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Quantum coherence is a fundamental property in quantum information science. Recent devel-
opments have provided valuable insights into its distillability and its relationship with nonlocal
quantum correlations, such as quantum discord and entanglement. In this work, we focus on quan-
tum steering and the local distillable coherence for a steered subsystem. We propose a steering
inequality based on collaborative coherence distillation. Notably, we prove that the proposed steer-
ing witness can detect one-way steerable and all pure entangled states. Through linear optical
experiments, we corroborate our theoretical efficacy in detecting pure entangled states. Further-
more, we demonstrate that the violation of the steering inequality can be employed as a quantifier
of measurement incompatibility. Our work provides a clear quantitative and operational connection
between coherence and entanglement, two landmark manifestations of quantum theory and both
key enablers for quantum technologies.

Introduction.—Quantum coherence plays a pivotal role
in quantum physics [1], which has spurred various appli-
cations in quantum information science, including cryp-
tography [2], phase discrimination [3], and metrology [4].
Recently, the study of manipulating and quantifying
quantum coherence has been developed under the frame-
work of resource theory [5–11]. Several operational con-
nections between local coherence and nonlocal quantum
correlations, e.g., quantum discord and quantum en-
tanglement, have been established [12–15]. In partic-
ular, it has been shown that nontrivial quantum dis-
cord can be harnessed to enhance the local distillable
coherence through a collaborated coherence distillation
task [8, 16, 17].

Aside from quantum discord and entanglement, quan-
tum steering has also been identified as an intriguing
quantum correlation, which plays an intermediate quan-
tum phenomenon between entanglement [18–22] and Bell
nonlocality [23–27]. Quantum steerability offers fun-
damental advantages for one-sided device-independent
quantum information tasks, including subchannel dis-
crimination [28], quantum key distribution [29], and
quantum metrology [30, 31]. Recently, a notion termed
“non-local advantage of quantum coherence” has been
proposed, demonstrating that quantum steerability can
enhance local coherence [32, 33]. However, the interplay
between quantum steering and quantum coherence still
remains an area that necessitates further exploration.

In this work, we propose a collaborated coherence dis-

tillation task assisted by quantum steering. We construct
a steering inequality based on the distillable coherence
and Shannon entropy of the steered subsystem. More
specifically, we show that if the shared correlation is un-
steerable, the local distillable coherence is upper bounded
by the Shannon entropy. Therefore, if the distillable co-
herence exceeds the Shannon entropy, one can conclude
that the correlation is steerable. In addition, we inves-
tigate the intricacies of the steering inequality violation
(SIV). We show that the SIV exhibits several character-
istics, such as (1) asymmetry, (2) the ability to detect
all purely entangled states, and (3) a convex-decreasing
function under a genuinely incoherent operation. By
leveraging point (3), the proposed SIV can be used to
quantify measurement incompatibility [34–36]. We also
conduct linear optical experiments, demonstrating that
the SIV can witness bipartite pure entangled states.

Distillable coherence.—In this section, we provide a
concise overview of coherence distillation [17]. Given a
priori reference basis {|i〉}i, a quantum state ρ is con-
sidered incoherent if it is diagonal with respect to the
reference basis, i.e., ρ =

∑

i pi |i〉 〈i|, where pi forms a
probability distribution. Thus, states that are not in this
form are categorized as coherent states [8]. We denote
the set of incoherent states as I. Furthermore, a quan-
tum operation Λ is identified as a quantum-incoherent
operation (QIO) if it maps an arbitrary incoherent state
to another incoherent state. For the ease of expression,
we sometimes extend the term QIO to refer to the set of
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quantum incoherent operations.
A coherence distillation process involves the uti-

lization of QIOs to convert n copies of general
quantum states into the single-qubit maximally co-
herent state |Φ2〉 =

∑1

i=0 |i〉 /
√
2 with a rate R [17].

In the asymptotic limit, i.e., n → ∞, the maximal
rate is called the distillable coherence: Cd(ρ) =

sup
{

R : limn→∞ infΛ∈QIO||Λ(ρ
⊗

n)− Φ
⊗

Rn
2 ||= 0

}

,

where ||•|| denotes the trace norm. As reported in
Ref. [17], the distillable coherence has a closed form:

Cd(ρ) = H∆(ρ)− S(ρ), (1)

where S(ρ) = −Trρ log2 ρ is the von-Neumann entropy.
Here, we adopt H∆(ρ) = S [∆(ρ)] as a shorthand nota-
tion, characterizing the Shannon entropy of the state un-
der the reference basis, where ∆(·) =

∑

i |i〉 〈i| 〈i| · |i〉 rep-
resents the complete decoherence operation, e.g. ∆(ρ) =
∑

i pi |i〉 〈i|. Note that a state ρ is distillable (i.e. Cd > 0)
if and only if ρ /∈ I.
It is worthwhile to interpret Eq. (1) from the per-

spective of “quantum uncertainty” described in Ref. [37].
Specifically, it is known that the von-Neumann entropy
S(ρ) characterizes the “classical part of uncertainty” as
it aligns with the classical notion, where the uncertainty
originates from the lack of information of a system. In
addition, the Shannon entropy H∆(ρ) captures the “to-
tal uncertainty” or the observed uncertainty character-
ized by the probability distribution {pi}i. Therefore, ac-
cording to Eq. (1), Cd(ρ) quantifies the amount of ob-
served uncertainty that cannot be explained by classi-
cal ignorance of the system. Along with this reason-
ing, the distillable coherence can be interpreted as quan-
tum uncertainty. Through a rearrangement of Eq. (1),
i.e., Cd(ρ) + S(ρ) = H∆(ρ), one can obtain an uncer-
tainty complementary relation, where the total uncer-
tainty is constituted by the quantum and classical uncer-
tainties [37–40]. This implies the quantum uncertainty
cannot exceed the total uncertainty, i.e.,

