ − i/2, J̃1 =

2
√

2J/κ − i/2, J̃2 =
√

2J/κ − i/2, Ω̃m = Ωm/γ,

Z = 4∆̃E1∆̃E2 − Ω̃2
m, S1 = Cf

(
2iJ̃1 + 1

)
− 2∆̃E1 J̃1,

S2 = 4iCf − ∆̃E1
(2iJ̃1 + 1), and XN = Cf ∆̃E2

R2 −R1Z
with

R1 =∆̃eC (m+ n)
(
J̃2 + 2J̃1 + 2iJ̃1J̃2

)
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− 2C2mn
(

2iJ̃1 + 1
)
− 4∆̃2

eJ̃1J̃2 (20)

and

R2 =4∆̃eC (m+ n)
[
2i(J̃1 + 2J̃2) + 1

]
− 32iC2mn− 8∆̃2

eJ̃2

(
2iJ̃1 + 1

)
. (21)

The effective Lindblad operators are expressed as follows:

Lgeff = |g〉 〈g| ⊗
2∑

N=0

rg,NPN ,

Lfeff = |f〉 〈g| ⊗
2∑

N=0

rf,NPN ,

Lcleff = |f〉 〈g| ⊗
2∑

N=0

rcl,NPN ,

Lkeff = |f〉 〈g| ⊗
2∑

N=1

rk,N |d〉k 〈1| PN , (22)

where k = 1 (k = 2) labels the qubit-encoding
atom coupled to cavity A (C) in the state |1〉. The
corresponding effective decay rates rg,N , rf,N , rcl,N , and
rk,N are given by:

rg,N =
2Ω
√
γg

γXN

[
C∆̃e (m+ n)

(
S1 + J̃2S2

)
−2∆̃2

eJ̃2S1 − 2mnC2S2

]
,

rf,N =
ΩΩ̃mR1

√
γf

γXN
,

rc1,N =2
√

2iδ
[
∆̃eC

(
J̃1 + J̃2

)
(m+ n)

−2∆̃2
eJ̃1J̃2 − 2C2mn

]
,

rc2,N =
√

2δ
[
2∆̃2

eJ̃2 + 4iC2mn

−C∆̃e

(
1 + 2iJ̃2

)
(m+ n)

]
,

rc3,N =Cδ
[
∆̃e

(
1− 2iJ̃1

)
(m− n)

]
,

r1,N =r(n),

r2,N =r(m), (23)

where r(k) =
√

2Cδ[(1 − 2iJ̃1)(kC − ∆̃eJ̃2)] and δ =√
CfΩΩ̃m/(

√
γXN ).

For a weak field, driving the transition |E1〉 → |E2〉
with Ωm/∆E2 � 1, the ac Stark shift ∆N and the
effective decay rates ri,N , shown in Eqs. (19) and (23),
can be simplified:

∆N =− Ω2

4∆E2

− Ω̃2

4γ
Re

(
Q

YN

)
,

rf,N =−
Ω̃Q
√
γf

2γYN
,

rg,N =
Ω
√
γg

2∆E2

+
Ω̃Q
√
γ̃g

2γYN
,

rc1,N =2
√

2δ′
[
2∆̃2

eJ̃1J̃2 + 2C2mn

−C∆̃e

(
J̃1 + J̃2

)
(m+ n)

]
,

rc2,N =
√

2δ′
[
2i∆̃2

eJ̃2 − 4C2mn

+C∆̃e

(
2J̃2 − i

)
(m+ n)

]
,

rc3,N =δ′
[
C∆̃e

(
i+ 2J̃1

)
(m− n)

]
,

r1,N =α′r(n),

r2,N =α′r(m), (24)

where δ′ = Ω̃
√
Cf/(2YN

√
γ), α′ = iΩ̃XN/(2ΩΩmYN ),

and YN = CfR+ ∆̃E1
Q, with:

R =2∆̃2
e

(
−i+ 2J̃1

)
J̃2 + 8C2mn (25)

− C∆̃e

(
−i+ 2J̃1 + 4J̃2

)
(m+ n) ,

Q =4i∆̃eJ̃1J̃2 + 2C2
(
i− 2J̃1

)
mn

+ C∆̃e

[
2J̃1J̃2 − i

(
J̃2 + 2J̃1

)]
(m+ n) . (26)

We note that Ω̃ = ΩΩm/(2∆E2
) is the effective Rabi

frequency of the transition |g〉 → |E1〉 and γ̃g =

γgΩ
2
m/ (2∆E2

)
2

is an effective decay rate of the excited
state |E1〉 to |g〉.

