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9Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
(Dated: August 11, 2023)

Contents

S1. Effective quantum Rabi model 2
A. Derivation of the effective quantum Rabi Hamiltonian 2
B. Superradiant phase transition under ideal conditions 3

S2. Experimental setup, device parameters, and pulse sequence 4

S3. Control of quenching dynamics 6
A. Time-dependence of the normalized coupling parameter ξ 6
B. Control of the effective qubit frequency Ω 7
C. Control of the effective resonator frequency δ 7

S4. Effects of off-resonant couplings and decoherence 9

S5. Characterization of the qubit-resonator state 11
A. Photon-number distribution 11
B. Diagonal Wigner matrix elements 12
C. Off-diagonal Wigner matrix elements 14

S6. Measure of the qubit-resonator entanglement 15

S7. Characterization of the super-cat state 16

S8. Numerical simulation of the Dicke-model SPT 16

References 19

∗These authors contribute equally to this work.
†Electronic address: zbyang@fzu.edu.cn
‡Electronic address: fnori@riken.jp
§Electronic address: t96034@fzu.edu.cn

mailto:zbyang@fzu.edu.cn
mailto:fnori@riken.jp
mailto:t96034@fzu.edu.cn


2

S1. EFFECTIVE QUANTUM RABI MODEL

A. Derivation of the effective quantum Rabi Hamiltonian

When the drive is tuned to the carrier, the dynamics is described by the Hamiltonian (ℏ = 1 hereafter)

H = H0 +HI , (S1)

where

H0 = (ω0 + 2ν1) a
†a+

1

2
[ω0 + ε1 cos(ν1t)]σz,

HI = δa†a+
1

2
ε2 cos (ν2t)σz +

(
λa†σ− +Keiω0tσ− + h.c.

)
. (S2)

Here, σz = |e⟩⟨e| − |g⟩⟨g| and σ− = |g⟩⟨e| are Pauli operators for the qubit. Performing the transformation

U0 = exp

[
i

∫ t

0

H0dt

]
, (S3)

we obtain the system Hamiltonian in the rotating frame

H ′
I = δa†a+

1

2
ε2 cos(ν2t)σz +

{
exp [−iµ sin(ν1t)]

[
λ exp (2iν1t) a

† +K
]
σ− + h.c.

}
, (S4)

where µ = ε1/ν1. Using the Jacobi-Anger expansion

exp [iµ sin (ν1t)] =

∞∑
m=−∞

Jm(µ) exp (imν1t) , (S5)

with Jm(µ) being the mth Bessel function of the first kind, we obtain

H ′
I = δa†a+

1

2
ε2 cos(ν2t)σz +

( ∞∑
m=−∞

Jm(µ)
{
λ exp[−i(m− 2)ν1t]a

† +K exp (−imν1t)
}
σ− + h.c.

)
. (S6)

ADC Analog-to-Digital Converter

DAC Digital-to-Analog Converter

DC Direct Current

HEMT High Electron Mobility Transistor

IQ In-phase and Quadrature

JPA Josephson Parametric Amplifier

MC Mixing Chamber

MS Microwave Source

NP Normal Phase

RC Resistance Capacitance

RI Read-In

RO Read-Out

SPT Superradiant Phase Transition

SP Superradiant Phase

TABLE S1: Abbreviations used in this supplemental material.
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Assuming that {|λJ2(µ)| , |KJ0(µ)| , δ, ε2} ≪ ν1, we can discard the fast-oscillating terms, thus H ′
I reduces to

H ′
I =

[
J2(µ)λa

†σ− +KJ0(µ)σ− + h.c.
]
+ δa†a+

1

2
ε2 cos(ν2t)σz

=
1

2
B0σx +

1

2
ε2 cos(ν2t)σz + δa†a+ η (Xσx − Y σy) , (S7)

where B0 = 2KJ0(µ), η = λJ2(µ)/2, X = a† + a, Y = i(a† − a), σx = σ− + σ†
−, and σy = iσ− − iσ†

−. Under the
transformation exp(iB0σxt/2), the system Hamiltonian in the moving frame becomes

H ′′
I = η {Xσx − Y [cos(B0t)σy − sin(B0t)σz]}

+ δa†a+
1

2
ε2 cos(ν2t) [cos(B0t)σz + sin(B0t)σy] . (S8)

In the limit of B0 ≫ η, ε2/2 and ν2 = B0, the fast-oscillating terms can be neglected, and H ′′
I reduces to the Rabi

Hamiltonian

HR =
1

2
Ωσz + δa†a+ ησx(a

† + a), (S9)

where Ω = ε2/2 is the effective qubit frequency.
Some fast-oscillating terms in Eq. (S6) cannot be ignored, and induce additional Stark shifts to the effective qubit-

and cavity-frequencies. Detailed discussions about these Stark shifts are shown in Sec. S4.