Cd(ρ) ≤ H∆(ρ). (2)

The inequality is saturated when ρ is a pure state, given
that there is no classical uncertainty. In the following,
we show that this complementarity also holds when a
bipartite system is unsteerable, while steerable states can
violate this relation.
Steering-assisted coherence distillation.—We now char-

acterize the steering-assisted coherence distillation task,
as illustrated in Fig. 1. Suppose that Alice and Bob
share a bipartite state ρAB. Alice performs a set of posi-
tive operator-valued measures (POVM), denoted asM =
{Ma|x}a,x satisfying Ma|x ≥ 0 ∀ a, x and

∑

aMa|x =
11 ∀ x. Here, x denotes the measurement settings and
a represents the corresponding outcomes. The measure-
ment results can be succinctly represented by a condi-

FIG. 1. Schematic illustration of the steering-assisted coher-
ence distillation scenario. A bipartite system ρAB is shared by
Alice and Bob. Alice measures her subsystem with measure-
ment setting x and obtains outcome a with probability p(a|x).
After that, she sends the information (a, x) to Bob through
classical communication. Depending on the measurement set-
ting, Bob decides whether to perform coherence distillation or
to compute the Shannon entropy.

tional probability distribution p(a|x). After the measure-
ments, Alice communicates both the outcome a and the
setting x to Bob, where we denote Bob’s conditional state
as ρa|x.
The result can be characterized by a state assemblage.

Quantum mechanically, it can be expressed as A, which
is defined by A = {σa|x}a,x with σa|x = p(a|x)ρa|x ∀ a, x.
It is known that one can employ the local-hidden-state
(LHS) model to determine whether a given assemblage is
steerable or not. Specifically, an assemblageALHS admits
an LHS model when its elements can be described by [41]:

σLHS
a|x =

∑

λ

p(λ)p(a|x, λ)ρλ ∀a, x, (3)

where {ρλ}λ and {p(a|x, λ)}a,x are, respectively, hid-
den states and probabilities that constitute a stochastic
process mapping the hidden variable λ into the observ-
able outcomes a|x. For convenience, we also consider
the state assemblage for a fixed setting x, denoted as
Ax = {σa|x}a.
Based on Alice’s measurement setting, Bob either dis-

tills the quantum coherence or computes the Shannon
entropy under the reference basis. With the help of Al-
ice’s classical communication, Bob can adjust the local
incoherent operation Λa|x to optimize his distillable co-
herence. Here, we define the conditional distillable co-
herence and Shannon entropy for a given setting as x:

C
B|A
d (Ax) =

∑

a

p(a|x)Cd(ρa|x)

H
B|A
∆ (Ax) =

∑

a

p(a|x)H∆

(

ρa|x
)

.
(4)

By utilizing the convexity of Cd, we show that the condi-
tional distillable coherence can be upper-bounded for all
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LHS models, namely, C
B|A
d (ALHS

x ) ≤
∑

λ p(λ)H∆(ρλ).
Likewise, the conditional Shannon entropy possesses a

lower bound by its concavity, namely H
B|A
∆ (ALHS

x ) ≥
∑

λ p(λ)H∆(ρλ). Therefore, we obtain the steering in-
equality:

C
B|A
d (ALHS

x ) ≤ H
B|A
∆ (ALHS

x′ ) ∀ x, x′. (5)

In this sense, violation of this inequality implies the given
state is steerable. Equation (5) can be regarded as a gen-
eralization of the complementarity relation of uncertainty
described in Eq. (2). Consequently, the proposed witness
suggests that quantum steerability can be captured as the
violation of the complementarity of uncertainty.

Properties of the steering inequality violation (SIV).—
Here we consider the SIV, which is defined as

VS(A) := max
{

max
x

C
B|A
d (Ax)−min

x
H

B|A
∆ (Ax), 0

}

,

(6)
where max{x1, x2} = x1, if x1 > x2; max{x1, x2} = x2
otherwise. By this definition, the SIV vanishes if the
given state assemblage admits a LHS model. Further-
more, we show that the SIV satisfies the following prop-
erties, and the proofs can be found in Supplemental Ma-
terial [42].

Property 1.—The SIV is asymmetric. In the sense
that the values of SIV are different for Alice to Bob and
vice versa.

A steering test should be naturally asymmetrical, and
this distinction becomes evident as discussed in previous
works [43–45] that permits steering occurrs in a unidirec-
tional manner, specifically, from Alice to Bob.

With this property in hand, we can directly show the
following.

Corollary 2.—The SIV can detect one-way steering.

In the steering scenario, Alice and Bob each have dis-
tinct roles. Therefore, the presence of steerability in
one direction (from Alice to Bob) does not guarantee
its existence in the opposite direction (from Bob to Al-
ice) [43, 44]. Several examples are provided in the Sup-
plemental Material [42].

Property 3.—The SIV can detect all pure entangled
states.

It is known that all pure entangled states are steer-
able [41]. This aspect can also be revealed by the SIV.
More specifically, we show that for all pure bipartite en-
tangled state |ψ〉AB

=
∑

i

√
pi |i〉 ⊗ |i〉, there exists a set

of Alice’s measurement and a reference basis {|i〉}i s.t.
VS > 0 [42].

This property showcases that SIV is also a witness of
entanglement when evaluated on pure entangled states
and is distinct from other coherence-based steering in-
equality [32]. We also show the experimental demonstra-
tion of the steering violation for the pure entangled state
later.