In practice, the auxiliary and the qubit-encoding atoms
can be different. Their atom-cavity cooperativities and
decay rates can be parameterized by Cf = αC and γf =
βγ. For simplicity, we set α = β = 1 in all our numerical
simulations to show the influence of the cooperativity C
on the system evolution. In this case, ∆N and rg,N can
be further simplified as:

∆N =− Ω̃2

4γ
Re

(
Q

YN

)
,

rg,N =
Ω
√
γg

2∆E2

, (27)

where the first term, −Ω2/ (4∆E2), of ∆N in Eq. (24)
has been removed, because it is independent of the state
of the qubits and, thus, has no influence on the phase
gates. Furthermore, the second term of rg,N has also
been removed for γ̃g � 1, because the decay of the
auxiliary-atom excited state to |g〉 is suppressed by a
large detuning ∆E2

.
Each Lindblad operator shown in Eq. (22), except Lgeff

(i.e., the dephasing of |g〉), represents various effective
dissipative processes, leading to the transition |g〉 → |f〉.
These are the dominant error factors that drive the
system out of its effective subspace. Fortunately, the
errors introduced by these dissipative processes can be
inherently detected, because the success of each nonlocal
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entangling gate is heralded by the measurement result
|g〉 of the auxiliary atom. For heralded gates, these
detectable decays have no effect on the fidelity, but
decrease their success probability.

The success probability P of detecting the auxiliary
atom in the state |g〉 can be obtained by solving the
effective Lindblad master equation, given in Eq. (14),
with the following definition

P =

2∑
N=0

Tr [(|g〉 〈g| ⊗ PN ) ρ (t)], (28)

where Tr is the trace operation over the subspace spanned
by the ground states of the auxiliary and qubit-encoding
atoms.

After the measurement on the auxiliary atom, the
conditional density operator of the two qubit-encoding
atoms is reduced to

ρqubit(t) =
1

P

2∑
N,N ′=0

e−i(∆N−∆N′ )te−(ΓN+ΓN′ )t/2

×PN [〈g| ρ (0) |g〉]PN ′ . (29)

Here the total decay rate ΓN for N qubit-encoding atoms
in the state |1〉 is found to be

ΓN = |rf,N |2 +

3∑
l=1

|rcl,N |
2

+m|r1,N |2 + n|r2,N |2, (30)

where rg,N , rf,N , rcl,N , and rk,N are the effective decay
rates given in Eq. (23). By properly controlling the
evolution time and measuring the auxiliary atom, we can
in principle achieve a two-qubit nonlocal controlled-phase
(CPHASE) gate in a heralded way, as described below.
The success probability of the gate is equal to that of
projecting the auxiliary atom onto state |g〉.

IV. HERALDED NONLOCAL CPHASE GATE
AND ITS PERFORMANCE

The effective Hamiltonian in Eq. (18) shows that the
energy shift depends on the number of qubit-encoding
atoms in state |1〉 when the auxiliary atom is in the state
|g〉. Therefore, the time evolution under this effective
Hamiltonian gives rise to different dynamical phases for
the two qubits in the states |00〉, |10〉, |01〉, and |11〉. By
choosing a suitable evolution time and then performing
single-qubit transformations, we can achieve a phase flip
of the qubit state |11〉, while leaving the other three
states unchanged, which achieves the heralded nonlocal
CPHASE gate on the two nonlocal atom qubits.

