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COMPARISON OF THE BASIC FORMULAS IN THE COULOMB AND DIPOLE GAUGES FOR THE
QUANTUM RABI AND HOPFIELD MODELS.

Hamiltonians & operators Coulomb gauge Dipole gauge

Rabi Hamiltonian ĤC in Eq. (M-4) ĤD = T̂ ĤC T̂ † above Eq. (M-4)

with T̂ = exp
[
−iÂσ̂x

]
Rabi annihilation operators âC = â âD = T̂ âT̂ † = â+ iησ̂x below Eq. (M-6)

Rabi perturbation Hamiltonian

for pure dephasing V̂C
ϕ in Eq. (M-5) V̂D

ϕ below Eq. (M-4)

Hopfield Hamiltonian ĤC in Eq. (M-10) ĤD = T̂ ĤC T̂ † in Eq. (M-9)

with T̂ = exp
[
−iλ(â+ â†)(b̂+ b̂†)

]
Hopfield annihilation operators âC = â âD = T̂ âT̂ † = â+ iλ(b̂+ b̂†) below Eq. (M-14)

b̂C = T̂ †âT̂ = b̂− iλ(â+ â†) below Eq. (M-14) b̂D = b̂
Hopfield perturbation Hamiltonian

for pure dephasing V̂ C
dep in Eq. (M-14) V̂ D

dep in Eq. (M-13)

TABLE I. Comparison of the basic formulas in the Coulomb and dipole gauges for the quantum Rabi and Hopfield models.
Note the label M- is introduced to refer to equations number in the main text.

PURE DEPHASING IN THE QUANTUM RABI MODEL

Here we analyze how to describe the correct and gauge invariant pure dephasing effects in the quantum Rabi
model (QRM), following the procedure described in Ref. [S1] and considering both cavity and qubit decoherence. We
start by considering the quantum Rabi Hamiltonian with an additional zero-mean stochastic modulation of the qubit
resonance frequency V̂q

dep = fq(t)σ̂z. Expressing the Hamiltonian in the dressed basis and moving to the interaction

picture with respect to V̂q
dep, we obtain

V̂q
dep(t) = f(t)

∑
j,k

⟨j|σ̂z|k⟩ |j⟩⟨k| eiωjkt , (S1)
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where |j⟩ are the eigenstates of the total Hamiltonian and ωjk are the transition frequencies. Expressing f(t) in terms
of its Fourier decomposition, and assuming that the main contribution to dephasing results from a small frequency
interval around ωjk [S1], we obtain

V̂q
dep(t) =

∑
j,k

σjk
z |j⟩⟨k| f−ωjk

(t) , (S2)

where

fωjk
(t) =

√
Sf (ωjk)ξωjk

(t) , (S3)

Sf (ω) is the spectral density of f(t), and ξ(ω) such that ⟨ξ(ω)⟩ = 0 and ⟨ξ(ω)ξ(ω′)⟩ = δ(ω − ω′) (i.e., corresponding
to white noise). If the transition frequencies ωjk are well-separated, we can treat each term of the above summation
as an independent noise [S1].

We are now able to write down the dressed Lindbladian in case of qubit pure dephasing:

Ldr· = D

∑
j

Φj |j⟩⟨j|

 ·+
∑
j,k ̸=j

Γjk
ϕ D [|j⟩ ⟨k|] · , (S4)

where

Φj =

√
γϕ(0)

2
σjj
z , (S5)

and

Γjk
ϕ =

γϕ(ωkj)

2

∣∣σjk
z

∣∣2 . (S6)

The whole procedure described above can also be applied to the case of cavity pure dephasing, by considering the QRM
Hamiltonian with an additional zero-mean stochastic modulation of the cavity resonance frequency V̂c

dep = fc(t)â
†â.

In this case, this stochastic perturbation, expressed in the dressed basis and in the interaction picture, becomes

V̂c
dep(t) =

∑
j,k

⟨j|â†â|k⟩ |j⟩⟨k| f−ωjk
(t) , (S7)

while the Lindbladian remains in the same form of Eq. (S4), with the only difference of Φj and Γjk
ϕ , which become

respectively,

Φj =

√
γϕ(0)

2
⟨j|â†â|j⟩ , (S8)

Γjk
ϕ =

γϕ(ωkj)

2

∣∣ ⟨j|â†â|k⟩∣∣2 . (S9)

However, we have seen in the main text that the approach described above does not reproduce the correct results. In
particular, we have shown that, if one uses the Coulomb or dipole gauge, significantly different results can be obtained.
For example, when using the Coulomb gauge, the bare σ̂z operator becomes σ̂C

z = T̂ †σ̂zT̂ , since the minimal coupling

is applied to the matter system, while the photonic operator â†â becomes â†DâD = T̂ â†âT̂ † in the dipole gauge. Thus,
to correctly describe pure dephasing effects, we need to substitute in the Lindbladian given in Eq. (S4): σ̂z → σ̂C

z in

the Coulomb gauge, and â†â → â†DâD in the dipole gauge.

