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Abstract
Hamiltonian exceptional points (HEPs) are spectral degeneracies of non-Hermitian Hamiltonians
describing classical and semiclassical open systems with losses and/or gain. However, this definition
overlooks the occurrence of quantum jumps in the evolution of open quantum systems. These
quantum effects are properly accounted for by considering quantum Liouvillians and their
exceptional points (LEPs). Specifically, an LEP corresponds to the coalescence of two or more
eigenvalues and the corresponding eigenmatrices of a given Liouvillian at critical values of external
parameters (Minganti et al 2019 Phys. Rev. A 100 062131). Here, we explicitly describe how
standard quantum process tomography, which reveals the dynamics of a quantum system, can be
readily applied to detect and characterize quantum LEPs of quantum non-Hermitian systems. We
conducted experiments on an IBM quantum processor to implement a prototype model with one-,
two-, and three qubits simulating the decay of a single qubit through competing channels, resulting
in LEPs but not HEPs. Subsequently, we performed tomographic reconstruction of the
corresponding experimental Liouvillian and its LEPs using both single- and two-qubit operations.
This example underscores the efficacy of process tomography in tuning and observing LEPs even in
the absence of HEPs.

1. Introduction

Systems with dissipation and/or amplification can be described by non-Hermitian Hamiltonians (NHHs)
whose eigenvalues are either real or complex conjugate pairs depending on whether the system is operated in
the exact or broken parity-time (PT ) symmetric phase, respectively [1–3]. Over the past two decades,
PT -symmetric systems have evolved from a mathematical curiosity to a powerful resource for controlling
electromagnetic waves and their interactions with matter by judiciously engineering loss-imbalance in
passive (i.e. without amplification) non-Hermitian systems, and dissipation vs amplification rates in active
non-Hermitian systems, as well as dissipation vs the coupling strength between subsystems [4, 5]. Early
demonstrations involved optical [6–8], electronic [9], plasmonic [10], metamaterial [11–13],
optomechanical, and acoustic [14–16] systems, before further expanding to include other
platforms [17–22]).

The exact and broken PT -symmetric phases are separated by the so-called Hamiltonian exceptional
points (HEPs), where two or more of the eigenvalues of the effective NHH describing a given system, and
their associated eigenvectors, become degenerate, leading to dimensionality reduction [23–25].

A plethora of intriguing properties of such systems induced or enhanced at HEPs (or near them) have
been predicted, including stimulated [26–31] and spontaneous [32] emission, chirality [33–35],
unidirectional invisibility [36], control of whispering-gallery microcavities [37, 38], an exceptional Kerr
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effect [39] and related exceptional photon blockade [40], or the generation of higher-order HEPs [41–44].
The existence of HEPs in the absence of the PT -symmetry was studied in [45].

While effective NHHs and HEPs are sufficient to describe coherent nonunitary evolution of the dynamics
of classical and semiclassical systems, they fell short in describing the evolution of quantum systems
involving quantum jumps and associated noise. To address this shortcoming, quantum Liouvillian
exceptional points (LEPs) were introduced as degeneracies of quantum Liouvillian superoperators associated
with their coalescing eigenvalues and eigenvectors [46]. LEPs are a natural generalization of HEPs by
including quantum jumps to provide a consistent description of decoherence and noise in open quantum
systems compatible with the canonical commutation relations. Indeed, LEPs depend not only on a
continuous nonunitary dissipation of a given system (as described by NHHs), but also on quantum jumps;
this is contrary to HEPs which are not affected by them, so in that sense can be considered semiclassical or
even classical. The connection between HEPs and LEPs can be demonstrated by postselecting quantum
trajectories following the hybrid-Liouvillian formalism [47]. Recent experiments with a single three-level
transmon [21, 22] and a single three-level trapped ion [48, 49] have indicated the importance of LEPs by
revealing the pivotal significance of quantum jumps in generalizing the applications of classical
non-Hermitian systems to open quantum systems. These applications encompass advanced techniques such
as precise sensing and control of quantum circuits [21], dynamical manipulation of quantum thermal
machines [50], and specifically the operation of quantum heat engines [49], all exploiting the unique
properties of LEPs. The formalism of LEPs is based on the Lindblad master equation, so relies on the
standard quantum mechanics, where there is no need for calculating a system-dependent metric [51, 52],
thus preventing the apparent violation of the no-go theorems.