The detrimental effect of dissipative processes on the
CPHASE gate, represented by the state flip of the
auxiliary atom, can be inherently removed by projecting
the auxiliary atom onto the state |g〉, while the state-
dependent decay rate ΓN of the qubit-encoding atoms

and the finite spontaneous decay rate γ̃g > 0 can
introduce extra errors. Therefore, we can improve the
gate fidelity by modifying the system to achieve a state-
independent decay rate, i.e., Γ0 = Γ1 = Γ2. The state-
independent total decay rate ΓN , in the limit {G,C} �
1, where G = J/κ, can be given by

ΓN = Γ =
Ω̃2

2γ

1

αC
, (31)

where the detunings are changed to

∆E1

γ
= αCD/

√
2,

∆e

γ
=
−2 + C

(
Ḡ2 − 4DḠ

)
2
√

2
(
Ḡ− 2D

) , (32)

where Ḡ = 1/G and D =
√
β/αC are two auxiliary

parameters. The corresponding energy shift can be
rewritten as:

∆0 =− Γ

(
4D − Ḡ

)
8
√

2
,

∆1 =− Γ√
2

2D − Ḡ
2/C + Ḡ2 −DḠ+ 2D2

,

∆2 =− Γ√
2

2D − Ḡ
1/C + Ḡ2/2−DḠ+ 2D2

, (33)

where ∆0 approaches zero for {G,C} � 1, while ∆1

and ∆2 are nonzero and approximately equal to each
other. This property can be used to achieve a heralded
nonlocal CPHASE gate by a driving pulse with duration
Tπ = π/|∆2|.

In practice, we can further decrease the gate error
to arbitrarily small by performing unitary single-qubit
rotations on each qubit-encoding atom, which depends
on the dynamical evolution of the composite system. The
duration of the driving pulse length is chosen to be

tCZ =
π

|∆2 − 2∆1 + ∆0|
, (34)

and the single-qubit rotation on each qubit after applying
the pulse reads:

U |0〉 = exp(i∆0tCZ/2) |0〉 ,
U |1〉 = exp[i (2∆1 −∆0) tCZ/2] |1〉 . (35)

These processes result in a phase flip of the state |11〉,
while leaving the other three states (i.e., |00〉, |10〉, and
|01〉) unchanged.

The success probability of the heralded nonlocal
entangling gate equals that of finding the auxiliary atom
in the state |g〉 at the end of the gate operation, and can
be given by

PCZ = exp (−ΓtCZ) . (36)
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FIG. 2: Numerical simulations for the success probability
and infidelity of the heralded nonlocal CPHASE gate with
two cooperativities C = 100 (blue down-triangles) and C =
600 (red diamonds). (a) The success probability, PCZ, of the
gate as a function of the detuning ∆E2 . Simultaneously, we
also plot the analytical success probability (curves), which is
in good agreement with the numerical values. (b) Infidelity,
1 − FCZ, of the CPHASE gate versus the detuning ∆E2 . In
both panels, we have set: λ = 10, γg = γf = γ = 0.1κ, g = gf ,

C = g2/(κγ), λ = J/(κ
√
C), α = β = 1, Ω = ∆E2/(6C

1/4),

and Ωm = 4γC1/4.

It can be further approximated as

PCZ = 1− Zp
π√
C
, (37)

for {C,G} � 1, where the scaling factor Zp, with λ =

G/
√
C and d =

√
β/α, can be given as

Zp =
√

2d+

(
1 + 2λ2

)2
√

2dλ2(1− 2dλ)
2 +

3 + 6λ2

√
2λ (2dλ− 1)

. (38)

As long as λ � 1, the success probability PCZ remains
almost constant for a given C. In fact, we need to
select appropriate parameters to ensure that the success
probability of the entangling gate remains relatively high,
while its error is arbitrarily small.

To demonstrate the feasibility of our protocol, we
perform numerical simulations of the evolution of the
composite system with the full master equation in
Eq. (13), instead of the effective master equation in
Eq. (14). The initial state of our system is assumed to
be

|Ψ〉ini = |Φ〉ini ⊗ |vac〉 , (39)

where |Φ〉ini represents the initial state of the auxiliary
and qubit-encoding atoms, given by

|Φ〉ini = |g〉

[
2∏
k=1

|+〉k

]
, (40)

where |+〉k = (|0〉k + |1〉k)/
√

2, |vac〉 is the vacuum
state of the three coupled cavities. We solve the master
equation with the QuTiP package [92, 93], and calculate
the success probability (PCZ) and fidelity (FCZ) of the
gate with the following expressions:

PCZ =

2∑
N=0

Tr [(|g〉 〈g| ⊗ PN ⊗ I) ρT (tCZ)], (41)

ρqubit (tCZ) =
1

PCZ
Trcav [〈g| ρT (tCZ) |g〉] , (42)

FCZ = 〈ψ| (U ⊗ U) ρqubit (tCZ) (U ⊗ U)
† |ψ〉 , (43)

where Tr and Trcav are trace operations over the
composite system and the cavities, respectively, and I
is the identity operator for the three cavities.

