
PHYSICAL REVIEW A 108, 033512 (2023)
Editors’ Suggestion

Unavoidability of nonclassicality loss in PT -symmetric systems
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We show that the loss of nonclassicality (including quantum entanglement) cannot be compensated by the
(incoherent) amplification of PT -symmetric systems. We address this problem by manipulating the quantum
fluctuating forces in the Heisenberg-Langevin approach. Specifically, we analyze the dynamics of two non-
linearly coupled oscillator modes in a PT -symmetric system. An analytical solution allows us to separate
the contribution of reservoir fluctuations from the evolution of quantum statistical properties of the modes. In
general, as reservoir fluctuations act constantly, the complete loss of nonclassicality and entanglement is observed
for long times. To elucidate the role of reservoir fluctuations in a long-time evolution of nonclassicality and
entanglement, we consider and compare the predictions from two alternative models in which no fatal long-time
detrimental effects on the nonclassicality and entanglement are observed. This is so as, in the first semiclassical
model, no reservoir fluctuations are considered at all. This, however, violates the fluctuation-dissipation theorem.
The second, more elaborated, model obeys the fluctuation-dissipation relations as it partly involves reservoir
fluctuations. However, to prevent the above long-time detrimental effects, the reservoir fluctuations have to be
endowed with the nonphysical properties of a sink model. In both models, additional incorporation of the omitted
reservoir fluctuations results in their physically consistent behavior. This behavior, however, predicts the gradual
loss of the nonclassicality and entanglement. Thus the effects of reservoir fluctuations related to damping cannot
be compensated by those related to amplification. This qualitatively differs from the influence of damping and
amplification to a direct coherent dynamics of PT -symmetric systems in which their mutual interference results
in a periodic behavior allowing for nonclassicality and entanglement at arbitrary times.
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I. INTRODUCTION

Open systems can be found in many areas of physics,
chemistry, and biology. Their rigorous description is based
upon using the (generalized) master equations, which is how-
ever demanding. In special cases, in which damping and
amplification in the analyzed system are in balance, their de-
scription via an appropriate non-Hermitian parity-time (PT )
symmetric Hamiltonian represents an attractive alternative.
This is possible due to the fact that such Hamiltonians,
though being non-Hermitian, are endowed with real spectra.
Non-Hermitian (PT ) symmetric Hamiltonians have become
attractive owing to the works by Bender et al. [1–3]. The
presence of exceptional points (EPs) is another important
feature of such Hamiltonians. At EPs, which are, in a certain
sense, singular points in parameter spaces, the systems exhibit
special properties and physical effects (for details see reviews
in [4,5]). They may be used, e.g., for enhanced sensing [6–8],
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enhanced nonlinear interactions [9–12], unidirectional light
propagation [13,14], and invisibility [15,16].

For such reasons and concentrating on optics, numer-
ous classical and semiclassical PT -symmetric systems were
analyzed in the areas of optical waveguides [17,18], op-
tical coupled structures [19–22], coupled optical microres-
onators [6,13,23–28], optical lattices [29–32], and even
chaotic systems [33]. Models based on PT -symmetric Hamil-
tonians and their EPs can also be found in microwave
photonics [34], plasmonics [35] (for a review see [36]),
electronics [37,38], metamaterials [39], cavity optomechan-
ics [40–42], and acoustics [43,44]. Moreover, problems
related to PT symmetry were considered in the context
of quantum steering [45], the stability of the hydrogen
molecule [46], and even finding energy levels for the hydrogen
bridge in nanojunctions with metallic anchors [47].

Whereas PT -symmetric non-Hermitian Hamiltonians
have been extraordinarily successful in describing numer-
ous effects in classical and semiclassical systems, their
application to fully quantum systems is not straightforward.
Damping and amplification, which are indispensable parts
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of such Hamiltonians, cause backaction of the system’s
surroundings (reservoir) that influences the dynamics of the
analyzed system itself. The strength of the backaction is pro-
portional to the level of damping and amplification (according
to the fluctuation-dissipation theorem [48]). The backaction
that is typically described by (random) reservoir fluctuating
forces disturbs quantum coherence in a given system. This
results in the gradual loss of nonclassicality and entangle-
ment (quantum correlations) of the system states. This is
rather limiting, e.g., for quantum nonlinear optics, in which
the generation of nonclassical and entangled states has been
extensively studied [9–12].

We note that, in Refs. [49,50], an alternative description
of a quantum PT -symmetric system was suggested using
an equation of motion derived for the metric of the Hilbert
space induced by the system. For any Hermitian system,
such a metric is trivially equal to one, but it can be highly
nontrivial for non-Hermitian systems. However, by neglecting
a proper Hilbert-space metric in describing the evolution of
systems with non-Hermitian Hamiltonians, one can seem-
ingly violate the basic no-go theorems in quantum mechanics,
including those in quantum information, as explicitly demon-
strated in [49]. Alternatively, when analyzing non-Hermitian
quantum systems quantum jumps can be included to follow
consistent quantum evolution of such systems, as shown in
Refs. [26,51] in the context of EPs. In general, there is a
question to what extent PT -symmetric non-Hermitian Hamil-
tonians provide a suitable tool for describing more complex
physical systems [52].