B. Superradiant phase transition under ideal conditions

In the limit of Ω/δ → ∞, we can diagonalize the Rabi Hamiltonian HR using a Schrieffer-Wolff transformation [S1].
After applying a unitary operator

USW = exp
[
i
η

Ω

(
a† + a

)
σy

]
, (S10)

and keeping the terms up to second order in the qubit-resonator coupling strengths, Eq. (S9) becomes

Hnp = δa†a+
Ω

2
σz +

δξ2

4

(
a+ a†

)2
σz, (S11)

which provides a faithful description of the system ground state in the normal phase (NP) of the model, where

ξ = 2η/
√
Ωδ is a normalized coupling parameter. Equation (S11) shows that the ground-qubit-state subspace {|n⟩|g⟩}

is decoupled from the excited-qubit-state subspace {|n⟩|e⟩}. Therefore, upon a projection ⟨g|Hnp|g⟩ for ξ ≤ 1, one
can solve the ground eigenstate and eigenvalue of HR as

|ψnp⟩ = S(rnp)|0⟩|g⟩, Enp = δ
√

1− ξ2, (S12)

where S(rnp) = exp
[(
rnpa

†2 − r∗npa
2
)
/2
]

is the squeezing operator with a real squeezing parameter rnp =

− 1
4 ln

(
1− ξ2

)
. Thus, the excitation energy Enp is a positive real number for ξ < 1 and vanishes at ξ = 1, i.e.,

in the NP.
For ξ > 1, the number of photons occupied in the cavity field becomes proportional to Ω/δ and acquires macroscopic

occupations, i.e., in the superradiance phase (SP) [S1]. To capture the physics of the SP, we displace the bosonic

mode in the Rabi Hamiltonian HR. For a displacement parameter α =
√
[Ω/ (4ξ2δ)] (ξ4 − 1), we obtain

H ′
R(±α) =D†(±α)HRD(±α)

=δa†a+
Ω̃

2
σ̃±
z + η̃(a+ a†)σ̃±

x + δα2, (S13)
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where Ω̃ = ξ2Ω, η̃ =
√
δΩ/(2ξ), and

D(α) = exp
(
αa† − α∗a

)
, σ̃±

z = | ↑±⟩⟨↑± | − | ↓±⟩⟨↓± |, σ̃±
x = | ↑±⟩⟨↓± |+ | ↓±⟩⟨↑± |. (S14)

The states

| ↑±⟩ = cos(θ)|e⟩ ± sin(θ)|g⟩, | ↓±⟩ = ∓ sin(θ)|e⟩+ cos(θ)|g⟩, (S15)

are the eigenstates of the terms (Ω2 σz ± 2αησx) that construct a new qubit eigenstate subspace, where θ obeys

tan θ =

√
ξ2 − 1

ξ2 + 1
. (S16)

Then, employing the same procedure used to derive Hnp, we obtain

Hsp = δa†a+
δ

4ξ4
(
a† + a

)2
σ̃±
z +

Ω

4

(
ξ2 + ξ−2

)
σ̃±
z . (S17)

Applying the projection ⟨↓± |Hsp| ↓±⟩, Eq. (S17) becomes

Hsp = δa†a− δ

4ξ4
(
a† + a

)2 − Ω

4

(
ξ2 + ξ−2

)
, (S18)

whose excitation energy is found to be Esp = δ
√

1− ξ−4. The ground eigenstates of the quantum Rabi Hamiltonian
HR for ξ > 1 are

|ψsp⟩ = D(±α)S(rsp)|0⟩| ↓±⟩, (S19)

which are degenerate, where rsp = − 1
4 ln

(
1− ξ−4

)
.

Therefore, Hnp and Hsp are the exact low-energy effective Hamiltonians for the NP (ξ < 1) and SP (ξ > 1),
respectively.

S2. EXPERIMENTAL SETUP, DEVICE PARAMETERS, AND PULSE SEQUENCE

The whole electronics and wiring for our superconducting circuit control are outlined in Fig. S1 [S2, S3]. The
superconducting circuit sample, used in our experiment, possesses a bus resonator and five Xmon qubits. Each qubit
has its own read-out resonator for reading out its states. The bus resonator has a fixed bare frequency ωp/2π = 5.581
GHz and a photonic decay time T1,p = 12.9 µs. Every qubit has two control lines: an XY-control for flipping its
states and a Z-control for modulating its frequency, allowing the qubit to flexibly couple with the bus resonator. This,
together with the relatively long lifetime of the resonator photons, guarantees the slow quenching manipulation of
the qubit-resonator ground state to induce the appearance of the superradiant phase transition (SPT) accompanied
by the sudden birth of a photonic mesoscopic superposition of a considerable size. For clarity, Table S1 lists the
abbreviations used in this supplemental material.

The XY-controls on the qubits are implemented through the mixing of the low-frequency signals yielded by the IQ
channels of two digital-to-analog converters (DACs) and a microwave source (MS). The carrier frequency of the MS is
about 5.5 GHz. The Z-controls on the qubits are implemented by two signals: one is produced by the direct-current
(DC) biasing line from a low-frequency DC source; the other comes directly from the Z-control of a DAC. The qubit
read-out is realized through mixing the signals of the IQ channels of two DACs and an MS with a frequency ∼ 6.69
GHz, which output a read-out pulse with multiple tones targeting all resonators for qubit read-out. The output
from the circuit is amplified sequentially by an impedance-transformed Josephson parametric amplifier (JPA), high
electron mobility transistor (HEMT), and room temperature amplifiers. Then, it is captured and demodulated by
analog-to-digital converters (ADCs). Both DACs and ADCs are supported by a field-programmable gate array which
reacts at a nanosecond-level speed. The JPA is pumped by an MS with a frequency ∼ 13.5 GHz and modulated by
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FIG. S1: Schematic diagram of the experimental setup. Note there is a low-pass filter (7.5G) inverted with the others because
it connects to the read-out line.

a DC bias. Moreover, some circulators, attenuators, and filters are added to the signal lines in specific temperature
regions to reduce the noises that influence the performance of the device.