Analytical derivation of the pure dephasing rates

By adopting the procedure described above, we are able to derive analytically the pure dephasing rates of both
cavity and qubit. Starting from the Coulomb gauge and using Eq. (S4), we discard the off-diagonal terms Γjk

ϕ since
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this contribution is significant only if the dephasing bath has a spectral weight at the potentially high frequency ωjk,
leading to the following equation:

˙̂ρ = −i
[
ĤC , ρ̂

]
+

γϕ(0)

2
D

∑
j

σC,jj
z |j⟩⟨j|

 ρ̂ , (S10)

where σC,jj
z = ⟨j|σ̂z|j⟩. We now expand the Lindblad dissipator

D

∑
j

σC,jj
z |j⟩⟨j|

 ρ̂ =
1

2

2∑
j

∑
j′

σC,jj
z σC,j′j′

z |j⟩⟨j| ρ̂ |j′⟩⟨j′| −
∑
j

∑
j′

σC,jj
z σC,j′j′

z |j′⟩ ⟨j′|j⟩ ⟨j| ρ̂ (S11)

−
∑
j

∑
j′

σC,jj
z σC,j′j′

z ρ̂ |j′⟩ ⟨j′|j⟩ ⟨j|

 , (S12)

and we focus on the matrix element of the density matrix relative to the transition (1̃−, 0̃), but the same procedure
can be applied to all the other transitions. The corresponding equation (in the interaction picture) for that matrix
element becomes

d

dt
ρ̂
(I)

1̃−,0̃
=

γϕ(0)

4

〈
1̃−

∣∣ 2∑
j

∑
j′

σC,jj
z σC,j′j′

z |j⟩ ⟨j| ρ̂(I) |j′⟩ ⟨j′| −
∑
j

|σC,jj
z |2 |j⟩ ⟨j| ρ̂(I) −

∑
j

|σC,jj
z |2ρ̂(I) |j⟩ ⟨j|

 ∣∣0̃〉

=
γϕ(0)

4

2∑
j

∑
j′

σC,jj
z σC,j′j′

z

〈
1̃−

∣∣j〉 ⟨j| ρ̂(I) |j′⟩ 〈j′∣∣0̃〉−∑
j

|σC,jj
z |2

〈
1̃−

∣∣j〉 ⟨j| ρ̂(I) ∣∣0̃〉

−
∑
j

|σC,jj
z |2

〈
1̃−

∣∣ ρ̂(I) |j⟩ 〈j∣∣0̃〉


=
γϕ(0)

4

[
2σC,1̃−1̃−

z σC,0̃0̃
z

〈
1̃−

∣∣ ρ̂(I) ∣∣0̃〉− |σC,1̃−1̃−
z |2

〈
1̃−

∣∣ ρ̂(I) ∣∣0̃〉− |σC,0̃0̃
z |2

〈
1̃−

∣∣ ρ̂(I) ∣∣0̃〉]
= −γϕ(0)

4

∣∣∣σC,1̃−1̃−
z − σC,0̃0̃

z

∣∣∣2ρ̂(I)
1̃−,0̃

. (S13)

By choosing the dipole gauge, one should replace σC,jj
z → σjj

z . The same procedure is valid also for cavity pre

dephasing, where we need to use â†â in the Coulomb gauge and â†DâD in the dipole gauge.

PURE DEPHASING IN BOSONIC SYSTEMS

We now consider pure dephasing effects in bosonic systems. First, we consider a simple non-interacting harmonic
oscillator, then we analyze the Hopfield model.

Non-interacting harmonic oscillator

Here we consider a single-mode bosonic field described by the harmonic oscillator Hamiltonian Ĥ0 = ω0â
†â affected

by pure dephasing. Analogously to what we described in previous sections, in order to consider the dephasing effects,
we introduce an additional zero-mean stochastic modulation of the resonance frequency V̂h

dep = fh(t)â
†â. Moving to

the interaction picture, we notice that this component does not rotate, since it has a zero-frequency oscillation. Thus,
transforming fh(t) in its Fourier components, and assuming that the main contribution to dephasing comes from a
small frequency interval around ω = 0 [S1], we obtain

V̂ h
dep(t) = f0(t)â

†â , (S14)

where f0(t) =
√
Sf (0)ξ0(t). This equation is quite similar to Eq. (S2) with the only difference that here we do not

have the expansion in the dressed basis (since we are not considering a hybrid quantum system), and that we have only
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the zero-frequency contribution (since V̂h
dep rotates at zero frequency in the interaction picture). These considerations

allow us to write the Lindbladian describing this pure dephasing effect as

L· =
√

γϕ(0)

2
D
[
â†â

]
· , (S15)

with γϕ(0) = 2Sf (0).