The question arises whether the action of reservoir fluc-
tuations has to inevitably result in the complete loss of
nonclassicality and entanglement in a long-time evolution of
quantum systems. To answer this question, we analyze here
the role of different types of reservoir fluctuating forces (with
different fluctuation-dissipation relations) in the dynamics of
nonclassical properties in a system of two coupled oscillator
modes with one mode damped and the other amplified. First,
we consider a quantum statistical model in which both modes
interact with proper physical reservoirs whose elimination
from the description of a master system results in the quantum
Heisenberg-Langevin equations. Their solution describes the
above-discussed loss of nonclassicality and entanglement for
long times. To understand the role of reservoir fluctuations
in the evolution of the nonclassicality and entanglement, we
consider the corresponding semiclassical model, in which no
reservoir fluctuations are considered to compensate for damp-
ing and amplification in the master system. This leads to a
periodic solution that allows for the long-time nonclassicality
and entanglement, but it violates the fluctuation-dissipation
theorem and thus disturbs quantum consistency of the model.
To keep quantum consistency, we formulate another model
that partially involves the reservoir fluctuating forces such that
the fluctuation-dissipation relations are satisfied. This leads,
similarly to the semiclassical model, to a periodic solution
that admits the long-time nonclassicality and entanglement.
The revealed ideal reservoir is common for both oscillator
modes. Moreover, its properties resemble those of the sink
models [53] that remove energy (particles) from the master
system. Such reservoir properties are considered as nonphys-
ical. We note that when the missing parts of the reservoir

fluctuating forces in both models are taken into account, the
system evolution loses its periodicity together with the long-
time nonclassicality and entanglement.

Detailed analysis of both models with partially suppressed
reservoir fluctuations leads us to the following general conclu-
sion: When usual physical reservoirs with classical properties
are considered to compensate for damping and amplifica-
tion in the master system, the gradual loss of the system’s
nonclassicality and entanglement in its evolution has to in-
evitably occur as a consequence of the action of reservoir
fluctuations. This means, among others, that the analysis of
quantum systems based on the PT -symmetric non-Hermitian
Hamiltonians is principally limited to shorter times.

The paper is organized as follows. In Sec. II the model of
two coupled oscillator modes is presented and its dynamics
is completely solved including the reservoir contribution. In
Sec. III the properties of an ideal reservoir that do not destroy
the long-time nonclassicality and entanglement are derived.
The nonclassicality and entanglement for the Gaussian states
in the suggested quantum models and in the semiclassical
model with no reservoir fluctuations are analyzed in Sec. IV.
The predictions of the models for specific time are compared
in Sec. V. A summary is given and conclusions are discussed
in Sec. VI.

II. MODEL OF TWO COUPLED OSCILLATOR MODES
AND THEIR EVOLUTION

By introducing the photon annihilation (â j) and creation
(â†

j ) operators of the considered oscillator modes labeled as 1

and 2, we can write the appropriate interaction Hamiltonian Ĥ
of the system as [54]

Ĥ = (εâ†
1â2 + κ â1â2 + H.c.) + (â1 l̂†

1 + â2 l̂†
2 + H.c.), (1)

where ε describes the linear exchange of energy (photons)
between modes 1 and 2. The coupling constant κ originates in
parametric down-conversion [55] that creates and annihilates
photons in modes 1 and 2 in pairs and thus is responsible
for the generation of nonclassical states in the system. The
symbol H.c. replaces the Hermitian conjugated terms. We
assume that mode 1 is damped with a damping constant γ

and mode 2 is amplified with the same amplification constant
γ (PT symmetry). The annihilation (l̂ j) and creation (l̂†

j )
operators of the corresponding Langevin fluctuating operator
forces describe the reservoir backaction to the damping and
amplification.

To guarantee the quantum consistency of the system evo-
lution, the Langevin fluctuating operator forces are usually
modeled by two independent quantum random Gaussian pro-
cesses with the correlation functions [56–58]

〈l̂1(t )〉 = 〈l̂†
1 (t )〉 = 0, 〈l̂2(t )〉 = 〈l̂†

2 (t )〉 = 0,

〈l̂†
1 (t )l̂1(t ′)〉 = 0, 〈l̂1(t )l̂†

1 (t ′)〉 = 2γ δ(t − t ′),

〈l̂†
2 (t )l̂2(t ′)〉 = 2γ δ(t − t ′), 〈l̂2(t )l̂†

2 (t ′)〉 = 0; (2)

the remaining second-order correlation functions are zero.
The symbol δ stands for the Dirac function. Whereas the
Langevin forces of mode 1 correspond to the reservoir’s two-
level atoms in the ground state, the Langevin forces of mode 2
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arise for the reservoir’s excited two-level atoms. We note that
[â j, â†

j ] = 1 for j = 1, 2 are the only nonzero commutation

relations among the operators â j and â†
j .

The Heisenberg equations derived from the Hamiltonian Ĥ
in Eq. (1) can conveniently be written in the matrix form

dÂ(t )

dt
= MÂ(t ) + L̂(t ), (3)

M =

⎡
⎢⎢⎣

−γ 0 ε κ

0 −γ −κ −ε

ε κ γ 0
−κ −ε 0 γ

⎤
⎥⎥⎦, (4)

assuming real ε and κ and using the vectors ÂT =
(â1, â†

1, â2, â†
2) and L̂T = (l̂1, l̂†

1 , l̂2, l̂†
2 ). We note that the po-

sitions of EPs of the system described by the Heisenberg
equations (3) including their degeneracies were discussed
in [59] from the point of view of the Liouvillian EPs. We also
note that the model described by the Heisenberg equations (3)
can equivalently be formulated using a master equation (for
details see, e.g., Ref. [60]). In this case, details about the
inclusion of the reservoirs described in Eq. (2) can be found,
e.g., in Ref. [59].