The success probability PCZ and the gate error
(infidelity), 1 − FCZ, are shown in Fig. 2 as a function
of the detuning ∆E2

/γ for two different cooperativities
C = 100 and C = 600. In our numerical simulations,
we set λ = 10 to reduce the influence of the off-resonant
modes c2 and c3 on the gate error. Meanwhile, we assume
that γg = γf , κ = 10γ, α = β = 1, Ω = ∆E2

/
(
6C1/4

)
,

and Ωm = 4γC1/4.
The detunings ∆E1

and ∆e, given in Eq. (32), are
tuned to achieve a total qubit-independent decay rate.
The numerical results (marked by symbols) of the success
probability PCZ are in agreement with the analytical ones
determined by Eq. (37), as shown in Fig. 2(a). The
success probability PCZ is almost constant for a given
cooperativity C and gradually increases with increasing
C. For the aforementioned parameters, PCZ = 0.56 can
be achieved for C = 600.

The fidelity of the heralded nonlocal entangling gate,
which is conditioned on the detection of the auxiliary
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FIG. 3: (a) Schematic diagram of heralded nonlocal
entangling gates within a decoherence-free subspace. (b)
Implementation scheme of a logical CNOT gate. HL

represents the Hadamard operation on a logical qubit
consisting of the atoms 3 and 4, and UCZ represents a
CPHASE gate on the atoms 1 and 3 that couple to cavities
A and C, respectively.

atom in the state |g〉, can approach unity in principle.
The finite length of the driving field in combination with
the finite effective decay from |E2〉 to |g〉 can introduce
undetectable errors. Theoretically, the former error leads
to a nonadiabatic error of the gate, but which can be
suppressed by properly tuning the Rabi frequency Ω of
the driving field. At the same time, the latter error can
be decreased by increasing the detuning ∆E2

. For a
cooperativity C = 100, the gate error increases with
the detuning ∆E2

, due to the increase in Ω and thus in
the nonadiabatic error, and can be less than 2 × 10−3

for ∆E2
/γ = 100. For a larger cooperativity C = 600,

the gate error first decreases and then increases with
increasing detuning ∆E2

/γ. A gate error below 3× 10−4

can be achieved for C = 600 and ∆E2
/γ = 180, as shown

in Fig. 2(b).

V. HERALDED NONLOCAL QUANTUM
GATES WITH ENCODING IN A

DECOHERENCE-FREE SUBSPACE

In this section, we focus on the implementation of
heralded single- and two-qubit gates on logical qubits
that are robust against collective random dephasing
errors, stemming from the fluctuations of the external
fields and, thus, resulting in uncontrolled energy
shifts [42]. In the case of the collective dephasing, the
symmetry properties of the errors allow to identify a DFS
in the Hilbert space of a two-physical-qubit system [47–
51], where the two logical basis states can be |0L〉 =
|01〉 and |1L〉 = |10〉, and a memory-time enhancement
of two orders of magnitude has been experimentally
demonstrated for ion-trap systems [50].

Suppose that the qubit-encoding atoms 1 and 2 (3 and
4) are coupled to the cavity A (C) and encode a logical
qubit. The cavities A and C interact with the cavity

B through two short fibers or superconducting coaxial
cables, as shown in Fig. 3. We assume that there is an
auxiliary atom coupled the cavity B. The coupling rate
between cavities A (C) and B is J1 (J2), and all the three
cavities decay with the same rate κ.

In principle, a CPHASE gate, UCZ
L , on these two

logical qubits, given by UCZ
L = exp(iπ |1L1L〉〈1L1L|) can

be achieved with a heralded nonlocal CPHASE gate UCZ
1,3

on the atom pair (1, 3) from two logical qubits. The
gate UCZ

1,3 can be implemented with the same method
described in the previous sections, while the other two
atoms need to be decoupled from the cavities (i.e., by
modifying their detunings) during the controlled-phase
gate operation. Furthermore, a controlled-NOT (CNOT)
gate on two nonlocal logical qubits can be constructed
by sandwiching a CPHASE gate with two Hadamard
operations on the same logical qubit as follows:

CNOTL = (I ⊗HL)×
(
UCZ

13

)
× (I ⊗HL) , (44)

where I is the identity on the first logical qubit, UCZ
13 is a

nonlocal CPHASE gate performed on the atom pair (1,
3), and HL performs the Hadamard transformation on
the second logical qubit, as shown in Fig. 3.