Hopfield model

Here we analyze pure dephasing effects in the Hopfield model, following the procedure described in the previous
sections and extending the results of Ref. [S1]. Moreover, we consider both light and matter decoherence. First, it
is useful to diagonalize the Hopfield Hamiltonian using the polaritonic operators [S2], where the lower and upper
polariton operators (µ = 1, 2) can be defined as

P̂µ = Uµ
b b̂+ Uµ

a â+ V µ
b b̂† + V µ

a â† . (S16)

Using the property

|Uµ
b |

2 + |Uµ
a |2 − |V µ

b |2 − |V µ
a |2 = 1 , (S17)

which guarantee the correct polariton commutation rules [S2], we can invert Eq. (S16) in order to obtain

â =

2∑
µ=1

(
Uµ
a P̂µ − V µ

a P̂ †
µ

)
, (S18a)

b̂ =

2∑
µ=1

(
Uµ
b P̂µ − V µ

b P̂ †
µ

)
. (S18b)

To describe the matter pure dephasing, we consider an additional zero-mean stochastic modulation of the matter
resonance frequency V̂ x

dep = fx(t)b̂
†b̂. In terms of the polaritonic operators we have

b̂†b̂ = A1P̂
†
1 P̂1 +A2P̂

†
2 P̂2 +B12P̂

†
1 P̂2 +B21P̂

†
2 P̂1 , (S19)

with

Aµ = |Uµ
b |

2
+ |V µ

b |2 (S20)

B12 = B∗
21 = U1 ∗

b U2
b + V 1

b V
2 ∗
b , (S21)

where we have included only the terms which do not oscillate in time, or oscillate at low frequency, corresponding to
applying the rotating wave approximation (RWA), and we have eliminated the constants derived from commutation
rules, which have no dynamical consequences. Moving to the interaction picture, this contribution becomes

V̂ x
dep(t) = fx(t)

[
A1P̂

†
1 P̂1 +A2P̂

†
2 P̂2 + e−iω21tB12P̂

†
1 P̂2 + eiω21tB21P̂

†
2 P̂1

]
, (S22)

where ω21 = ω2−ω1 with the polaritonic eigenfrequencies ωi. Equation (S22) can be written in a more compact form
as

V̂ x
dep = fx(t)

[
D̂12 + e−iω21tM̂12 + eiω21tM̂†

12

]
,

with

D̂12 = A1P̂
†
1 P̂1 +A2P̂

†
2 P̂2 , (S23)

M̂12 = B12P̂
†
1 P̂2 , (S24)

and using the results presented in the previous sections, we obtain

V̂ x
dep(t) = f0(t)D̂12 + fω21

(t)M̂12 + f−ω21
(t)M̂†

12 , (S25)
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with fω(t) expressed in Eq. (S3). Thus, the resulting Lindbladian in the case of matter pure dephasing is

L· = 1

2
γϕ(ω21)D[M̂12] ·+

1

2
γϕ(−ω21)D[M̂†

12] ·+
1

2
γϕ(0)D[D̂12]· , (S26)

with γϕ(ω) = 2Sf (ω).
The same procedure, as described above, can also be applied to the case of cavity pure dephasing, by considering

an additional zero-mean stochastic modulation of the cavity resonance frequency V̂ c
dep = fc(t)â

†â. The procedure
remains the same for the matter dephasing case, except that now we consider

â†â = A1P̂
†
1 P̂1 +A2P̂

†
2 P̂2 +B12P̂

†
1 P̂2 +B21P̂

†
2 P̂1 , (S27)

where

Aµ = |Uµ
a |

2
+ |V µ

a |2 , (S28)

B12 = B∗
21 = U1 ∗

a U2
a + V 1

a V
2 ∗
a . (S29)

This yields a Lindbldian of the same form of Eq. (S26) with the only difference for the polariton coefficients expressed
in Eqs. (S28) and (S29).