The solution of the linear operator equations (3) can be
expressed using the evolution matrix P̂(t, t ′) [61]:

Â(t ) = P(t, 0)Â(0) + F̂(t ), (5)

F̂(t ) =
∫ t

0
dt ′P(t, t ′)L̂(t ′). (6)

The evolution matrix P(t, t ′) arises as a solution of the equa-
tion

dP(t, t ′)
dt

= MP(t, t ′) (7)

with the boundary condition P(t, t ′) equal to the unity matrix.
The solution is written as

P(t, t ′) = exp[M(t − t ′)]. (8)

Equation (6) for the fluctuating forces F̂ leads to the correla-
tion functions as follows [61]:

〈F̂(t )〉 =
∫ t

0
dt ′P(t, t ′)〈L̂(t ′)〉,

〈F̂(t )F̂†T(t )〉 =
∫ t

0
dt̃

∫ t

0
dt̃ ′P(t, t̃ )〈L̂(t̃ )L̂†T(t̃ ′)〉P†T(t, t̃ ′).

(9)

Once the diagonal form of the dynamical matrix M in
Eq. (4) is revealed, the solution of the model can be expressed
analytically. Relying on the block structure of the matrix M,
we find the result

M = T�MT−1, (10)

�M = μ diag(1, 1,−1,−1), (11)

T = (T1, T2, T3, T4), (12)

T1,2 = 1

2
√

ε
(ζ±,−ζ∓,±ζ±ψ+,∓ζ∓ψ+),

T3,4 = 1

2
√

ε
(ζ±,−ζ∓,∓ζ±ψ−,±ζ∓ψ−),

T−1 = (
T−1

1 , T−1
2 , T−1

3 , T−1
4

)
,

T−1
1,2 =

√
ε

2
√

μ
(ζ±ψ−,−ζ∓ψ−, ζ±ψ+,−ζ∓ψ+),

T−1
3,4 =

√
ε

2
√

μ
(ζ±, ζ∓,−ζ±,−ζ∓), (13)

ξ = √
ε2 − κ2, ζ± = √

ε ± ξ , μ =
√

ε2 − κ2 − γ 2, and
ψ± = (μ ± iγ )/ξ .

By determining the evolution matrix P in Eq. (8) with
the help of the decomposition of the dynamical matrix M
in Eq. (10), we can express the solution of the Heisenberg-
Langevin equation (5) in the form

â(t ) = U(t )â(0) + V(t )â†(0) + f̂ (t ) (14)

using the definitions âT ≡ (â1, â2), Uj,k (t ) = P2 j−1,2k−1(t, 0),
Vjk (t ) = P2 j−1,2k (t, 0), and f̂ j (t ) = F̂2 j−1(t ), j, k = 1, 2. The
matrices U and V are derived as

U = 1

μ

[
βc − γ s −iεs

−iεs βc + γ s

]
, V = − iκs

μ

[
0 1
1 0

]
, (15)

where s ≡ sin(μt ) and c ≡ cos(μt ).
Similarly, we arrive at 〈F̂(t )〉 = 〈F̂†(t )〉 = 0. On the other

hand, the correlation functions of the fluctuating operator
forces 〈F̂(t )F̂†T(t )〉 at time t are nonzero:

〈F̂(t )F̂†T(t )〉 =
[

F1(t ) F12(t )
F∗T

12 (t ) F2(t )

]
,

F1(t ) = 2γ

μ

(
sc − γ s2

μ

)[
1 0
0 0

]
+ γ ε

μ3
(sc − μt )Fa,

F2(t ) = 2γ

μ

(
sc + γ s2

μ

)[
0 0
0 1

]
+ γ ε

μ3
(sc − μt )Fa,

F12(t ) = iεγ 2

μ3
(sc − μt )

[
1 0
0 −1

]
+ iγ

μ2
s2

[
ε −2κ

0 ε

]
,

Fa =
[−ε κ

κ −ε

]
. (16)

The comparison of formulas for the evolution matrices
U(t ) and V(t ) in Eq. (15) and the correlation functions
〈F̂(t )F̂†T(t )〉 in Eq. (16) reveals a striking difference: Whereas
the evolution matrices behave periodically in time, the correla-
tion functions exhibit a linear-time dependence superimposed
on their otherwise periodic evolution. A detailed investigation
in Sec. IV shows that this property is responsible for a gradual
suppression of the nonclassicality in the system evolution.

We note that there exist two platforms with χ (2) nonlin-
earity allowing for an experimental implementation of the
system with the Hamiltonian Ĥ given in Eq. (1): (i) nonlinear
solid-state photonic structures [62] and (ii) nonlinearly inter-
acting Rydberg atoms in cells [63]. In both cases, photons are
emitted or annihilated in pairs in the process of parametric
down-conversion [55] or four-wave mixing [56] with strong
pumping. Considering the first platform, linear corrugations
at the surfaces of waveguiding structures allow for the linear
exchange of energy between two modes and they can be used
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in principle to dissipate or actively amplify a mode field.
On the other hand, additional atoms in their ground (excited)
states in resonance with the mode fields present in a cell with
nonlinearly interacting Rydberg atoms (e.g., rubidium [63])
cause damping (incoherent amplification) of the mode fields
using the second platform. As an experimental realization
of incoherent amplification is a difficult task, passive PT -
symmetric non-Hermitian systems [64] may be considered to
overcome this problem.

III. TAILORING THE RESERVOIR PROPERTIES

The form of correlation functions 〈F̂(t )F̂†T(t )〉 depends on
the properties of the reservoir. There is the question whether a
suitable reservoir can be constructed such that the correlation
functions 〈F̂(t )F̂†T(t )〉 behave periodically and no loss of the
nonclassicality occurs for asymptotically long times.