Three of the five qubits are used in our experiment. One is used as the test qubit Q1 for realizing the effective
quantum Rabi model. The second one acts as an ancilla qubit Q2 to determine the photon-number distribution for
analyzing the Wigner function distribution whose negativity reveals and quantifies the nonclassicality of the light field.
The XY-line of the third qubit Q3 is used to control the bus resonator (by cross-talk interactions) for performing a
displacement operation on its states in phase space.

The performance characterization of the qubits and the resonator are listed in Table S2. For technical details about
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1 𝜇𝜇s

FIG. S2: Sketch of the pulse sequences, which consists of three steps: (I) superradiant phase transition (SPT); (II) Wigner
tomography; and (III) read-out of the photon-number distribution. In (I), we apply a continuous drive pulse (amplitude
K/2π = 19.91 MHz and frequency ω0/2π = 5.18 GHz) to the XY-line and two tunable pulses [ε1 cos(µ1t) and ε2 cos(µ2t), with
{ε1, ν1, ν2}/2π = {165.85, 200, 33.28} MHz] to the Z-line of the test qubit Q1, where the amplitude of the second modulation
pulse, ε2, slowly decreases with time, corresponding to the decrease of Ω(t). Moreover, the frequency f(t) of the ancilla qubit
Q2 decreases with the amplitude of the Z-line, inducing a decrease in the δ(t) by Stark shifts. In (II) a single-qubit rotation
operation [the identity operation, Rx(π/2), or Ry(π/2)] is applied to the test qubit, and a displacement operation D(−β) is
then applied to the resonator (actually by tuning the XY-line of Q3 with cross-talk interactions, not shown). In (III) the ancilla
qubit Q2 is resonantly coupled to the resonator for a given time τ , and then biased to its idle frequency (fidle/2π = 5.93 GHz)
for state read-out.

ω10/2π (GHz) T1 (µs) T ∗
2 (µs) T SE

2 (µs) λ/2π (MHz) γ/2π (MHz) Fg Fe

Q1 5.180 21.5 1.1 6.0 19.91 250 0.983 0.937
Q2 5.930 17.2 1.5 14.3 20.92 238 0.990 0.920
R 5.581 12.9 234.5 - - - - -

TABLE S2: Qubit and resonator characteristics. The symbols Q1, Q2, and R correspond to the test qubit, the ancilla
qubit, and the resonator, respectively. The idle frequencies of Qj (j = 1, 2) and R are generally marked by ω10/2π, where single-
qubit rotation pulses and measurements are applied. For the decoherence performance, T1 and T ∗

2 are the energy relaxation
time and the Ramsey dephasing time (Gaussian decay), respectively, of Qj and R, measured at the idle frequency. Additionally,
T SE
2 is the dephasing time with spin echo (Gaussian decay). The coupling strength λ between Qj and the bus resonator R is

estimated via vacuum Rabi oscillations. The anharmonicity of the qubit is γ. The probability of detecting the qubit in |g⟩ (|e⟩)
when it is prepared in |g⟩ (|e⟩) state is indicated by Fg (Fe).

the superconducting qubits, e.g., see Ref. [S4], which reports similar control methods to our experiment.
The pulse sequences are shown in Fig. S2, including three steps: (I) SPT; (II) Wigner tomography; and (III)

read-out of the photon-number distribution. Because the time span of several operations varies widely, real scales are
not used.

S3. CONTROL OF QUENCHING DYNAMICS

A. Time-dependence of the normalized coupling parameter ξ

During the quenching process, the normalized coupling parameter is changed as [S5]
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FIG. S3: (a) Normalized coupling parameter ξ(t) versus time. (b) Effective frequencies δ(t) and Ω(t) of the resonator and qubit
versus time, showing on the left and right y-axes, respectively.

ξ(t) = (ξmax − ξ0)

[
1− exp

(
−8t

tf

)]
+ ξ0. (S20)

Here, ξmax (ξ0) is the maximum (initial) value of ξ(t) and tf is the total evolution time. For Figs. 2 and 3 in the main
text, we choose ξmax = 1.5, ξ0 = 0.5, and tf = 2 µs. In addition, we choose Ω = 10δ at all times of the evolution to
ensure the preset limitation Ω ≫ δ of the SPT [S1]. The induced ξ(t), Ω(t), and δ(t) are shown in Fig. S3.
The experiment starts by tuning the test qubit to the operating frequency ω0/2π = 5.18 GHz, around which the

two sine modulations are applied, with the fixed modulation frequencies ν1/2π = 200 MHz and ν2/2π = 33.28 MHz.
The amplitude of the first modulation is set to ε1/2π = 165.85 MHz, while ε2 is taken as a control parameter. Near
the operating frequency, the qubit is driven by a continuous microwave with Rabi frequency K/2π = 19.91 MHz.
For these settings, the dynamics of the test qubit and the resonator are governed by the Rabi Hamiltonian, with
the qubit working in the frame rotating at the angular frequency B0 relative to the laboratory frame. The resulting
effective qubit-resonator coupling strength is η/2π = 0.81 MHz. During the Rabi dynamics, the ancilla qubit Q2 is
far off-resonant with the test qubit Q1 and with the resonator, so that it remains in the ground state.