Although the complex spectra of Liouvillians have been analyzed previously (see, e.g. [53–57] and
references therein), interest in Liouvillian singularities, now termed LEPs and Liouvillian diabolical points
(LDPs), and their physical significance has only recently been revived by works such as [46, 58, 59]. Thus,
since 2019 there has been a growing theoretical interest stimulated by experimental progress [20–22, 48, 49]
in observing, understanding, and utilizing quantum aspects of Liouvillian singularities. This includes also
closely related concepts of LDPs (i.e. spectral degeneracies, where eigenvalues coalesce, but the associated
eigenvectors remain orthogonal) [60, 61], hybrid LEPs (which interpolate between HEPs and LEPs) [21, 47],
and higher-order eigenspectrum degeneracies exhibiting hybrid properties of both diabolical and exceptional
points [62, 63].

Quantum process tomography (QPT) is a procedure that enables a complete experimental
characterization of a quantum black box or, in mathematical terms, the reconstruction of the Liouvillian
superoperator characterizing completely the dynamics of an unknown quantum process (see reviews [64–66]
and references therein). Due to the formal equivalence between processes and channels, QPT is often
considered a quantum-channel tomography. QPT was introduced in [67–69] as a generalization of quantum
state tomography (QST) for reconstructing quantum channels via reconstructing quantum output states for
various input states. Similarities between QPT and QST include even the use of maximum-likelihood
estimation to guarantee that an experimentally reconstructed Liouvillian superoperators (or a density
matrix) really describes a physical process (or state) [70, 71]). Anyway, QST and QPT are two related but
distinct procedures of quantum engineering: QST aims to reconstruct the quantum state (density matrix) of
a system by measuring various observables. This process only tells us about the specific state of a quantum
system at a given point. While QPT is used to fully characterize the dynamics or transformation (quantum
process) that a system undergoes. It reveals how any input state is mapped to an output state by a quantum
channel, gate, or process. These two procedures become equivalent only in a specific scenario when the
process itself is simply an identity operation (i.e. it leaves states unchanged), QPT effectively reduces to QST.
In this case, the only task left is to determine the state of the system, as there is no transformation occurring.
In all other cases, QPT is more complex, as it requires understanding the transformation effects on a full set
of basis states, while QST is limited to reconstructing the description of just one state.

First experimental demonstrations of QPT were reported for characterizing two-qubit gates using
nuclear-magnetic-resonance (NMR) spectroscopy [72], and single- [73, 74] and two-qubit [75–77] gates
using linear optics and conditional measurements. A multi-qubit (say n-qubit) QPT can be realized by
replicating (n times) a given experimental setup for a single-qubit QPT [74]. This implies that the dimension
of a reconstructed Liouvillian superoperator and the complexity of QPT grows exponentially with n. Recent
experimental implementations of QPT (and related tomography methods) include: trapped-ion qubit
gates [78], superconducting quantum processors [79–81], photon polarization damping channels [82], and
plasmonic metamaterials operating as polarization-dependent loss channels in quantum plasmonics [83],
etc. However, to our knowledge, the experimental observation of LEPs of the Liouvillians reconstructed via
QPT has not been reported yet.
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Figure 1. (a) Three-qubit and (b) two-qubit circuits optimized for the Nairobi quantum processor by Qiskit and applied in our
experiments. Gates Un ≡ U(θn) and Vn ≡ V(ϕn,θn) are implemented by the sequences of basic gates shown in (c) and (d),
respectively. We set the following phases for Un, Vn, Rn ≡ Rz(ζn), and R̄n ≡ Rz(−ζn): U1 = U(5.7153), U2 = U(4.7788),
U3 = U(5.6341), U4 = U(2.7850), U5 = U(3.3259), U6 = U(3.0600), and U7 = U(3.4146); V1 = V(0,2π),
V2 = V(−π/2,0.0332), V3 = V(0,π), and V4 = V(π/2,π/2); R0 = Rz(0), R1 = Rz(0.0460), R2 = Rz(π/2), R3 = Rz(1.5248),
R ′ = Rz(3π), R ′ ′ = Rz(−1.5375), and R ′ ′ ′ = Rz(1.6040).

Figure 2. Real parts of the eigenvalues, Re(λn), of the Liouvillians simulated for the three-qubit circuit depicted in figure 1(a),
with measurements conducted on a single qubit: (a) third, (b) second, and (c) first qubit. Simulations were carried out both with
(red diamonds) and without (black circles) the inclusion of experimental noise.

We analyze and experimentally implement QPT and reveal LEPs using single-, two-, and three-qubit
superconducting circuits, shown in figure 1, using an IBM quantum (IBMQ) processor [84]. Note that we
initially performed simulations on the circuits, both without and with noise, as shown in figures 2–4. Only
afterward we conducted the actual experiments. Therefore, our main experimental results are presented
alongside the simulation results in figures 3 and 4.