As the relation between the fluctuating operator forces
F̂(t ) and L̂(t ) in Eq. (6) is linear, we may invert the relation
between their correlation functions in Eq. (9). First, we rewrite
Eq. (9) using Eq. (8) for the evolution matrix P:

〈F̂(t )F̂†T(t ′)〉 =
∫ t

0
dt̃

∫ t ′

0
dt̃ ′T exp(�Mt̃ )T−1

× 〈L̂(t −t̃ )L̂†T(t ′−t̃ ′)〉T−1∗T exp(�Mt̃ ′)T∗T .

Then, relying on the Markovian character of the fluctuating
forces L in Eq. (2) and expressing the correlation function
matrix 〈L̂(t )L̂†T(t ′)〉 as L0δ(t − t ′), we arrive at the formula

〈F̂(t )F̂†T(t )〉=
∫ t

0
dt̃ T exp(�Mt̃ )T−1L0T−1∗T exp(�Mt̃ )T∗T .

(17)

Using inversion of Eq. (17), the following formula for the
correlation function matrix 〈L̂(t )L̂†T(t ′)〉 is obtained:

〈L̂(t )L̂†T(t ′)〉 = L0δ(t − t ′),

L0 = T exp(−�Mt )T−1 d

dt
〈F̂(t )F̂†T(t )〉

× T−1∗T exp(−�Mt )T∗T. (18)

Inserting the terms which are linearly proportional to time
t in Eq. (16) into Eq. (18), we arrive at the corresponding
correlation function matrix

〈L̂t (t )L̂t†T(t ′)〉 = εγ

μ2

⎡
⎢⎢⎣

ε −κ −iγ 0
−κ ε 0 iγ
iγ 0 ε −κ

0 −iγ −κ ε

⎤
⎥⎥⎦δ(t − t ′).

(19)

The reservoir correlation function matrix 〈L̂id (t )L̂id†T(t ′)〉 that
guarantees a periodic evolution of the system, and thus does
not lead to nonclassicality deterioration, can then be written
with the help of Eq. (19) as

〈L̂id (t )L̂id†T(t ′)〉 = εγ

μ2

⎡
⎢⎢⎢⎣

2μ2

ε
− ε κ iγ 0

κ −ε 0 −iγ
−iγ 0 −ε κ

0 iγ κ
2μ2

ε
− ε

⎤
⎥⎥⎥⎦

× δ(t − t ′). (20)

FIG. 1. Strength � of the sink versus the damping rate γ and the
coupling strength κ in units of the exchange energy rate ε.

The matrix in Eq. (20) has two doubly degenerated eigenval-
ues ν±:

ν± = γ

μ2
[−κ2 − γ 2 ±

√
μ4 + ε2(κ2 + γ 2)]. (21)

The eigenvalue ν− is negative for μ > 0, i.e., in the region
with the periodic behavior of the system. We have μ = 0 at
EPs and so ν+ → γ and ν− → −∞. This means that the
reservoir with the correlation function matrix 〈L̂id (t )L̂id†T(t ′)〉
has the property of sink models that take energy from the
system. The strength of such a sink can be quantified using
the parameter � defined as the sum of all real eigenvalues in
the area μ � 0:

� = 2(ν+ + μ−). (22)

Substituting Eq. (21) into Eq. (22), we arrive at the formula

� = 4γ

(
1 − ε2

μ2

)
. (23)

According to Eq. (23), the closer to an EP the system parame-
ters are, the more negative the sink strength � is, as shown in
Fig. 1. It even goes to −∞ at an EP.

The correlation function matrix 〈L̂id (t )L̂id†T(t ′)〉 in
Eq. (20) describes two coupled oscillators. Neglecting their
coupling, both oscillators have identical eigenfrequencies ex-
pressed as ν̃± = γ (−κ2 − γ 2 ±

√
μ4 + ε2κ2)/μ2. At least

one eigenfrequency is negative and their sum gives the sink
parameter � written in Eq. (23). We note that, provided
the diagonal elements of the correlation function matrices of
these oscillators are non-negative, they describe the squeezed
reservoirs [65]. If the squeezed reservoirs are considered, the
system dynamics qualitatively changes from the point of view
of nonclassical and entangled state generation [66,67]. Such
states are obtained even for long times owing to the reservoir
nonclassicality that is constantly being transferred into the
system [66–70]. We also note that the nonclassical and entan-
gled states emerge when nonlinear interactions with reservoirs
are taken into account [71,72].

A usual physical reservoir is composed of the populated
modes whose random influence on the system compensates
for the system loss (damping) or gain (amplification) of
energy during its evolution. This means that there are non-
negative eigenvalues ν±, similarly to the case of the original
correlation functions in Eq. (2) (ν+ = 2γ , ν− = 0). Thus,
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the terms in the correlation function matrix 〈F̂(t )F̂†T(t )〉 in
Eq. (16), which are linearly proportional to time t , cannot
be compensated by a suitable physical reservoir and thus the
nonclassicality deterioration occurs inevitably during the evo-
lution of the quantum PT -symmetric system. This reflects the
fundamental fact that whereas damping and amplification can
compensate for each other in (semi)classical coherent dynam-
ics, the effects of fluctuating forces accompanying damping
and amplification cannot be mutually suppressed.

Moreover, the complete omission of the Langevin forces
l̂ j and l̂†

j , j = 1, 2, results in a nonphysical behavior that
violates the fluctuation-dissipation theorem. This situation
corresponds to the semiclassical model described by the non-
Hermitian Hamiltonian

Ĥ sc = −iγ â†
1â1 + iγ â†

2â2 + (εâ†
1â2 + κ â1â2 + H.c.).

(24)

We show in Secs. IV and V that the declinations of the system
evolution from the physical one are qualitatively similar for
both models.