One can ask whether the SIV can serve as a steering
monotone [46]. The answer is negative, because SIV does
not generally monotonically decrease under one-way local
operations and classical communications [42] (see Sup-
plemental Material for an example). However, the SIV
could be non-increasing if we restrict the local operations
to QIOs [8, 16, 17] as suggested by the numerical results
included in Supplemental Material [42]. In the following
property, we prove that SIV is a non-increasing function
under genuine incoherent operations (GIOs), which form
a subset of QIO [47].
Property 4.—The SIV is a convex-decreasing func-

tion under genuine incoherent operations.
According to Ref. [47], there exists a Kraus represen-

tation of a GIO such that all Kraus operators of the
GIO are diagonalized with respect to the reference ba-
sis. Using this property, one can show that distillable co-
herence (Shannon entropy) monotonically decreases (in-
creases) under GIO, implying that VS also monotonically
decreases under GIO [42]. With this property, one can
further show that SIV is non-increasing under one-way
local GIO and classical communications.
Quantify measurement incompatibility.—In this sec-

tion, we show that the SIV can be used to quantify
measurement incompatibility [34, 35, 48–50]. Incompati-
ble measurements, which represent that multiple physical
quantities cannot be measured simultaneously, is a funda-
mental characteristic arising from various quantum phe-
nomena [51, 52]. Given a set of POVMs M = {Ma|x}a,x,
it is compatible (or jointly measurable) if it can be ex-
pressed by

Ma|x =
∑

λ

p(a|x, λ)Gλ, (7)

where {Gλ}λ is a parent POVM and p(a|x, λ) is condi-
tional probability. One can observe that the joint mea-
surable model and the LHS model in Eq. (3) share a
mathematical similarity. Given a state assemblage, it can
be transmitted to a set of POVMs via the concept of the
steering-equivalent observables (SEO) B = {Ba|x}a,x i.e.,

Ba|x = (ρB)
−1/2σa|x(ρB)

−1/2 with ρB =
∑

a σa|x [53].
We note that once ρB is not full rank, the same expres-
sion can be obtained by considering an additional isom-
etry (see also Ref. [53]). One can see that the SEO is
incompatible if and only if the state assemblage is steer-
able [53].
Inspired by the very recently proposed steering-

induced incompatible measure [49], we are able to quan-
tify measurement incompatibility by the steering-assisted
coherence distillation, namely

VI(B) = sup
ρB

VS[
√
ρB B√ρB], (8)

where sup is taking over all full-rank states ρB, and VS is
SIV defined in Eq. (6). We then can show the following:
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Property 5.—The optimal steering-assisted coher-
ence distillation VI(B) is a valid incompatibility mono-
tone [34] in the sense that it satisfies: (a) VI(B) = 0 if
B ∈ jointly measurable; (b) VI(B) satisfies convexity; (c)
VI(B) is non-increasing under post-processing, namely

{Ba′|x′}a′,x′ = W({Ba|x}a,x)
=
∑

a,x

p(x|x′)p(a′|a, x, x′){Ba|x}a,x, (9)

where p(x|x′) and p(a′|a, x, x′) are the conditional prob-
abilities and W is a post-processing scenario defined as a
deterministic wiring map [46]. The proofs can be found
in Supplemental Material [42].
This result further strengthens the application of the

steering-assisted coherence distillation. In one direction,
it quantitatively connects measurement incompatibility
with quantum coherence and gives an additional concrete
example for steering-induced incompatible measure [50]
In the other direction, we clearly provide a different op-
erational interpretation of measurement incompatibility.
Specifically, if we consider ρAB is a pure entangled state,
the SEO B of A generated by M is exactly equivalent to
M. In this sense, the measurement incompatibility of M
can be accessed in a steering-assisted coherence distilla-
tion by properly choosing the pure state ρAB such that
VI(M) = supρB

VS[
√
ρBM

√
ρB ].

Experimental demonstration—To support the derived
theoretical framework, we have performed experimental
testing on the platform of linear optics encoding two-
qubit states into polarizations of photon pairs. The ex-
perimental setup, as depicted in Fig. 2(a), consists of a
laser emitting pulses at 355nm that impinge into a crys-
tal cascade made of two β-BaB2O4 crystals (2×BBO).
These crystals are 1mm thick and are mutually posi-
tioned so that their optical axes lie in mutually perpen-
dicular planes [54]. In these crystals, the laser beam is
subjected to the nonlinear process of type-I spontaneous
parametric down-conversion (SPDC). In the first crystal,
horizontally polarized laser photons are converted into
pairs of vertically polarized photons at 710nm. The sec-
ond crystal facilitates creation of horizontally-polarized
photon pairs from the vertically polarized laser beam.
Photon pairs generated in both crystals are subsequently
collected into single-mode optical fibers. Coherence of
the laser beam and indistinguishability in the photons
collection assure the effective generation of the photon
pairs in a superposition state of both contributing pro-
cesses, |Φ〉 = 1√

2

(√
q|HH〉+ eiφ

√
1− q|V V 〉

)

, where H

and V stand for the horizontal and vertical polarization
states, respectively. Parameters q and φ are controlled
by tuning the laser-beam polarization using half- and
quarter-wave plates.
The aforementioned single-mode fibers guide the pho-

ton pairs to the state detection and the analysis part
of the setup. A series of half- and quarter-wave plates

followed by a polarizer implement local projections onto
any pure polarization state. Such polarization projec-
tion is implemented independently on both photons of a
pair. We project the photon pairs onto all the combina-
tions of the eigenstates of the Pauli matrices and register
the number of simultaneous two-photon detections for all
these combinations [55]. A method of maximum likeli-
hood is then used to estimate the most probable density
matrix fitting the registered counts [56]. This density
matrix is then used to calculate the corresponding SIV.
To evaluate the experimental uncertainty of the calcu-

lated SIV, we make use of the fact that registered pho-
ton detections follow the Poisson statistics (shot-noise).
A Monte-Carlo method is implemented, where all regis-
tered counts are randomized assuming the Poisson statis-
tics with the mean value being the actual experimentally
observed value. Subsequently the maximum-likelihood
method is deployed to estimate the density matrix, which
is then used to calculate the SIV. By repeating this pro-
cedure 1000 times, we obtain the statistics of the SIV
under the detection shot-noise and establish the confi-
dence intervals, ±σ.
Any experimental implementation is, at least to some

degree, imperfect. Partial distinguishability in the gener-
ating crystal and imperfections of polarization optics lead
to non-unit purity of the generated states. These imper-
fections can be reasonably well modeled by white noise.
To estimate the amount of such noise, we maximize
the expression F (ρp0