We argue that various experimental methods used for single-qubit QST [20] and QPT (e.g. [80, 85]) can
be modified to induce and reveal LEPs along the lines described here. QPT can enable experimental finding
not only LEPs but also quantum diabolical points, which can reveal dissipative phase transitions and a
Liouvillian spectral collapse [60, 61]. We note that QST has been applied across LEPs in [21, 22] (see also
[20]). But to our knowledge QPT has not been applied to reveal LEPs yet. In particular, an LEP-based
quantum heat engine was studied experimentally in [48, 49], but neither QST nor QPT was applied there.

Our work serves primarily as a proof-of-principle study, demonstrating the experimental feasibility and
effectiveness of QPT for analyzing quantum system dynamics near LEPs. Another key feature of our paper is
that it is the first experimental observation of an LEP in a system that does not exhibit any HEPs, as
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Figure 3. Experimental and simulated real parts of eigenvalues obtained using the 3-qubit circuit, with measurements performed
on (a) the third qubit and (b) the second qubit. We note that achieving a close match between the simulated and experimental
curves is highly sensitive to the noise mitigation techniques applied in these calculations.

highlighted in the article’s title, including single-, two-, and three-qubit systems. In our view, this result
would hold significant value on its own, even if it had been obtained without the QPT-based approach
described here, but rather through established methods used in prior LEP-related experiments. Additionally,
we report notable physical phenomena, specifically the direct observation of transitions between
non-spiraling and spiraling regimes. These regimes, associated with distinct decay behaviors governed by real
and complex Liouvillian eigenvalues, were observed in physical systems (including single-, two-, and
three-qubit systems), where LEPs had not previously been experimentally observed. Previous experimental
studies were limited to single three-level systems (qutrits).

The paper is organized as follows: In section 2, we recall the LEP formalism and describe how to detect
LEPs via QPT. In section 3, we show the applicability of the method by analyzing a specific prototype model
of a lossy driven qubit exhibiting LEPs but not HEPs. By applying completely positive maps with unitary
gates, as described in section 4, we implemented the model on IBMQ processors, as reported in section 5.
The physical interpretation of transitions observed at LEPs is explained in section 6. Section 7 presents a
broader discussion of the results, including potential generalizations of the proposed method for
non-Markovian systems and the application of complementary approaches for identifying LEPs, followed by
concluding remarks. Technical details about the applied superoperator formalism, comparison of various
equivalent QPT methods, and our estimations of errors and measurement times are given in appendices.

2. LEPs and their detection

Let us consider the dissipative evolution of a quantum system within the Lindblad master equation. We make
the standard assumption that the system weakly interacts with a Markovian environment. In the case of the
QPT of composite systems (e.g. a qubit and a cavity mode), it is usually also assumed that the interaction
between the subsystems (e.g. light and matter) can be either weak or strong, but not ultrastrong, so that each
of the subsystems dissipates via a separate dissipative channel, rather than combined channels, which would
require applying a generalized master equation [86–88]. The expected photon output rate in the
ultrastrongly coupled light-matter systems is not directly related to the number of photons in a cavity [89].
Thus, a generalized QPT should be applied which, however, is not studied here.

A general-form Lindblad master equation can be expressed via the Liouvillian superoperators L [90, 91]
(h̄= 1) as

∂

∂t
ρ̂= Lρ̂(t) =−i

[
Ĥ, ρ̂(t)

]
+
∑
µ

D
[
Γ̂µ

]
ρ̂(t) , (1)

acting on the density matrix ρ̂(t) of the system described by a Hermitian Hamiltonian Ĥ at an evolution
moment t. For the clarity of our presentation, the standard matrix representation of superoperators is
recalled in appendix A. The Lindbladian dissipatorsD[Γ̂µ] are given by

D
[
Γ̂µ

]
ρ̂(t) = Γ̂µρ̂(t) Γ̂

†
µ −

1

2

[
Γ̂†
µΓ̂µρ̂(t)+ ρ̂(t) Γ̂†

µΓ̂µ

]
, (2)

where Γ̂µ are quantum jump operators with a clear interpretation in the quantum-trajectory approach (also
referred to as the wave-function Monte Carlo method) [92–96]. Consequently, one can also introduce an
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effective NHH,

Ĥeff = Ĥ− i

2

∑
Γ̂†
µΓ̂µ, (3)

and rewrite equation (1) as

Lρ̂(t) =−i
[
Ĥeffρ̂(t)− ρ̂(t)Ĥ†

eff

]
+
∑
µ

Γ̂µρ̂(t) Γ̂
†
µ. (4)

This master equation encompasses the terms describing a continuous non-unitary dissipative evolution via
Ĥeff, and the quantum-jump term. A quantum jump is a sudden stochastic change of the wave-function
corresponding to the loss or gain of a system excitation due to the interaction with the environment, which
monitors (‘measures’) the system [91, 97]. This quantum-trajectory interpretation of the master equation is
physically very intuitive and reveals the importance of effective NHHs, which are used in standard quantum
mechanics and are not limited to PT -symmetric systems. They describe continuous losses of energy,
coherence, and quantum information of a system into its environment. Moreover, this master equation
interpretation also reveals crucial role of quantum jumps. Their omission can be justified in the semiclassical
limit or by postselecting quantum trajectories.