However, we have seen in the main text that this approach can lead to wrong results, depending on the chosen
gauge. Indeed, when using the Coulomb gauge, the matter operator b̂ becomes b̂C = T̂ †b̂T̂ , since the minimal coupling
is applied to the matter system. On the contrary, when using the dipole gauge, the minimal coupling is applied to
the photonic system, and the dressed photonic operator becomes âD = T̂ âT̂ †. This consideration leads us to note
that the polariton diagonalization leads to different Hopfield coefficients if we choose the Coulomb or dipole gauge.
In particular, in the dipole gauge, we have

b̂ =

2∑
µ=1

(
Uµ′
b P̂ ′

µ − V µ′
b P̂ ′†

µ

)
, (S30)

where P ′
µ are the polariton operators obtained by diagonalizing the Hopfield Hamiltonian in the dipole gauge. While

in the Coulomb gauge we have

b̂C = T̂ †

[
2∑

µ=1

(
Uµ′
b P̂ ′

µ − V µ′
b P̂ ′†

µ

)]
T̂

=

2∑
µ=1

(
Uµ′
b T̂ †P̂ ′

µT̂ − V µ′
b T̂ †P̂ ′†

µ T̂
)

=

2∑
µ=1

(
Uµ′
b P̂µ − V µ′

b P̂ †
µ

)
, (S31)

which contains the polariton operators obtained by diagonalizing the Hamiltonian in the Coulomb gauge, but with
the same coefficients of the dipole gauge. To obtain Eq. (S31), we have used the relation

P̂µ = T̂ †P̂ ′
µT̂ , (S32)

which, although intuitively obvious, can be rigorously demonstrated using the definition of polaritonic operators; in
particular, those operators that, each in its specific gauge, enable the diagonalization of the gauge-correspondent
Hamiltonian. For example, we have:

[P̂µ, ĤC ] = ΩµP̂µ , (S33a)

[P̂ ′
µ, ĤD] = ΩµP̂

′
µ . (S33b)

In order to demonstrate Eq. (S32), we can calculate how Eq. (S33a) transforms from the Coulomb to dipole gauge.
Gauge invariance implies that the final result has to be equal to Eq. (S33b). We obtain:

T̂ [P̂µ, ĤC ]T̂
† = ΩµT̂ P̂µT̂

† , (S34a)

T̂ [P̂µ, ĤC ]T̂
† = T̂ (P̂µĤC − ĤC P̂µ)T̂

† (S34b)

= T̂ P̂µĤC T̂
† − T̂ ĤC P̂µT̂

†

= T̂ P̂µT̂
†T̂ ĤC T̂

† − T̂ ĤC T̂
†T̂ P̂µT̂

†

= T̂ P̂µT̂
†ĤD − ĤDT̂ P̂µT̂

† = [T̂ P̂µT̂
†, ĤD] .
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Combining the results of Eqs. (S34a) and (S34b), we obtain:

[T̂ P̂µT̂
†, ĤD] = ΩµT̂ P̂µT̂

† , (S35)

which is the definition of the polariton operators P̂ ′
µ in the dipole-gauge (which are the operators that allow the

diagonalization of ĤD) given by Eq. (S33b). Hence, Eq. (S32) is the correct gauge transformation for the polaritonic
operators.

The whole analysis described above can be summarized as follows: in the case of matter pure dephasing, the
stochastic perturbation is: V̂ x

dep = fx(t)b̂
†b̂ in the dipole gauge, and V̂ x

dep = fx(t)b̂
†
C b̂C in the Coulomb gauge, where

b̂†b̂ = A′
1P̂

′†
1 P̂ ′

1 +A′
2P̂

′†
2 P̂ ′

2 +B′
12P̂

′†
1 P̂ ′

2 +B′
21P̂

′†
2 P̂ ′

1 (S36)

and

b̂†C b̂C = A′
1P̂

†
1 P̂1 +A′

2P̂
†
2 P̂2 +B′

12P̂
†
1 P̂2 +B′

21P̂
†
2 P̂1 , (S37)

with

A′
µ =

∣∣Uµ′
b

∣∣2 + ∣∣V µ′
b

∣∣2 , (S38)

B′
12 = B′ ∗

21 = U1′ ∗
b U2′

b + V 1′
b V 2′ ∗

b . (S39)

As a result, to correctly describe the matter pure dephasing, we need to use the dipole coefficients, given in Eqs. (S38)
and (S39), in the Lindbladian expressed in Eq. (S26), even when using the Coulomb gauge. On the contrary, for the

photonic pure dephasing, the stochastic perturbation is: V̂ c
dep = fc(t)â

†â in the Coulomb gauge, and V̂ c
dep = fc(t)â

†
DâD

in the dipole gauge. Thus, we need to use the Coulomb polariton coefficients in the Lindbladian even when using the
dipole gauge.

ADDITIONAL FIGURES
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FIG. S1. Quantum Rabi model: Normalized pure dephasing rate for the two lowest energy transitions, for a small qubit-cavity
detuning δ = 3× 10−3 assuming only the cavity pure dephasing. (a) Correct gauge-invariant results versus (b) wrong Coulomb
gauge results.
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FIG. S2. Hopfield model: Pure dephasing rate of the lower and upper polaritons, originating from exciton dephasing, versus
the normalized coupling strength, obtained for different exciton-cavity detunings, and considering only cavity pure dephasing.
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