, ρexp) = maxp(Tr
√√

ρpρexp
√
ρp)

2,
where F denotes the Bures fidelity, ρexp is the experimen-
tally observed density matrix and ρp = (1−p)ρth+p11/4
is the theoretical density matrix ρth with added white
noise. We have found that for the series of the noisy
quasi-pure states ρp and presented in Fig. 2(b), the opti-
mal value of p is p0 = 0.026 on average.
In Fig. 2(b), we compare the theoretical predictions

with the experimental results. The noise-free theoretical
predictions, i.e., SIV(q) = q log2 q+(1−q) log2(1−q), are
represented as the black solid line. Note that SIV(q)> 0
if q > 0. The predictions with a noise factor p0 = 0.026
are represented as the black-dash lines. The experimental
results are shown in blue cubes with error bars obtained
via the above mentioned Monte-Carlo method.

Discussions and Conclusions.—We propose a quantum
steering inequality based on coherence distillation, where
the inequality is formulated as an uncertainty comple-
mentary relation. We theoretically show that our ap-
proach is capable of detecting all bipartite pure entan-
gled states, and the SIV is asymmetric, enabling the de-
tection of one-way steerability. We also demonstrate the
SIV is convex in assemblage and non-increasing under
post-processing. With these properties in hand, we ex-
tend the application of the SIV such that it can be used
to quantify steering-induced measurement incompatibil-
ity. Finally, we experimentally demonstrated the ability
of the SIV to detect bipartite pure entangled states.
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(a) (b)

FIG. 2. (a) Schematic representation of the experimental setup. Individual components are labelled as follows: BBO – β-
BaB2O4 crystal, HWP – half-wave plate, QWP – quarter-wave plate, F – interference bandpass filter (5 nm spectral width),
PBS – polarizer, PC – fiber polarization controller, D – single-photon avalanche photodiode. (b) The theoretical predictions
are juxtaposed with the experimental results. The black solid line illustrates the noise-free theoretical outcomes given by
SIV(q) = q log

2
q + (1 − q) log

2
(1 − q); meanwhile, the black-dash lines represent the theoretical predictions incorporating a

noise factor p0 = 0.026; the blue cubes indicate experimental results, with error bars obtained via the Monte-Catlo method as
described in the text.

Moreover, we demonstrate that the SIV is monotonic
under the restricted local operations. Nevertheless, the
validation of SIV as a steering monotone remains an open
question. If the SIV is a valid convex steering monotone,
it would stand as an efficient measure, given that the
SIV avoids using optimization methods like semi-definite
programming that demands significant computational re-
sources.

It has been shown that the framework of asymptotic
distillation of coherence can be extended to one-shot [57,
58] and asymptotic reversibility settings [59]. It raises an
intriguing question: can these distillation scenarios also
detect and possibly quantify quantum steering?
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Proof of the steering inequality

For convenience, we define the optimal conditional distillable coherence and optimal conditional Shannon entropy
as

C⋆
d(A) := max

x
C

B|A
d (Ax) and H⋆

∆(A) := min
x
H

B|A
∆ (Ax). (10)

Proof. —The inequality C⋆
d(A) ≤ H⋆

∆(A) holds if the assemblage A admits LHS model.
Considering the assemblage Bob received can be described by LHS model, the upper bound of coherence distillation

can be readily obtained, as such derivation:

C⋆
d(A) = max

x

∑

a

p(a|x)Cd

[

∑

λ

p(λ|a, x)ρλ
]

= max
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∑

a

p(a|x)Cd

[

∑

λ

p(a|x, λ)p(λ)
p(a|x) ρλ
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a

p(a|x)
∑

λ

p(a|x, λ)p(λ)
p(a|x) Cd(ρλ)

= max
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λ

p(λ)Cd(ρλ)

=
∑

λ

p(λ)Cd(ρλ)

≤
∑

λ

p(λ)H∆(ρλ).

(11)

By the fact that H∆(ρ) is concave in ρ, we readily obtain
∑

λ p(λ)H∆(ρλ) ≤ H⋆
∆(A) by analogous derivation, con-
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∆(A) if A ∈ LHS. (12)
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To demonstrate the asymmetry, we consider a two-qubit states defined by

χ(~r, ~s,~t) =
1

4



11⊗ 11 + ~r · ~σ ⊗ 11 + 11⊗ ~s · ~σ +

2
∑

i,j=0

tij σ̂i ⊗ σ̂j



 , (13)

where {~r, ~s,~t} are the vectors with norm less than unit and ~σ = (σ̂0, σ̂1, σ̂2) is Pauli vector. If SIV is asymmetric,
the value of SIV will depend on the local Block vector, i.e., ~r and ~s. Here, we consider Alice performs measurements
described as Ma|x = [112 + (−1)aσ̂x]/2 with a ∈ {0, 1} and x ∈ {0, 1}, where σ̂0 and σ̂1 are Pauli-Z and Pauli-X
matrices, respectively, then the assemblage Bob received becomes

σa|x = TrA
[

Ma|x ⊗ 11χ(~r, ~s,~t)
]