B. Control of the effective qubit frequency Ω

Because of the imperfect waveform of the periodically modulated excitation energy ℏωq(t), we modify the first and
second modulating pulses as ε1 cos(ν1t+ ϕexp1 ) and ε2 cos(ν2t+ ϕexp2 ), respectively, to optimize the most appropriate
dynamics of the Rabi Hamiltonian HR. We iterate over different phases (ϕexp1 , ϕexp2 ) to carry out the experiments
with setting δ = 0, and finally obtain the one which best coincides with the corresponding simulated Rabi oscillation
curves. The optimal results, specifically, for Ω/2π = 3.6 MHz, are shown in Fig. S4, where we can see that the fitting
error (the Euclidean norm) becomes minimal when ϕexp1 = 1.06π and ϕexp2 = 1.00π. In this case, the concrete fitting
situation is indicated in Fig. S5. The experimental data are intuitively close to the numerical fitting in Fig. S5,
confirming the validity of such phase modification.

For convenience, we choose the same phase modifications (i.e., ϕexp1 = 1.06π and ϕexp2 = 1.00π) for different Ω
throughout the experiments. Note that we also slightly adjust the center frequencies and amplitudes of the two
modulating pulses to improve the control.

C. Control of the effective resonator frequency δ

The control of the effective resonator frequency δ(t) of the effective Rabi Hamiltonian in Eq. (S9) can be achieved
by adjusting the Stark shift induced by the ancilla qubit Q2. We can control this Stark shift by tuning the frequency
of the ancilla qubit. When the detuning ∆ω between this ancilla qubit and the resonator is varied from ∆ω to ∆ω′,
and remains much larger than their coupling strength λ′, the resulting resonator frequency shift becomes

δωS =
λ′2

∆ω
− λ′2

∆ω′ , (S21)
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2 = 1.00π. The populations Pg in the ground state of the test qubit Q1 versus time.
The experiment data and the numerical results are marked by dots and a dashed curve, respectively.

where λ′/2π = 20.91 MHz (different from λ in the main text). Equation (S21), in a different form, reads

δ(t)− δ(0) =
λ′2

f(0)− ωp
− λ′2

f(t)− ωp
, (S22)

with f(t) being the transition frequency of the ancilla qubit. Based on Eq. (S22), we change f(t) from the idle
frequency fidle, viz., f(0)/2π = fidle/2π = 5.93 GHz, yielding,



9

f(t) = ωp −
[
δ(t)− δ(0)

λ′2
− 1

fidle − ωp

]−1

. (S23)

To demonstrate the effectiveness of controlling δ(t) experimentally, we apply square pulses with amplitudes f(t) (x-
axis) to the Z-line of the ancilla qubit Q2. Meanwhile, several square-envelope pulses with certain amplitudes and
specific frequencies ωp + δ(t) (y-axis) are applied to the XY-line of the test qubit Q1 to excite the resonator (by
cross-talk interactions). Subsequently, we measure the populations of the ancilla qubit Q2 (z-axis) after a qubit-
resonator-swap interaction (span time π/λ′). This spectroscopy reflects the relationship between applying f(t) and
the induced offset of the effective resonator frequency δ(t). After appropriately translating the y-axis and remapping
values of f(t) to the corresponding time, we achieve the experimental control of δ(t) as shown in Fig. S6, where the
high-value populations (highlighted area) roughly depict the trend of the experimental δ(t) and coincide well with its
ideal values.

Time (𝜇𝜇s)
0 210.5 1.5

0

0.5

1

1.5

𝛿𝛿
𝑡𝑡
(2
𝜋𝜋
M
H
z)

FIG. S6: Experimental frequency δ(t) of the resonator versus time, induced by tuning the frequency of the ancilla qubit Q2

with a suitable translation added to the y-axis. The ideal δ(t) is plotted with a solid purple-solid curve.

S4. EFFECTS OF OFF-RESONANT COUPLINGS AND DECOHERENCE

When considering high-energy levels of the Xmon qubit, the Hamiltonian becomes

H = H0 +HI , (S24)

H0 = (ω0 + 2ν1)a
†a+ [ω0 + ε1 cos(ν1t)]q

†q − γ

2
q†2q2, (S25)

HI = δa†a+ (λa†q + h.c.), (S26)

where q (q†) denotes the annihilation (creation) operator for the Xmon qubit mode and γ is the anharmonicity of
the qubit. For simplicity, we ignore the microwave driving K and the frequency modulation ε2. Performing the
transformation U0 and considering the lowest three levels of the Xmon qubit, {|g⟩, |e⟩, |f⟩}, we obtain the system
Hamiltonian in the rotating frame as

H ′
I = δa†a+

{
exp [−iµ sin(ν1t)]λ exp (2iν1t) a†[|g⟩ ⟨e|+

√
2 exp (iγt) |e⟩ ⟨f |] + h.c.

}
. (S27)
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Using the Jacobi-Anger expansion, we obtain

H ′
I = δa†a+

( ∞∑
n=−∞

Jn(µ)λa
†
{
exp [−i(n− 2)ν1t] |g⟩ ⟨e|+

√
2 exp[−i(n− 2)ν1t+ iγt] |e⟩ ⟨f |

}
+ h.c.