IV. NONCLASSICALITY AND ENTANGLEMENT IN
PT -SYMMETRIC SYSTEMS WITH DIFFERENT LEVELS

OF RESERVOIR FLUCTUATIONS

The detailed role of the reservoir fluctuating forces in the
evolution of nonclassical properties of two coupled oscilla-
tor modes is elucidated considering three models differently
including reservoir fluctuations: (i) a physically consistent
model fully including reservoir fluctuations, (ii) an ideal (sink)
model with a partial inclusion of reservoir fluctuations obey-
ing the fluctuation-dissipation relations and giving a periodic
solution, and (iii) a semiclassical model with no reservoir fluc-
tuations, thus violating the fluctuation-dissipation theorem.

We directly compare these three models for arbitrary val-
ues of all coefficients of the normal characteristic function in
Eq. (25) below as well as by considering various properties
of the modes. For simplicity, we restrict our attention to the
initial coherent states in both oscillator modes. These states
are Gaussian and they remain Gaussian during the evolution
owing to the linear Heisenberg-Langevin equation (3). Their
normal characteristic function CN can be expressed as [54]

CN (μ1, μ2, t ) = exp

( ∑
j=1,2

{
[α∗

j (t )μ j − c.c.]

− Bj (t )|μ j |2 + [
Cj (t )μ2∗

j + c.c.
]
/2

}
+ [D(t )μ∗

1μ
∗
2 + D̄(t )μ1μ

∗
2 + c.c.]

)
, (25)

where c.c. stands for the complex conjugated term. Definitions
of the time-dependent parameters occurring in Eq. (25), as
well as their simplified forms valid for the initial coherent
states, are given as

Bj (t ) ≡ 〈δâ†
j (t )δâ j (t )〉 =

∑
l=1,2

[|Vjl (t )|2 + 〈 f̂ †
j (t ) f̂ j (t )〉],

Cj (t ) ≡ 〈[δâ j (t )]2〉 =
∑
l=1,2

[Ujl (t )Vjl (t ) + 〈[ f̂ j (t )]2〉],

D(t ) ≡ 〈δâ1(t )δâ2(t )〉
=

∑
l=1,2

[U1l (t )V2l (t ) + 〈 f̂1(t ) f̂2(t )〉],

D̄(t ) ≡ −〈δâ†
1(t )δâ2(t )〉

= −
∑
l=1,2

[V ∗
1l (t )V2l (t ) + 〈 f̂ †

1 (t ) f̂2(t )〉], (26)

where δâ j = â j − 〈â j〉 for j = 1, 2.
We quantify the nonclassicality of the system using the

Lee nonclassicality depth τ [73] derived from the threshold
value sth of the field-operator ordering parameter at which the
corresponding quasidistribution �s of field amplitudes starts
to behave as a classical function:

τ = 1 − sth

2
. (27)

To arrive at the nonclassicality depth τ , we first determine the
characteristic function Cs for an arbitrary ordering parameter
s. The function Cs keeps the Gaussian form of the normal
characteristic function CN with the following modified pa-
rameters [54]:

Cs(μ1, μ2, t ) = CN (μ1, μ2, t )|Bj←Bj,s=(1−s)/2+Bj , j=1,2. (28)

The quasidistribution �s associated with the characteristic
function Cs in Eq. (28) is obtained by the following Fourier
transform:

�s(α1, α2, t ) = 1

π2

2∏
j=1

∫
d2μ j exp(α jμ

∗
j − α∗

j μ j )

× Cs(μ1, μ2, t ). (29)

The existence of the quasidistribution �s as an ordinary func-
tion requires a non-negative determinant of the matrix K�s of
coefficients of the complex quadratic form occurring in the
argument of the exponential function on the right-hand side
of Eq. (28):

K�s = 1
2

⎡
⎢⎢⎢⎢⎣

−B1,s C∗
1 D̄∗ D

C1 −B1,s D∗ D̄

D̄ D −B2,s C∗
2

D∗ D̄∗ C2 −B2,s

⎤
⎥⎥⎥⎥⎦. (30)

For classical distributions �s occurring for s � sth, all four
eigenvalues of the matrix K�s are negative, which results in
its positive determinant. At s = sth, one of these eigenvalues
is zero and becomes positive for s > sth. Taking into account
that the diagonal elements of the matrix K�sth

are given as
Bj,sth = (1 − sth )/2 + Bj = τ + Bj , j = 1, 2, the nonclassi-
cality depth τ is given as the greatest positive eigenvalue of
the matrix K�N ≡ K�s=1 . Applications of these results can
be found, e.g., in [74–76]. Applying this procedure to the
characteristic function Cj,s(μ j, t ) of mode j, we easily derive
the following formula for the corresponding nonclassicality
depth τ j :

τ j = max{0, |Cj | − Bj}. (31)

Entanglement represents arguably the most striking man-
ifestation of nonclassicality. Logarithmic negativity EN [77]
is usually used to quantify it. For a two-mode Gaussian field
with the characteristic function CN given in Eq. (25), the
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negativity EN is determined from the coherence matrix σ PT

belonging to the system with partially transposed mode 2 and
thus defined for the vector (q̂1, p̂1, q̂2,−p̂2) [78]:

σPT =
[

σ1 σPT
12[

σPT
12

]T
σPT

2

]
,

σ1 =
[

1 + 2B1 + 2 Re{C1} 2 Im{C1}
2 Im{C1} 1 + 2B1 − 2 Re{C1}

]
,

σPT
2 =

[
1 + 2B2 + 2 Re{C2} −2 Im{C2}

−2 Im{C2} 1 + 2B2 − 2 Re{C2}

]
,

σPT
12 = 2

[
Re{D − D̄} Im{−D + D̄}
Im{D + D̄} Re{D + D̄}

]
, (32)

where the symbol T stands for the transposed matrix. The
partially transposed coherence matrix σ PT has two symplec-
tic eigenvalues ν± defined in terms of the invariants � =
det{σPT} and δ = det{σ1} + det{σPT

2 } + 2 det{σPT
12 } [78]:

ν± =
√

δ

2
±

√
δ2

4
− �. (33)

The symplectic eigenvalue ν− then determines the negativity
EN with the formula

EN = max{0,− ln(ν−)}. (34)

Considering the initial vacuum state in both modes and
substituting the solution to the Heisenberg-Langevin equa-
tions (14)–(16) into Eqs. (26) for the coefficients of the normal
characteristic function CN , we arrive at the formulas

B1(t ) = κ2

2μ2
− κ2

2μ2
c(t ) − ε2γ

2μ3
s(t ) + ε2γ

μ2
t,

B2(t ) = κ2 + 2γ 2

2μ2
− κ2 + 2γ 2

2μ2
c(t )+ ε2γ

2μ3
s(t )+ ε2γ

μ2
t,

C1(t ) = C2(t )=− εκ

2μ2
+ εκ

2μ2
c(t )+ εκγ

2μ3
s(t )− εκγ

μ2
t,

iD(t ) = κγ

2μ2
− κγ

2μ2
c(t ) + i

κ

2μ
s(t ),

iD̄(t ) = εγ

2μ2
− εγ

2μ2
c(t ) − εγ 2

2μ3
s(t ) + εγ 2

μ2
t, (35)

where s(t ) ≡ sin(2μt ) and c(t ) ≡ cos(2μt ). The terms lin-
early proportional to time t are apparent in Eq. (35). They
disappear when the ideal reservoir is assumed. We note that
a similar linear-time dependence of some physical quantities
was observed in [52]. For comparison, we write the above co-
efficients for the semiclassical model in which the fluctuating
forces are completely neglected:

Bsc
1 (t ) = Bsc

2 (t ) = κ2

2μ2
[1 − cos(t )],

Csc
1 (t ) = Csc

2 (t ) = − εκ

2μ2
[1 − cos(t )],

Dsc(t ) = i
κγ

2μ2
[1 − cos(t )], D̄sc(t ) = 0. (36)

To assess the evolution of nonclassicality and entangle-
ment, we determine the maximal values of the nonclassicality
depths τ and the negativity EN in the first period of the
periodic solutions found in the ideal (sink) model including
partial reservoir fluctuations and the semiclassical model with
no reservoir fluctuations:

τmax = max
t∈〈0,2π/|μ|〉

{τ (t )},
Emax

N = max
t∈〈0,2π/|μ|〉

{EN (t )}. (37)

The extremal quantities defined in Eq. (37) are reasonable
also for the physically consistent model including complete
reservoir fluctuations as, during the evolution, the level of
noise in the system increases, which gradually conceals both
nonclassicality and entanglement. Moreover, in the long-time
limit of this model, the terms linearly proportional to time
t prevail. This results in a considerable simplification of the
coefficients in Eq. (36):

B∞
1 (t ) = B∞

2 (t ) = ε2γ

μ2
t,

C∞
1 (t ) = C∞

2 (t ) = −εκγ

μ2
t,

D∞(t ) = 0,

D̄∞(t ) = −i
εγ 2

μ2
t . (38)

Substitution of the long-time formulas in (38) into the ma-
trix K�N leads to nonpositive eigenvalues. We note that the
greatest eigenvalue is doubly degenerate and it is given by the
formula −B∞

1 +
√

|C∞
1 |2 + |D̄∞|2 . This means that the states

are classical. Equations (31) and (34) for the nonclassicality
depths τ j of the modes and negativity EN , respectively, con-
firm this:

τ∞
1 (t ) = τ∞

2 (t ) = τ∞(t ) = 0,

E∞
N (t ) = 0. (39)

We compare the predictions of the ideal (sink) model with
partial reservoir fluctuations with those of the physically con-
sistent model with complete reservoir fluctuations at a general
level by considering both nonclassicalities and entanglement.
The maximal values of nonclassicality depths of the whole
system (τ ) and its constituting modes (τ1 and τ2), as well
as the negativity EN , are drawn in Fig. 2 as they depend
on the system parameters. The comparison of graphs of
the nonclassicality depths plotted in Figs. 2(e)–2(g) for the
ideal (sink) model with those in Figs. 2(a)–2(c) for the phys-
ically consistent model reveals that the nonclassicality depths
τ id, τ id

1 , and τ id
2 of the ideal (sink) model are systematically

greater than the nonclassicality depths τ , τ1, and τ2 of the
physically consistent model with complete reservoir fluctu-
ations. Moreover, whereas the physically consistent model
gives correct values of the nonclassicality depths even in the
area of parameters with the exponential behavior, the ideal
(sink) model predicts the nonclassicality depths only in the
region of parameters with the oscillatory behavior. Even in
this region, in the area close to the curve giving EPs, we find
nonphysical values of the nonclassicality depths τ id greater
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FIG. 2. Nonclassicality depths (a), (e), and (i) τ1 of mode 1 and (b), (f), and (j) τ2 of mode 2 and (c), (g), and (k) nonclassicality depths
τ and (d), (h), and (l) negativities EN of the whole system versus dimensionless model parameters κ/ε and γ /ε. Quantities with superscript
id (sc) arise in the ideal sink model with partial reservoir fluctuations (semiclassical model with no reservoir fluctuations). In the graphs with
the nonclassicality depths, nonphysical values τ > 1 were determined in the black areas and values τ > 0.5 not compatible with the Gaussian
states were reached in the colored hatched areas.