=
1

4
TrA



Ma|x ⊗ 11 +Ma|x~r · ~σ ⊗ 11 +Ma|x ⊗ ~s · ~σ +
2
∑

i,j=0

Ma|xtij σ̂i ⊗ σ̂j





=
1

4







11 +
1

2
Tr [~r · ~σ + (−1)aσ̂x~r · ~σ] 11 + ~s · ~σ +

1

2

2
∑

i,j=0

tijTr [σ̂i + (−1)aσ̂xσ̂i] σ̂j







=
1

4



11 + (−1)arx11 + ~s · ~σ +
∑

j

(−1)atxjσj





=
1

2
[1 + (−1)arx]×

1

2



11 +
∑

j

sj + (−1)atxj
1 + (−1)arx

σj





(14)

with probability Trσa|x = [1 + (−1)arx]/2 and the latter term in Eq.(14) is the conditional state ρa|x. To obtain
the SIV, we need to calculate the eigenvalue of the reduced state ρa|x and its dephased counterpart ∆(ρa|x) =
∑1

i=0 〈i| ρa|x |i〉 |i〉 〈i|, which are, respectively,

Ea|x,±(r, s, t) =
1

2



1±

√

∑

j [sj + (−1)atxj ]
2

1 + (−1)arx



 and Edeph

a|x,±(r, s, t) =
1

2

[

1± s0 + (−1)atxδx,0
1 + (−1)arx

]

. (15)

Here, we can observe that the SIV depends on the local Block vector ~r and ~s, meaning that after we SWAP the
two-qubit states χ(~r, ~s,~t) into χ(~s, ~r,~t), the SIV will alter.

Example of corollary 2: The SIV can detect one-way steering

As a concrete example, we present the SIV of a set of states described by

χ(s, q) = s |ψq〉 〈ψq|+ (1− s)TrB (|ψq〉 〈ψq|)⊗ 11/2, (16)

where |ψq〉 =
∑1

i=0 ti(q) |i〉⊗|i〉 and t0(q) = q, t1(q) = 1−q in the parameter windows: s ∈ [0.75, 1] and q ∈ [0.001, 0.5].
The SIV values are shown in Fig. 3. In light-red area (I), the steerability can be detected from both directions,
i.e., VS(AB→A) > 0 and VS(AA→B) > 0. However, in the light-blue area (II), one finds VS(AB→A) = 0, while
VS(AB→A) > 0, which indicates that the SIV is only witnessed from Bob to Alice. Finally, in the grey area (III), the
steerability cannot be detected from any directions.

Proof of property 3

Proof. —For all pure bipartite entangled state, there exists a set of Alice’s measurement and a reference basis such
that SIV > 0.
Let us consider a set of projective measurements {Πa|x}a,x for a, x ∈ {0, 1}, with one of which (label as x = 0)

satisfies

Πa|x=0 |i〉 = δia |i〉 . (17)
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FIG. 3. Ability of the SIV to demonstrate one-way quantum steering. The light-red area (I) represents both VS(A
B→A) > 0

and VS(A
A→B) > 0, suggesting that quantum steering occurs in both directions. The light-blue area (II), conversely, represents

VS(A
B→A) > 0 but VS(A

A→B) = 0, indicating that the respective steerable state only allows Bob to steer Alice. Finally, the
grey area (III) represents the range that VS(A

B→A) = 0 and VS(A
A→B) = 0.

This specific measurement Πa|x=0 on Alice system causes the conditional state |ψ〉a|x=0 = TrAΠa|x=0 ⊗
11 |ψ〉AB

/TrΠa|x=0 ⊗ 11 |ψ〉AB
to a pure and incoherent state. Given that all the conditional states |ψ〉a|x remain

pure states, we have

C⋆
d(A) = max

x

∑

a

p(a|x)H∆(|ψ〉a|x)

and H⋆
∆(A) = min

x

∑

a

p(a|x)H∆(|ψ〉a|x) = 0,
(18)

in which H⋆
∆(A) = 0 is due to the fact that for all pure states |ψ〉, H∆(|ψ〉) = 0 if and only if ∆(|ψ〉) = |ψ〉. By setting

another projective measurement {Πa|x=1}a not commute with {Πa|x=0}a, i.e., [
∑

a aΠa|x=0,
∑

a′ a′Πa′|x=1] 6= 0, we
can ensure C⋆

d(A) > 0 and, therefore, conclude that VS > 0.

Proof of incompatibility monotone

VI(M) is a valid incompatibility monotone [34] if it satisfies:

(a) VI(M) = 0 if M ∈ jointly measurable.

(b) VI(M) satisfies convexity.

(c) VI(M) is non-increasing under post-processing, namely

{Ma′|x′}a′,x′ = W({Ma|x}a,x)
=
∑

a,x

p(x|x′)p(a′|a, x, x′){Ma|x}a,x. (19)

The condition (a) is automatically satisfied by the difinition of VI:

VI({Ma|x}a,x) = sup
ρB

VS[
√
ρB{Ma|x}a,x

√
ρB]. (20)

Given that a set of measurements {Ma|x}a,x is compatible if and only if its SEO induced state assemblage√
ρB{Ma|x}a,x

√
ρB can be described by LHS model. Thus, the SIV will vanish.

To prove that (b) VI(M) satisfies convexity, we only need to demonstrate VS(A) is convex in assemblage.
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Proof. —C⋆
d(A) satisfies convexity.

Let us consider a convex combination of state assemblages can be described by Ã = qA + (1 − q)A′ := {qσa|x +
(1− q)σ′

a|x}a,x ∀q ∈ [0, 1]. Using the convexity of convexity of Cd, one can obtain

C⋆
d(Ã) = C⋆

d [qA+ (1− q)A′]

= max
x

∑

a

p(a|x)Cd

[

qρa|x + (1 − q)ρ′a|x

]

≤ max
x

∑

a

[

qp(a|x)Cd(ρa|x) + (1− q)p′(a|x)Cd(ρ
′
a|x)
]

≤ qmax
x

∑

a

p(a|x)Cd(ρa|x) + (1− q)max
x

∑

a

p′(a|x)Cd(ρ
′
a|x)

= qC⋆
d(A) + (1− q)C⋆

d(A′).