)
. (S28)

By assuming that {|λJ0(µ)| , δ} ≪ ν1, H
′
I reduces to the effective Hamiltonian

He =
[
J2(µ)λa

†] |g⟩ ⟨e|+ h.c.

+ S1(|g⟩ ⟨g| − |e⟩ ⟨e|)a†a− S1 |e⟩ ⟨e|+ S2 |e⟩ ⟨e| a†a+ δa†a, (S29)

where

S1 ≃ [J0(µ)λ]
2

2ν1
+

[J1(µ)λ]
2

ν1
+

[J−1(µ)λ]
2

3ν1
, (S30)

S2 ≃ 2[J0(µ)λ]
2

2ν1 + γ
+

2[J1(µ)λ]
2

ν1 + γ
+

2[J−1(µ)λ]
2

3ν1 + γ
. (S31)

The term S2 |e⟩ ⟨e| a†a results from a dispersive coupling to the second-excited state |f⟩.
Discarding the constant term, we can rewrite He as

He = He,1 +He,2, (S32)
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FIG. S7: Numerically simulated photon-number distributions of fields at t = 2 µs, which are calculated by the (a) effective
Hamiltonian without decoherence, (b) full Hamiltonian without decoherence, and (c) full Hamiltonian with decoherence. (d)
Ground state results of the effective Hamiltonian.
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where

He,1 =
[
J2(µ)λa

†] |g⟩ ⟨e|+ h.c., (S33)

He,2 =

(
S1 −

1

2
S2

)
(|g⟩ ⟨g| − |e⟩ ⟨e|) a†a+ 1

2
S1(|g⟩ ⟨g| − |e⟩ ⟨e|) +

(
1

2
S2 + δ

)
a†a. (S34)

Therefore, the Stark shifts are significantly reduced when the effect of the second-excited state |f⟩ is considered. For
the present device parameter setting, we obtain

S1 −
1

2
S2 ∼ 2π × 0.45 MHz. (S35)

When the microwave drive is applied, He,2 becomes

H ′
e,2 =

(
S1 − 1

2S2

)2
2K

σx
(
a†a
)2

+

(
1
2S1

)2
2K

σx +

(
1

2
S2 + δ

)
a†a, (S36)

where (
S1 − 1

2S2

)2
2K

≃ 2π × 0.452

40
MHz = 2π × 0.0061 MHz. (S37)

The first term of Eq. (S36) produces a qubit-state-dependent Kerr effect on the photonic field, dispersing the
phase-space distributions of the coherent fields, which partly accounts for distortions of the observed Gaussian
wavepackets. To quantitatively explore influences arising from imperfect Hamiltonian dynamics and decoherence,
we perform numerical simulations on the photon-number distributions at t = 2 µs. Figures S7(a) and S7(b) present
results based on the effective Rabi Hamiltonian and the full Hamiltonian, respectively; while Fig. S7(c) displays the
result calculated by the master equation, including both the full Hamiltonian dynamics and decoherence. Figure
S7(d) shows the photon number distributions associated with the ground state of the effective Rabi Hamiltonian. For
the ground state of the ideal Rabi model with an infinite frequency ratio [S1], the vacuum component has a negligible
population. Due to the experimental imperfections, the observed output state has a significant vacuum population of
about 0.29. To quantify individual contributions to the vacuum population, we perform numerical simulations step by
step, including more and more experimental imperfections. Thus obtained vacuum populations are respectively 0.07,
0.13, 0.27, and 0.04, as shown in Figs. S7(a)-(d). The results imply that the limitation of the effective qubit-resonator
frequency ratio, non-adiabaticity, deviation from model Hamiltonian, and dissipation contribute vacuum populations
of 0.04, 0.07 − 0.04 = 0.03, 0.13 − 0.07 = 0.06, and 0.27 − 0.13 = 0.14, respectively. We note the calculated vacuum
population 0.27 in Fig. S7(c) is slightly smaller than the observed result 0.29 in Fig. 2 in the main text, mainly due to
deviations of the system parameters used for the simulation from their real values. In the simulation, the dissipation
times for the qubit and the resonator are the same as those listed in Table S2. These results clearly show that the
population of the vacuum state is mainly caused by decoherence.

Note that there are also two corrections in the numerical simulation for the master equation: (i) applying Ω(t)′ =
1.56 Ω(t) [Ω(t) shown in Fig. S3]; (2) utilizing the fitting δ′(t) deduced by experimental measurements in Fig. S6,
shown in Fig. S8.

The simulated average photon number has shown in Fig. 2 in the main text. Additionally, based on such numerical
simulation, we plot the corresponding Wigner functions in Fig. S9. We also plot the population of the third level |f⟩
in Fig. S10, when the |f⟩ is included in the numerical simulation. The results show that the average population of
the third level is about 0.11 during the quenching dynamics.