The operation of the Hadamard gate on a logical
qubit is nontrivial and changes the entanglement between
two physical atoms encoding a logical qubit. The
logical Hadamard gate can be implemented by a two-
qubit entangling gate in combination with single-qubit
rotations on two qubit-encoding atoms as follows [59]:

HL = [(HSHZ)⊗ (HSH)] CNOT34

× [(HSX)⊗X] , (45)

where the gate S = diag (1, i), in the computational basis
{|0〉, |1〉}, denotes a rotation around the Z-axis by an
angle π/2; H is the standard Hadamard transformation
on a single physical qubit; while X and Z are Pauli
operators. The CNOT34 gate, with the control atom 3
and the target atom 4, can be implemented by

CNOT34 = H4U
CZ
34 H4, (46)

where H4 represents the Hadamard transform on the
qubit 4, and UCZ

34 is the heralded CPHASE gate acting
on the qubits 3 and 4 that are coupled to the same cavity.

The heralded CPHASE gate UCZ
34 acting on the qubits

3 and 4 can be achieved in a setup similar to that shown
in Fig. 1, except that the cavity A is decoupled from
the cavity B, i.e., J1 = 0 and J2 = J , and the heralded
nonlocal CPHASE gate is modified to become a compact
one, as described in Ref. [71].

In order to explicitly describe the dynamics of the
composite system consisting of two cavities and three
atoms, we perform a transformation for the two cavity
modes and introduce the symmetric and antisymmetric
optical modes, a± = (aB ± aC) /

√
2. The total

Hamiltonian is HT = He + V + V †, where V is the same
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as in Eq. (7), while He is changed to

He =

2∑
k=1

{
∆e|e〉k〈e|+

g√
2

[(a+ − a−) |e〉k〈1|+ H.c.]

}
+ ∆E1 |E1〉〈E1|+ ∆E2 |E2〉〈E2|+ 2Ja†+a+

+
gf√

2
[(a+ + a−) |E1〉〈f |+ H.c.]

+
Ωm
2

(|E1〉〈E2|+ H.c.) . (47)

For large detunings (∆E1
� Ω and ∆E2

� Ωm) and a
large coupling strength (J � gf ) between the cavities B
and C, we can adiabatically eliminate the excited states
|E1〉 and |E2〉 and then obtain a three-photon resonant
Raman transition from |g〉 to |f〉, by choosing a driving
field with frequency

ωL = ωc − ωm + ωf − ωg − J. (48)

Such a three-photon resonant Raman transition is
resonantly mediated by the antisymmetric mode a−,
while detuned by 2J from the symmetric mode a+.

Following the procedure in Sec. II, we can implement
the heralded near-deterministic CPHASE gate on the
qubit-encoding atoms 3 and 4 in the same cavity,
which has been discussed in dissipative circuit quantum
electrodynamics (QED) systems [71]. We can completely
remove the gate errors introduced by the qubit-
dependent decay rate by modifying the detunings ∆e and
∆E1

to be:

∆e

γ
=

1

2
(
2D1 + Ḡ

) , (49)

∆E1

γ
= αC

(
D1 + Ḡ

)
, (50)

where D1 =
√[

Ḡ2 + β/ (αC)
]
/2. In the limit {G,C} �

1, the effective Hamiltonian driving the evolution of the
composite system can be described as

Heff = |g〉〈g| ⊗
2∑

n=0

∆′nPn, (51)

where Pn is a projector onto the states with n qubit-
encoding atoms in the state |1〉. The corresponding
energy shift ∆′n is given by

∆′0 =− ΓD1

2
, (52)