(21)

Following the analogous steps together with the facts that Shannon entropy is concave, we can demonstrate that
H⋆

∆ is also concave with respect to a convex combination of state assemblages. Therefore, we can conclude that
steering violation satisfies convexity, namely

VS(Ã) = VS [qA+ (1− q)A′]

= max {C⋆
d [qA+ (1− q)A′]−H⋆

∆[qA+ (1− q)A′], 0}
≤ max{q [C⋆

d(A)−H⋆
∆(A)] + (1− q) [C⋆

d(A′)−H⋆
∆(A′)] , 0}

≤ qmax { C⋆
d(A)−H⋆

∆(A), 0}+ (1− q)max {C⋆
d(A′)−H⋆

∆(A′), 0}
= qVS(A) + (1− q)VS(A′).

(22)

Here, we use the facts that Cd (H⋆
∆) is a convex (concave) function and the property of the maximization in order.

Therefore, we conclude the proof that VI(M) satisfies convexity.

For the third one (c) VI(M) is non-increasing under post-processing, we consider a post-processing scenario W
defined as a deterministic wiring map [46] as show in Fig. 4:

σa′|x′ = W(σa|x) =
∑

a,x

p(x|x′)p(a′|a, x, x′)σa|x, ∀a, x, (23)

where, p(x|x′) and p(a′|a, x, x′) are conditional probabilities.

FIG. 4.

To prove VI(M) is non-increasing under post-processing, we first need to demonstrate that VS(A) is also non-
increasing under post-processing.

Proof. —VS(A) is non-increasing under post-processing.
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We begin this proof by showing that C⋆
d is non-increasing under post-processing, that is

C⋆
d [W(A)] = max

x′

∑

a′

p(a′|x′)Cd

[

σa′|x′

p(a′|x′)

]

= max
x′

∑

a′

p(a′|x′)Cd

[

∑

a,x

p(x|x′)p(a′|a, x, x′)σa|x
p(a′|x′)

]

= max
x′

∑

a′

p(a′|x′)Cd

[

∑

a,x

p(x|x′)
p(a′|x′)

p(a′|x′)p(x|x′, a′)p(a|x, x′, a′)
p(x|x′)p(a|x, x′) p(a|x)ρa|x

]

= max
x′

∑

a′

p(a′|x′)Cd

[

∑

a,x

p(x|x′)
p(a′|x′)

p(a′|x′)p(x|x′)p(a|x, x′)
p(x|x′)p(a|x, x′) p(a|x)ρa|x

]

= max
x′

∑

a′

p(a′|x′)Cd

[

∑

a,x

p(a′|x′)p(x|x′)
p(a′|x′) p(a|x)ρa|x

]

= max
x′

∑

a′

p(a′|x′)Cd

[

∑

a,x

p(x)p(a|x)ρa|x

]

≤ max
x′

∑

a′

p(a′|x′)
∑

a,x

p(x)p(a|x)Cd

(

ρa|x
)

=
∑

x

p(x)
∑

a

p(a|x)Cd

(

ρa|x
)

≤ max
x

∑

a

p(a|x)Cd

(

ρa|x
)

= C⋆
d(A).

(24)

Here, we utilize the relation p(a′|a, x, x′) = p(a′|x′)p(x|x′, a′)p(a|x, x′, a′)/p(x|x′)p(a|x, x′) to arrive at the equation in
the third line; in the fourth line, we note that all the labels, say x, x′, a should not dependent on a′; in the sixth line,
we use the relation of p(x|x′) = p(x)p(x′|x)/p(x′) = p(x), given that x′ should not dependent on x; the seventh line
is the convexity of Cd.

In contrast, the conditional Shannon entropy increases monotonically after the process due to concavity, namely

H⋆
∆ [W(A)] = min

x′

∑

a′

p(a′|x′)H∆

[

σa′|x′

p(a′|x′)

]

= min
x′

∑

a′

p(a′|x′)H∆

[

∑

a,x

p(x)p(a|x)ρa|x

]

≥
∑

a,x

p(x)p(a|x)H∆

(

ρa|x
)

≥ min
x

∑

a

p(a|x)H∆

(

ρa|x
)

= H⋆
∆(A).

(25)

Combining the results in Eq. (24) and Eq. (25), one can conclude that

C⋆
d(A) − C⋆

d [W(A)] ≥ 0 ≥ H⋆
∆(A)−H⋆

∆ [W(A)] , (26)

which implies VS(A) ≥ VS [W(A)].

By using the above result, we can therefore prove that
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Proof. —VI(M) is also non-increasing under post-processing.

VI [W(M)] = sup
ρB

VS [
√
ρBW(M)

√
ρB]

= VS

[

√

ρ⋆BW(M)
√

ρ⋆B

]

= VS

[

W
(

√

ρ⋆BM
√

ρ⋆B

)]

≤ VS

(

√

ρ⋆BM
√

ρ⋆B

)

≤ sup
ρB

VS (
√
ρBM

√
ρB)

= VI(M).

(27)

Monotonicity of the SIV under GIO

Quantum steering has been articulated within the resource theory framework [46]. A measure S qualifies as a
convex steering monotone if it adheres to the following properties:

(i) S(σa|x) = 0 for all σa|x ∈ LHS.

(ii) S
[

pσa|x + (1 − p)σ
′

a|x

]

≤ pSσa|x+(1− p)S(σ′

a|x) for any real number 0 ≤ p ≤ 1 and assemblages σa|x and σ
′

a|x.

(iii) Non-increasing under one-way local operations and classical communication:

∑

ξ

p(ξ)S
[

Ξξ(σa|x)

TrΞ(σa|x)

]

≤ S(σa|x) ∀σa|x, (28)

where p(ξ) = TrΞ(σa|x) and
∑

ξ p(ξ) = 1.

It is clear that VS satisfies properties (i) and (ii). Nonetheless, for property (iii), we can affirm its adherence only
under the limited local operations. The property (iii) states that quantum steering should not increase under the free
operations, say, one-way local operations and classical communication [46].
In the scenario of steering-assisted coherence distillation, local operations must also adhere to incoherent operations.