than 1. The regions in which the ideal (sink) model gives
the values of the nonclassicality depths τ id � 0.5 compati-
ble with the Gaussian form of the states are even smaller.
The regions with τ id > 0.5 that contradict the Gaussian form
of the states are indicated by the colored hatched areas in
Figs. 2(e)–2(g). Similarly, the values of the negativity E id

N of
the ideal (sink) model are plotted in Fig. 2(h). It can be seen
that they are systematically greater than those of the phys-
ically consistent model with complete reservoir fluctuations
in Fig. 2(d). In general, we may conclude that the ideal (sink)
model, by partially suppressing the reservoir fluctuations, sys-
tematically enhances quantum features of the states in the
system, as they manifest in the nonclassicality depths and
negativity.

In Figs. 2(i)–2(l) we also plot the nonclassicality depths
τ sc, τ sc

1 , and τ sc
2 together with the negativity E sc

N of the semi-
classical model with no reservoir fluctuations. The analysis
of the behavior of this semiclassical model is very important,
as such models are frequently addressed in the literature.
The reason is that the omission of reservoir fluctuations al-
lows us to treat the model at the level of the non-Hermitian

Hamiltonian description, which is considerably simpler than
that based on the Liouvillian. The comparison of graphs in
Figs. 2(i)–2(l) with those in Figs. 2(a)–2(d) determined for
the physically consistent model with complete reservoir fluc-
tuations brings us to conclusions similar to those made for the
ideal (sink) model: The semiclassical model without reservoir
fluctuations systematically overestimates both nonclassicality
and entanglement quantifiers. On the other hand, a detailed
comparison of the graphs in Figs. 2(i)–2(k) with those in
Figs. 2(e)–2(g) reveals that the areas of parameters where the
semiclassical model predicts the physically acceptable values
of the nonclassicality depths are larger than those belonging
to the ideal (sink) model.

We note that, for experimental Gaussian fields, we may
measure the principle squeezing variance [79] in homodyne
detection [80] or even simpler by using photon-number-
resolving detectors [81] to infer the values of the nonclassi-
cality depth τ . The negativity EN for a two-mode field can
then be conveniently obtained from photon-number-resolved
measurements using photon-number moments up to fourth
order [81].
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FIG. 3. Ratios of nonclassicality depths (a), (e), and (i) τ1/τ
id
1 and (c), (g), and (k) τ1/τ

sc
1 of mode 1 and ratios of negativities (b), (f), and

(j) EN/E id
N and (d), (h), and (l) EN/E sc

N of the whole system versus dimensionless model parameters κ/ε and γ /ε. The ratios are determined for
(a)–(d) t1 = 10−3T , (e)–(h) t2 = 10−2T , and (i)–(l) t3 = 10−1T , with T given in Eq. (40). Quantities with superscript id (sc) arise in the ideal
sink model with partial reservoir fluctuations (semiclassical model with no reservoir fluctuations)

V. COMPARISON OF THE NONCLASSICALITY AND
ENTANGLEMENT EVOLUTION IN PT -SYMMETRIC

SYSTEMS WITH DIFFERENT LEVELS OF RESERVOIR
FLUCTUATIONS

Differences observed in the extremal values of the non-
classicality and entanglement quantifiers in the ideal (sink)
model with partial inclusion of reservoir fluctuations and
the semiclassical model with no reservoir fluctuations vs the
physically consistent model with complete reservoir fluc-
tuations change or evolve in time. We may identify two
qualitatively different types of their behavior. In the first one,
the difference between the predictions for a given quantifier
gradually increases with time, i.e., the relative difference de-
velops from zero at the initial time. In this case the predictions
of the investigated models with partial or no inclusion of
reservoir fluctuations agree well with those of the physically
consistent model for short times and, as a rule of thumb, the
longer the time, the greater the differences. In the second type
of behavior, a nonzero difference of a given quantity occurs

already at short times involving the initial time. There is no
prediction for the subsequent evolution of this difference in
this case and it may also decrease.

Both types of behavior are seen in Fig. 3, in which we
plot the ratios of negativities EN/E id

N and EN/E sc
N and local

nonclassicalities τ1/τ
id
1 and τ1/τ

sc
1 of mode 1 in the physically

consistent model vs the ideal (sink) model and the semiclassi-
cal model, respectively, in three subsequent time instants t1 =
10−3T , t2 = 10−2T , and t3 = 10−1T . These instants represent
small fractions of the period T ,

T = 2π

/√
1 − κ2 + γ 2

ε2
, (40)

which characterizes the periodic behavior of the models with
partial or no inclusion of reservoir fluctuations. As the
ideal (sink) and semiclassical models have partially or fully
suppressed fluctuations, we expect greater values of the non-
classicality depths τ1 and the negativities EN arising in these
models compared to those of the physically consistent model.
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Indeed, the ratios plotted in Fig. 3 are smaller than or equal to
one for the vast majority of the system parameters. We note
that the predictions of all three models coincide for γ /ε = 0.
Whereas the ratios of the negativities EN/E id

N and EN/E sc
N

of both models with partial or no reservoir fluctuations and
ratios of the nonclassicality depths τ1/τ

sc
1 of the semiclassical

model start from one in the limit t → 0, the ratios of the
nonclassicality depths τ1/τ

id
1 of the ideal (sink) model are

nonunity for very short times t . Comparing the graphs in
Fig. 3 for time instants t1, t2, and t3 (plotted in different rows),
we observe the decrease of the ratios EN/E id

N , EN/E sc
N , and

τ1/τ
sc
1 as the time increases. On the other hand, the ratio

τ1/τ
id
1 being very small for very short times increases with

time. We note that the physically consistent model does not
behave periodically owing to the constantly and irreversibly
acting reservoir fluctuating forces. Nevertheless, the values of
the nonclassicality depths τ1 and the negativities EN reached
in the interval 〈0, T 〉, i.e., in the first period of the models
with partial or no reservoir fluctuations, are usually greater
than those obtained for longer times.