∆′n>0 =− Ω̃2

2γ

n
(
2D1 + Ḡ

)
αC

(
4nD2

1 + 2nD1Ḡ+ 1/C
) , (53)

where ∆′0 approaches zero, while ∆′1 ' ∆′2 with |∆′1| '
|∆′2| � |∆′0| for {G,C} � 1. Therefore, we can
implement a CPHASE gate on the atoms 3 and 4 by
properly tuning the duration of the driving pulse in
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FIG. 4: Numerical simulations for the heralded CPHASE gate
on two qubit-encoding atoms, the logical qubit, with two
cooperativities: C = 100 (black squares) and C = 600 (olive
solid circles). (a) The success probability P ′CZ as a function
of the detuning ∆E2/γ. Simultaneously, we also plot the
analytical results (shown by curves), which matches well with
the numerical ones. (b) Infidelity 1−F ′CZ versus the detuning
∆E2/γ. All the system parameters and the initial state are
the same as those assumed in Fig. 2, except λ = 1.84.

combination with the single-qubit rotations, according
to Eqs. (34) and (35) after replacing ∆n with ∆′n.

The success probability P ′CZ and the error (1−F ′CZ) of
the CPHASE gate on two qubit-encoding atoms coupled
to the same cavity are of the same formalism as those
described in Eqs. (41) and (43), while the density matrix
describes the composite system consisting of three atoms
and two cavities.

We numerically calculate P ′CZ and (1 − F ′CZ) and
demonstrate their dependence on the detuning ∆E2

/γ
for different cooperativities (C = 100 and C = 600),
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shown in Fig. 4. All the system parameters and the initial
state are the same as those assumed in Fig. 2, except for
λ = 1.84. The success probability PCZ increases with
increasing C and can be larger than that of the heralded
nonlocal CPHASE gate with P ′CZ = 0.74 for C = 600.
Meanwhile, the gate error decreases with C and shows
a dependence on detuning ∆E2/γ, similar to that of the
nonlocal CPHASE gate. For C = 600, the gate error
1−F ′CZ can be suppressed to 1.2×10−4 for ∆E2/γ = 220.
Therefore, the Hadamard gate in combination with the
nonlocal CPHASE gate can be faithfully implemented
with the cavity-coupled system in a heralded way.

VI. DISCUSSION AND SUMMARY

Our protocol generalizes the previous proposal of
heralded entangling gates [70, 71] on qubits coupled
to the same cavity to a nonlocal case by dynamically
controlling the evolution rather than by scattering and
measuring single photons. The integrated error detection
eliminates the limitation of single-photon sources and
measurements [87], and enables a high fidelity of the
heralded entangling gates at the cost of a smaller
success probability. Furthermore, we apply our heralded
nonlocal entangling gate to heralded single- and two-
qubit quantum gates within a DFS that is immune
to collective dephasing noise. The heralded nonlocal
entangling gates on qubits belonging to different cavities
are suitable for interconnecting individual quantum
processors for distributed quantum computing [78] and
quantum repeater networks [85, 86].

Our protocol can be experimentally implemented with
neutral or artificial atoms coupled to various cavities [4].
As an example, we consider ultracold 87Rb atoms
coupled to optical cavities [70]. The relevant energy
levels can be encoded as: the two ground states
|g〉 (|0〉) and |f〉 (|1〉) corresponding to the atomic
levels |F = 1,mf = 1〉 and |F = 2,mf = 2〉 of 52S1/2,
respectively; and the two excited states |E2〉 and |E1〉(|e〉)
corresponding to |F = 2,mf = 2〉 and |F = 3,mf = 3〉 of

52P3/2, respectively. Optical cavities with high-Q factors
have recently been widely used for quantum information
technology [94–96]. The coupling strength g between a
cavity and an atom inversely depends on the cavity mode
volume, i.e., g ∝ 1/

√
V and can, thus, be significantly

enhanced for small mode volume cavities, such as fiber
Fabry-Perot cavities [97], photonic crystal cavities [18]
and whispering gallery mode cavities [98]. A single-atom
cooperativity C > 500 for a strong single atom-photon
coupling can be achieved for microring resonators [99].

In summary, we have proposed a heralded entangling
quantum gate on nonlocal stationary qubits coupled to
different cavities. We can faithfully implement a nonlocal
entangling gate in a heralded way by dynamically
controlling the evolution of a composite system and
projecting the auxiliary atom onto a postselected state.
We have further showed its application for implementing
quantum gates on logical qubits within a DFS. All these
distinct characteristics make these quantum gates useful
for distributed quantum computation and quantum
networks.
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