In the following, we consider that these local operations belong to the set of genuine incoherent operations [47], which
resides as a subset within incoherent operations [16].
As shown in Fig. 5, a local stochastic genuine incoherent operation is performed on Bob’s system. Specifically, Bob

introduces a device that generates an random outcome ξ with probability p(ξ). After receiving the outcome, Bob
sends his system into a corresponding genuinely incoherent operation Ξξ [47], which can be characterized by a set of
Kraus operators {Kk,ξ}k such that

Ξξ(•) =
∑

k

Kk,ξ •K†
k,ξ

with
∑

k

K†
k,ξKk,ξ = 11,

Kk,ξ =
∑

i

ck,ξi |i〉 〈i| .

(29)

Additionally, the outcome ξ is also sent to Alice through classical communication, so that she utilizes classical
stochastic maps defined by {p(a′|a, x, x′, ξ), p(x|x′, ξ)} to post-process her measurement results. Consequently, the
entire process Ξ transforms an initial assemblage σa|x into a final assemblage σa′|x′ :

σa′|x′ = Ξ(σa|x)

=
∑

a,x,ξ

p(x|x′, ξ)p(a′|a, x, x′, ξ)p(ξ)Ξξ(σa|x).
(30)

Note that σa′|x′ is a valid state assemblage.
Now, we prove that the SIV is monotonic under this constrain.
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FIG. 5. Schemetic illustration of one-way local genuinely incoherent operations and classical communication.

Proof. —SIV is non-increasing under one-way local genuinely incoherent operations and classical communication.

We aim to use the strategy in Eq. (24) and Eq. (25) by first showing that C⋆
d is non-increasing after the process,

namely

C⋆
d [Ξ(A)] = max

x′

∑

a′

p(a′|x′)Cd

[

σa′|x′

p(a′|x′)

]

= max
x′

∑

a′

p(a′|x′)Cd





∑

a,x,ξ

p(x|x′, ξ)p(a′|a, x, x′, ξ)Kξσa|xK
†
ξ

p(a′|x′)





= max
x′

∑

a′

p(a′|x′)Cd





∑

a,x,ξ

p(x|x′, ξ)
p(a′|x′)

p(a′|x′, ξ)p(x|a′, x′, ξ)p(a|x, a′, x′, ξ)
p(x|x′, ξ)p(a|x, x′, ξ) p(a|x)Kξρa|xK

†
ξ





= max
x′

∑

a′

p(a′|x′)Cd





∑

a,x,ξ

p(a′|x′, ξ)p(x|x′, ξ)
p(a′|x′) p(a|x)Kξρa|xK

†
ξ





= max
x′

∑

a′

p(a′|x′)Cd





∑

a,x

p(x)p(a|x)
∑

ξ

p(ξ)Ξξ(ρa|x)





≤ max
x′

∑

a′

p(a′|x′)
∑

a,x

p(x)p(a|x)Cd





∑

ξ

p(ξ)Ξξ(ρa|x)





≤
∑

x

p(x)
∑

a

p(a|x)Cd





∑

ξ

p(ξ)ρa|x





≤ max
x

∑

a

p(a|x)Cd

(

ρa|x
)

= C⋆
d(A).

(31)

Again, in the third line, we utilize the relation: p(a′|a, x, x′, ξ) = p(a′|x′, ξ)p(x|a′, x′, ξ)p(a|x, a′, x′, ξ)/p(x|x′, ξ)p(a|x, x′, ξ).
For the fourth line, label x should not depend on a and label a should not depend on x′ and a′ as shown in Fig. 5.
In the fifth line, we use the relation p(x) = p(x|x′, ξ)p(a′|a, x, x′, ξ)/p(a′|x′) to arrive the equation. In addition, we
use the convexity of Cd and its monotonic property under incoherent operation [8] to deduce the inequalities in the
sixth and the seventh lines, respectively.
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In contrast, the H⋆
∆ will always increase monotonically after the process, namely

H⋆
∆ [Ξ(A)] = min

x′

∑

a′

p(a′|x′)H∆

[

σa′|x′

p(a′|x′)

]

= min
x′

∑

a′

p(a′|x′)H∆





∑

a,x,ξ

p(x)p(a|x)p(ξ)Ξξ(ρa|x)





≥
∑

a,x

p(x)p(a|x)H∆





∑

ξ

p(ξ)Ξξ(ρa|x)





=
∑

x

p(x)
∑

a

p(a|x)H∆





∑

ξ

p(ξ)

(

∑

k

Kk,ξρa|xK
†
k,ξ

)





=
∑

x

p(x)
∑

a

p(a|x)S





∑

i,k,ξ

p(ξ)|ck,ξi |2〈i| ρa|x |i〉 |i〉 〈i|





=
∑

x

p(x)
∑

a

p(a|x)S
[

∆(ρa|x)
]

≥ min
x

∑

a

p(a|x)H∆

(

ρa|x
)

= H⋆
∆(A).

(32)

In this deduction, we use the concavity of the H∆ and the definition of genuinely incoherent operations in Eq. (29).
Therefore, by using the relation similar to Eq. (26), we can conclude that VS(A) ≥ VS [Ξ(A)], which ends the proof.

One can observe that our proof strategy aims to demonstrate C⋆
d(A) − C⋆

d [Ξ(A)] ≥ 0 ≥ H⋆
∆(A) − H⋆

∆ [Ξ(A)],
which offers a weaker validation of the relationship C⋆

d(A)−H⋆
∆(A) ≥ C⋆

d [Ξ(A)]−H⋆
∆ [Ξ(A)]. This is because any Ξ

satisfying the former inequality will automatically meet the conditions of the latter inequality. However, the converse
is not necessarily true; that is, all Ξ that meet the conditions of the latter inequality may not satisfy the former one.
To derive the former inequality, we must limit the local operations to genuinely incoherent operations–a subset of
incoherent operations.