According to the fluctuation-dissipation theorem [56], the
strength of the second-order correlation functions of the reser-
voir fluctuating forces depends linearly on the damping or
amplification parameter γ . Thus, the greater the ratio γ /ε

is, (i) the stronger the fluctuating forces are, (ii) the more
detrimental the effects on the nonclassicality and entangle-
ment are, and (iii) the smaller the ratios of the nonclassicality
depths and negativities are. This consideration being valid for
shorter times is documented in the graphs of Fig. 3. The ratio
of the negativities EN/E id

N drawn in Fig. 3(j) for t3 = 10−1T
demonstrates a departure from this rule valid for shorter times.

Fixing the ratio γ /ε and assuming again shorter times, the
ratios of the negativities and nonclassicality depths in Fig. 3
attain a maximum in the interval κ/ε ∈ 〈0,

√
1 − γ 2/ε2〉. The

increase of these ratios with the increasing κ/ε on the left-
hand side of this maximum is attributed to the increase of the
system nonlinearity. Greater values of the relative nonlinearity
κ/ε mean faster nonclassicality and entanglement generation
that prevails over the detrimental role of the reservoir fluctu-
ations. On the other hand, the decrease of these ratios on the
right-hand side of the maximum is attributed to the increased
period T (and thus the increased time instants t1,2,3) with
the increasing ratio κ/ε that includes a longer action of the
reservoir fluctuating forces.

The ratios of the negativities and nonclassicality depths are
rather small in the area close to the curve for the EPs. This is
a consequence of the fact that the period T of the models with
partial or no reservoir fluctuations is very long in this area and
so the detrimental effect of reservoir fluctuations is strong. We
note that the period T goes to infinity at the EPs, which results
in the ratios determined at asymptotically long times.

These results obtained for specific time instants show, sim-
ilarly to the results for maximal values of the nonclassicality
depths and negativities in Sec. IV, that the applicability of the
ideal (sink) model and the semiclassical model with partial or
no inclusion of reservoir fluctuations for our predictions of the
nonclassical properties of the studied PT -symmetric system
is rather limited. Whereas the semiclassical model gives reli-
able predictions for shorter times, some of the predictions of
the ideal (sink) model may even be misleading at short times.

VI. CONCLUSION

An analytical solution of the quantum-consistent PT -
symmetric model of two nonlinearly interacting damped and
amplified bosonic modes coupled to reservoirs has been ob-
tained. Using this solution, the evolution of the nonclassicality
and the entanglement of the generated Gaussian states was an-
alyzed in the whole space of model parameters. Whereas both
nonclassical and entangled states are generated for shorter
times, the reservoir fluctuations suppress their generation for
long times. The analytical solution has allowed us to identify
the reservoir noise contribution that increases linearly with
time and causes a gradual loss of the nonclassicality and
entanglement for long times.

To understand the origin of this degradation of the sys-
tem’s ability to generate nonclassical and entangled states, we
considered two simplified models with partial and full sup-
pression of reservoir fluctuations: a semiclassical model with
no reservoir fluctuations and an ideal (sink) model with partial
inclusion of reservoir fluctuations. Both models provide peri-
odic solutions which allow for the generation of nonclassical
and entangled states even for long times. The models differ
by the level of their physical consistency: Whereas the semi-
classical model violates the fluctuation-dissipation theorem,
the ideal (sink) model obeys specific fluctuation-dissipation
relations. However, its modified reservoir is endowed with
the properties of the sink which removes the noise from the
system.

Because of the partial or full suppression of reservoir fluc-
tuations, both models provide systematically greater values
of the nonclassicality depths as measures of quantumness and
the negativity as a measure of entanglement. Unfortunately,
the attained values of the nonclassicality depths may even
exceed their physically allowed ranges, in the area of the
model parameters around the EPs. Whereas the semiclassical
model gives reliable predictions for short times, the ideal
(sink) model, though being more physically consistent, may
provide misleading results even for short times.

Neither of these two models, which allow for the gen-
eration of nonclassical and entangled states in quantum
PT -symmetric systems, can be applied to predict the sys-
tem behavior for longer times. The only physically consistent
model is provided by the statistical physics of open quan-
tum systems (using the Liouvillians or alternatively the
Heisenberg-Langevin equations). This model properly in-
cludes the reservoir fluctuations associated with the damping
and amplification of the system and thus describes its evo-
lution in a physically consistent way. This model, however,
shows that the irreversible reservoir fluctuations inevitably
degrade the nonclassicality and entanglement generated in
the system, which results in their complete loss for longer
times. Thus, we find no possibility for mutual compensation
of the reservoir fluctuations associated with the damping and
amplification in the model. This limitation qualitatively differs
from a direct action of the damping and amplification in the
evolution of quantum PT -symmetric systems, in which they
mutually interfere to give a periodic evolution.

These results bring us to the general conclusion that the
detrimental role of reservoir fluctuations in quantum PT -
symmetric systems with damping and amplification cannot be
avoided and the suppression of nonclassicality and entangle-
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ment in their evolution is their natural property that has to be
accepted.
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