S5. CHARACTERIZATION OF THE QUBIT-RESONATOR STATE

A. Photon-number distribution

All the measured average photon numbers and the Wigner function values in the main text are deduced from the
photon-number distribution. In the experiment, after carrying out the part of the SPT (or after Wigner tomography),
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FIG. S8: Effective resonator frequency versus time. The green line with circular markers represents the fitting effective resonator
frequency δ′(t) deduced by experimental measurements in Fig. S6. The blue line with diamond markers indicates the ideal
effective resonator frequency.

the microwave drive K and the frequency modulations ωq are switched off. Meanwhile, the ancilla qubit Q2 is tuned
on resonance with the resonator (frequency 5.581 GHz) from the idle frequency 5.93 GHz. Furthermore, the ancilla
qubit Q2 undergoes photon-number-dependent Rabi oscillations. The populations P a

e (τ), of the excited state of the
ancilla qubit Q2 for a given interaction time τ , are measured by biasing the ancilla back to its idle frequency, where
its state is read out (intuitively see Fig. S2). The recorded time-resolved quantum Rabi oscillation signals can be
fitted as

P a
e (τ) =

1

2

[
1− P a

g (0)

nmax∑
n=0

Pne
−κnτ cos

(
2
√
nλ′τ

)]
, (S38)

where Pn denotes the photon-number distribution probability, P a
g (0) indicates the probability for the ancilla qubit

Q2 to start in the ground state, nmax is the cutoff of the photon number, and κn = nl/T1,p (l = 0.7) [S6–S10] is the
empirical decay rate of the Rabi oscillations associated with the n-photon state. It is worth mentioning that, when
there are a lot of photons in the resonator, especially ⟨a†a⟩ > 10, the detuning ∆ω/2π = (5.93− 5.581) GHz = 0.329
GHz is not large enough to avoid interactions between the ancilla qubit Q2 and the resonator. This induces a minor
excitation of the ancilla qubit Q2, depending on the excitation of the resonator. Thus, referring to [S6], we ignore the
small excitation of |e⟩ and rescale the factor 1/2 in the photon-number-dependent Rabi oscillations equation [S10], to
Pg(0)/2 [see Eq. (S38)]. Based on the measurements and fitting operations described above, we can give the fitting
situation and corresponding photon-number distribution in Fig. S11.

B. Diagonal Wigner matrix elements

As described in the main text, the Wigner function is given by

Wk,k′(β) =
2

π

∞∑
n=0

(−1)nPk,k′

n (β), (S39)

where

Pk,k′

n (β) = ⟨n|D(−β)ρk,k′D(β) |n⟩ . (k, k′ = e, g)
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To measure the Wigner diagonal elements, a displacement operation, D(β) = exp
(
βa† − β∗a

)
, is applied to the

resonator, following which the ancilla qubit Q2 is resonantly coupled to the resonator for a given time τ . Then, the
ancilla qubit Q2 is biased to the idle frequency for the read-out of states.

The photon-number distributions Pg,g
n (β) and Pe,e

n (β) of the displaced light field are associated with the test qubit
states |g⟩ and |e⟩. Such distributions can be extracted from the excited-state populations [P g

n,e(β, τ) and P
e
n,e(β, τ)]

of the ancilla qubit, conditional on the detection of the test qubit in states |g⟩ and |e⟩. Thus, the normalized Wigner
function (for diagonal elements in the qubit basis) is given by

Wk,k(β) = Wk,k(β)/Pk, (S40)

with Pk being the |k⟩-state population of the test qubit. To completely show the distribution of the generated cat
states in phase space, we calibrate {Re(β), Im(β)} ∈ [−3, 3], implying that the displacement distance of D(−β), i.e.,
|β|, can be up to 3

√
2. This leads to the fact that the displaced light fields in some cases process an average photon

number ⟨a†a⟩ ≳ 18.
However, as claimed in Sec. S5A, the read-out of the photon-number distribution becomes imprecise with photons

growing. We therefore ignore the areas with large numbers of photons and utilize the remaining areas to deduce the
normalized density matrix ρk,k/Pk of light fields. This treatment is intuitively shown in Fig. S12. The calculation
from the Wigner functionWk,k(β) to the density matrix ρk,k/Pk is completed using convex optimization, supported by

FIG. S9: Numerically simulated Wigner matrix tomography. (a–d) Corresponds to Fig. 3 (a–d) in the main text, respectively.
Note that suitable rotations of Wigner tomography have been applied and all the data are measured at t = 2 µs based on the
parameter corrections in Sec. S4.
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FIG. S10: Numerically simulated population of the third level |f⟩.
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FIG. S11: Experimental (dots) and theoretical (dashed curves) time-resolved quantum Rabi oscillations and corresponding
photon-number distributions for (a, b) ⟨a†a⟩ = 5 and (c, d) ⟨a†a⟩ = 1.

the CVX toolbox based on MATLAB [S11]. The solved density matrix ρk,k/Pk is Hermitian and positive semidefinite
as well as satisfying Tr(ρk,k/Pk) = 1. Furthermore, we use this solved ρk,k/Pk to plot Wk,k(β), shown in Figs. 3(a)
and 3(b) in the main text, which has the same distribution in phase space as Figs. S12(a) and S12(b) here. As for
Figs. 3(c) and 3(d) in the main text, we additionally perform Wigner tomography (detailed in the next section) and
take the same treatment as that for Figs. S12(a) and S12(b). The time to measure the Wigner function is t =1.946
µs because the error of the qubit projection is relatively small at this time.

C. Off-diagonal Wigner matrix elements

To fully characterized the nonclassical light-matter correlations, it is necessary to reconstruct the off-diagonal
elements, measurements of which require Wigner tomography in the rotated basis

{
|±x⟩ = (|e⟩ ± |g⟩ /

√
2
}

and
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FIG. S12: Experimental data of the Wigner functions (a) We,e(β) and (b) Wg,g(β), without displaying the points corresponding
to large numbers of photons (⟨a†a⟩ > 10).