Additionally, we have numerically tested the monotonicity of the SIV using 107 random pure entangled states ρAB

and random local completely positive and trace-preserving (CPTP) maps Λ on Bob’s side. For each pure entangled
state, we assume Alice performs Pauli-X: σ̂1 and Pauli-Z: σ̂3 measurements, i.e., Ma|x = [112 + (−1)aσ̂x]/2 with
a ∈ {0, 1} and x ∈ {1, 3}. After receiving the assemblage A = {σa|x = p(a|x)ρa|x}a,x, Bob computes both VS(A) and
VS[Λ(A)] under the reference basis {|i〉}i=0,1 (eigenbasis of Pauli-Z). Out of all 107 random tests, we found 14 cases
where the SIV increased after applying the random CPTP map. One of these 14 cases is illustrated below:

ρAB =









0.276 0.293− 0.062i −0.027 + 0.251i 0.073− 0.203i
0.293 + 0.062i 0.325 −0.085 + 0.026i 0.123− 0.199i
−0.027− 0.251i −0.085− 0.026i 0.230 −0.191− 0.047i
0.073 + 0.203i 0.123 + 0.199i −0.191 + 0.047i 0.168









(33)

and CPTP map Λ1(ρ) =
∑3

i=0KiρK
†
i with Kraus operators:

K0 =

(

0.559 + 0.351i 0.425− 0.487i
0.721 −0.024 + 0.564i

)

, K1 =

(

0.004 + 0.021i 0.388
−0.160− 0.030i 0.319− 0.091i

)

,

K2 =

(

−0.050− 0.071i 0.032 + 0.020i
0.097 0.005− 0.037i

)

, K3 =

(

0.021 0.006 + 0.012i
0.001− 0.012i −0.013− 0.016i

)

.

(34)

By calculating the SIVs, we obtain

VS(A) ≈ 0.061 and VS[Λ1(A)] ≈ 0.198, (35)
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whcih demonstrates that the SIV increases after the CPTP map. However, when applying this map to a maximally
mixed state 11/2, we find that

Λ1

(

11

2

)

=

(

0.506 0.117 + 0.026i
0.117− 0.026i 0.494

)

, (36)

which implies that Λ1 /∈ ICO. In fact, Λ1[ρI(α)] /∈ ICO ∀ρI = α |0〉 〈0|+ (1− α) |1〉 〈1| ∈ I ∀α ∈ [0, 1]
After reviewing all other cases with a similar method, we conclude from the numerical tests that the SIV could be

non-increasing under one-way local incoherent operations and classical communication [16].

SIV examples: Werner state and Rank-2 Bell diagonal state

Here, we provide examples of the violation or witness with two-qubit Werner and Bell diagonal states. The two-qubit
Werner state is characterized by mixtures of a maximally entangled state and a maximally mixed state, namely

ρWerner(w) = w |β11〉 〈β11|+ (1− w)
11

2
⊗ 11

2
, (37)

where |βuv〉 = [|0〉 ⊗ |v〉+ (−1)u |1〉 ⊗ |1⊕ v〉] /
√
2 for u, v ∈ {0, 1} are Bell states and w ∈ [0, 1]. Note, we use the

notation |u⊕ v〉 = |u+ v mod 2〉.
We consider that Alice performs Pauli-X and Pauli-Z measurements, where the measurement operators are Ma|x =

[112 + (−1)aσ̂x]/2 with a ∈ {0, 1} and x ∈ {1, 3}. Here σ̂1, σ̂2, and σ̂3 are Pauli-X, Pauli-Y, and Pauli-Z matrices,
respectively. The output state assemblage after the measurement can be written as

σWerner
a|x (w) =

1

2

[

1

2
11 +

w

2
(−1)aσ̂2σ̂xσ̂2

]

, (38)

with the probabilities Tr[σWerner
a|x (w)] = 1/2 ∀a, x. According to Eq. (6), the steering violation of Werner state reads

VS[AWerner(w)] = max
{

1 + 2(1− w

2
) log2(1−

w

2
) + w log2

w

2
, 0
}

. (39)

The violation successfully detects quantum steering when w > 0.779, which is shown in Fig. 6. Note that as reported
in Ref. [41], there exist steering witnesses, for which the steerability can be detected when w > 1/

√
2 ≈ 0.707 under

two measurement settings.
Let us now consider the rank-2 Bell-diagonal state, i.e., a mixture of different types of Bell states, namely

ρBell(w) = w |β11〉 〈β11|+ (1 − w) |β01〉 〈β01| , (40)

which is steerable for w ∈ (0.5, 1] [33]. The state assemblage received by Bob can be written as

σBell
a|x (w) =

w

2
σ̂2M

T
a|xσ̂2 +

1− w

2
σ̂3σ̂2M

T
a|xσ̂2σ̂3 (41)

with the probabilities TrσBell
a|x (w) = 1/2 for all a, x. The corresponding steering violation can be expressed by

VS[ABell(w)] = 1 + (1− w) log2(1− w) + w log2 w (42)

We plot the violation values for w ∈ [0.5, 1] as the blue-dash-dot curve in Fig. 6. In Fig. 6, we observe that there is
a sudden-death effect of the steering violation of Werner state at w ≈ 0.779. This suggests that the violation cannot
detect all steerable Werner state as reported in Ref. [41]. In contrast, the violation successfully witnesses all steerable
rank-2 Bell-diagonal state for w ∈ (0.5, 1] [60].
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FIG. 6. The violation of the two different bipartite states. The blue-dash curve represents the violation value of the rank-2
Bell-diagonal state, showing all steerable rank-2 Bell-diagonal states for w > 0.5; the red-solid curve represents the violation
value of the Werner state, which has a sudden-death effect at w ≈ 0.779 and indicates steerability for w > 0.779.