{
|±y⟩ = (|e⟩ ± i |g⟩ /

√
2
}
, respectively. The Wigner diagonal elements in these bases are related to both diagonal

and off-diagonal elements in the basis {|e⟩ , |g⟩}:

W±x,±x(β) =
1

2
[We,e(β) +Wg,g(β)]± Re[We,g(β)], (S41)

W±y,±y(β) =
1

2
[We,e(β) +Wg,g(β)]∓ Im[We,g(β)]. (S42)

To measure the Wigner matrix element W+x,+x(β), a rotation Ry(π/2) is performed on the test qubit Q1 before its
state read-out, transforming the x-axis basis states |+x⟩ and |−x⟩ to the z-axis basis states |e⟩ and |g⟩, respectively,
which can be directly measured by the read-out resonator. After this rotation and the resonator displacement D(−β),
the measured photon-number distribution Pe,e

n (β), conditional on the detection of the test qubit state |e⟩, yields
the conditional Wigner function W+x,+x(β). Similarly, performing the resonator displacement D(−β) after a qubit
rotation Rx(π/2), we can reconstruct the conditional Wigner function W+y,+y

based on the measured photon-number
distribution Pe,e

n (β). The elements W±J ,±J
(β) (J = x, y) are related to the normalized Wigner function W±J ,±J

(β)
by

W±J ,±J
(β) = P

e(g)
±J

W±J ,±J
(β), (S43)

where P
e(g)
J denotes the |(e)g⟩-state population of the test qubit Q1 after the corresponding frame transformation.

Moreover, the real and imaginary parts of the off-diagonal element We,g(β), can be calculated by

Re[We,g(β)] =
1

2
[W+x,+x(β)−W−x,−x(β)],

Im[We,g(β)] =
1

2
[W−y,−y(β)−W+y,+y(β)]. (S44)

Note that W±x,±x and W±y,±y can be described the same as Wk,k in Sec. S5B. The images of Re[−We,g(β)] and
Im[We,g(β)] are shown in Figs. 3(c) and 3(d) in the main text, respectively.

S6. MEASURE OF THE QUBIT-RESONATOR ENTANGLEMENT

The partial transpose of the density matrix is
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ρΓQ =
∑
k=e,g

∑
k′=e,g

ρk′,k ⊗ |k⟩⟨k′|, (S45)

whose eigenvalues are defined as Ei. The negativity [S12] is the absolute sum of the negative eigenvalues, viz.,
N (ρ) =

∣∣∑
Ei<0Ei

∣∣ = 0.2483. For comparison, the upper bound of the negativity, is N (|ψsp⟩⟨ψsp|) = 0.4483. The
difference between the experimental negativity and the ideal one is mainly due to the influence of decoherence,
demonstrated by the loss of the purity of the density matrix from 1 to 0.4646.

S7. CHARACTERIZATION OF THE SUPER-CAT STATE

Due to the non-adiabatic effects and the presence of decoherence, the emergent cat state during the SPT contains
three superimposed components: one corresponding to the empty field mode, while the other two corresponding to
the emergent coherent fields with opposite phases, as illustrated in Fig. S13. The size of this super-cat state is given
by

S =

∑
s̸=l d

2
sl

√
PsPl∑

s̸=l

√
PsPl

, (S46)

with {s, l} = {|0⟩, |α⟩, | − α⟩} and d2sl indicating the square of the phase-space distance between s and l. Here P|0⟩,
P|α⟩, and P|−α⟩ are the populations in |0⟩, |α⟩, and | − α⟩ of ρe,e/Tr(ρe,e) [or ρg,g/Tr(ρg,g)], respectively. For the
three-components cat-like state, mixing |0⟩, |α⟩, and | − α⟩, Eq. (S46) becomes

S =

√
P|0⟩P|α⟩|α2|+

√
P|0⟩P|−α⟩|α2|+

√
P|α⟩P|−α⟩|2α2|√

P|0⟩P|α⟩ +
√
P|0⟩P|−α⟩ +

√
P|α⟩P|−α⟩

, (S47)

specifically, Se,e = 14.03 and Sg,g = 13.27 for ρe,e/Tr(ρe,e) and ρg,g/Tr(ρg,g), respectively.
The NP-SP quantum coherences associated with the qubit states |e⟩ and |g⟩ are

Ce,e =
∞∑

n=1

|⟨0|ρe,e|n⟩|/Tr(ρe,e) = 1.018, and Cg,g =

∞∑
n=1

|⟨0|ρg,g|n⟩|/Tr(ρg,g) = 1.020, (S48)

respectively. The quantum coherence averaged over these two super-cat states is 1.019.
Negative values of the Wigner functions clearly distinguish cat states, which are macroscopically-distinct coherent

superpositions of classical-like states, from their mixtures. These negative values (as shown by the blue regions in
Figs. S9 and S12, as well as Fig. 3 in the main text), which are clearly seen between the main peaks (as shown
on the left- and right-hand sides of the figures), occur as a result of interference in the phase space [S13]. In the
digital quantum simulation of the deep-strong coupling dynamics reported in Ref. [S14], a similar nonclassical state
was generated by repetitive application of digital π pulses interleaved with short Jaynes-Cummings (JC) interaction
without the counter-rotating-wave terms, which allows emulation of the long-time Rabi dynamics, but does not lead
to the simultaneous realization of the JC and anti-JC interactions necessary for observing the associated SPT.

S8. NUMERICAL SIMULATION OF THE DICKE-MODEL SPT

Pushing one step further, we theoretically extend our method to the Tavis-Cummings (TC) model involving multiple
qubits coupled to a resonator [S15, S16]. By longitudinally modulating and transversely driving each qubit, the TC
model can be effectively transformed to the Dicke model with similar parameters. The results show that the qubits-
resonator system can be evolved from the NP to the SP featuring a highly entangled cat state, formed by two photonic
coherent states with opposite phases that are nonclassically correlated with distinct multiqubit coherent states also
with opposite phases.

The Dicke model, composed of N qubits coupled to a quantum photonic field mode, is described by the Hamiltonian

HD = δa†a+

N∑
j=1

[
Ω

2
(|ej⟩ ⟨ej | − |gj⟩ ⟨gj |)
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FIG. S13: Pictorial illustration of the three-component cat state. The resonator is in a superposition of being empty (without
any cat) and containing a coherent field, which is formed by two superimposed components with complex amplitude α (alive
cat) and −α (dead cat). These field components are correlated with different Bloch vectors (red-arrow lines) of the qubit.

+
η√
N

(|ej⟩ ⟨gj |+ |gj⟩ ⟨ej |)(a† + a)], (S49)

where η denotes the collective qubit-field coupling strength, and |gj⟩ and |ej⟩ denoting the ground and excited states
of the jth qubit, respectively. In the thermal limit N → ∞, the system undergoes a SPT at the critical point
ξ = 2η/

√
Ωδ = 1 [S17]. When ξ is sufficiently large the system has two degenerate ground states, given by [S18]

∣∣ψ±
sp

〉
≃ 1√

2
[|α′⟩

N∏
j=1

|+j⟩ ± |−α′⟩
N∏
j=1

|−j⟩], (S50)

where |±j⟩ = (|gj⟩±|ej⟩)/
√
2, and |±α′⟩ represent the coherent states of the photonic field, with α′ =

√
Nλ
δ

√
1− ξ−2.

For the even-parity ground state
∣∣ψ+

sp

〉
, the field parts associated with the even and odd collective excitation numbers

of the qubits are even and odd cat states, |C±⟩ = (|α′⟩ ± |−α′⟩)/
√
2, respectively.
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FIG. S14: Numerically simulated average photon number. (a) Result governed by full Hamiltonian. (b) Result deduced by
even ground state of the Dicke-model Hamiltonian.

When the coupling strength λ between each qubit and the resonator is much smaller than the qubits’ frequency ω0

and the field frequency ωp, the counter-rotating−wave terms for realizing the Dicke SPT can be effectively realized
by applying a resonant transverse driving with the amplitude K, and two longitudinal modulations with frequencies
ν1 and ν2 and amplitudes ε1 and ε2, to each of the qubit. Under the conditions λ,K, δ = ωp − ω0 − 2ν1 ≪ ν1 and
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FIG. S15: Numerical Wigner tomography for final state after the Dicke-model SPT, governed by the full Hamiltonian. (a)
Wigner functions associated with the collective even-parities of the qubits. (b) Wigner functions associated with the collective
odd-parities of the qubits.
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FIG. S16: Numerical Wigner tomography for final state after the Dicke-model SPT, deduced by the ground state of the Dike-
model Hamiltonian. (a) Wigner functions associated with the collective even-parities of the qubits. (b) Wigner functions
associated with the collective odd-parities of the qubits.

ν2 = 2KJ0(µ) with µ = ε1/ν1, the system dynamics in the interaction picture can be effectively described by the

Dicke Hamiltonian with η =
√
NλJ2(µ)/2 and Ω = ε2/2.

To confirm the validity of the approximations for deriving the effective Hamiltonian, we perform numerical
simulations for the 10-qubit Dicke model, in the symmetric Dicke subspace, without considering decoherence. We
here set ωp/(2π) = 5.581 GHz, λ/(2π) = 19.91 MHz, K/(2π) = 19.91 MHz, ε1/(2π) = 207.31 MHz, ν1/(2π) = 250
MHz, and ν2/(2π) = 33.28 MHz. With this setting, ξ can be controlled by ω0 and ε2. With this setting, ξ can be
controlled by ω0 and ε2. The average photon number, simulated for the quenching process where δ and ε2 are varied as
δ = ε2 = 2η/ξ(t), with ξ(t) = 0.6+0.9t/tf (tf the total quench time), is shown in Fig. S14(a), which well agrees with
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the result obtained from the even ground state of the ideal Hamiltonian (Fig. S14(b)). The quenching process starts

with the state |0⟩
N∏
j=1

|gj⟩. The Wigner functions of the field, associated with the collective even- and odd-parities

of the qubits after a quenching time t = 2 µs, are respectively displayed in Figs. S15(a) and S15(b). These field
states are in well agreement with those based on the ideal ground states with the same parameter ξ, displayed in
Figs. S16(a) and S16(b), respectively. These results imply that the presently demonstrated techniques can be used
to realize the Dicke model and the associated SPT.
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