We consider the eigenproblems:

Ĥeff|En⟩= En|En⟩, (5)

Lρ̂n = λnρ̂n, (6)

L†σ̂n = λ∗n σ̂n, (7)

where En and |En⟩ are the eigenvalues and eigenvectors of the NHH operator; while λn, ρ̂n, and σ̂n are the
eigenvalues, as well as the right and left eigenmatrices of the Liouvillian superoperator, respectively. With
these eigenspectra, HEPs and LEPs can be found. Note that ρ̂n and σ̂n for a given n are mutually orthogonal.
However, different ρ̂n (as well as σ̂n) are not, in general, orthogonal. The real parts of λn for any n is
non-positive and describes a relaxation rate towards the system ′s steady state [90]. By representing the
eigenmatrices ρ̂n and σ̂n as vectors |ρ̃n⟩ and ⟨σ̃n|, respectively, and treating the Liouvillian superoperator L as
a matrix L̃, equations (6) and (7) can be rewritten, respectively, as

L̃|ρ̃n⟩= λn|ρ̃n⟩ and ⟨σ̃n|L̃= λn⟨σ̃n|. (8)

The LEPs of L̃ can be calculated by applying the standard superoperator formalism [46]. Such LEPs can
be found experimentally via the QPT based on 6× 6 projectors, i.e. assuming that the input and output
states (or projections) are the eigenstates of all the Pauli operators: |ini⟩, |outj⟩ ∈ {|x+⟩, |x−⟩,
|y+⟩, |y−⟩, |z+⟩, |z−⟩}, where |x±⟩= 1√

2
(|0⟩± |1⟩), |y±⟩= 1√

2
(|0⟩∓ i|1⟩), |z+⟩ ≡ |0⟩, and |z−⟩ ≡ |1⟩. These

projections can be used for the QPT of a transmon qubit, where |0⟩ (|1⟩) corresponds to its ground (excited)
state. Thus, for a dissipative and/or amplified process described by the master equation with a Liouvillian L,
one can measure all its elements L ′

ij = ⟨outj|L
(
ρ̂= |ini⟩⟨ini|

)
|outj⟩, and, thus, reconstruct the full 6× 6

matrix L= [L ′
ij], which represents L. We refer to this approach as Method 1. Other approaches can also be

applied, including Methods 2 and 3 described in appendix B. All these methods reveal the same LEPs under
perfect measurement conditions as shown in detail in supplementary materials in Supplement 1 and briefly
explained in appendix C.

The dynamics of an open quantum system is governed by equation (1). For short evolution steps dt, this
corresponds to

ρ̂(t+ dt) = (Ldt+ 1) ρ̂(t)≡ Sρ̂(t) . (9)

This short-time evolution of a quantum state ρ̂(t) under the non-Hermitian dynamics, where S is the
effective quantum operation, is the subject of QPT. Note that S has the same spectral decomposition as L up
to an affine transformation for all eigenvalues related to scaling by dt and shifting by 1. Thus, we can study
LEPs by performing QPT on S. We choose dt depending on the specific form of L, being small enough to
realize specific dynamics. If the operation S is applied to a system n times, the evolution is effectively
described by the master equation for the evolution time ndt.

5
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3. A lossy driven qubit

In our experiment performed on an IBMQ processor [84], we applied QPT to reveal LEPs in a driven lossy
single-qubit (spin-1/2) prototype model, which exhibits LEPs but not HEPs [46, 47]. Specifically, the system
is described by the Hamiltonian Ĥ= (ω/2)σ̂z, and decays through three competing channels (σ̂x, σ̂y, and
σ̂−), as described by the Liouvillian,

Lρ̂(t) =−i
[
Ĥ, ρ̂(t)

]
+
(
γ−D [σ̂−] + γxD [σ̂x] + γyD

[
σ̂y
])
ρ̂(t) , (10)

where σ̂x,y, z are the Pauli matrices, and σ̂± = (σ̂x ∓ i σ̂y)/2 are the qubit raising and lowering operators,
respectively. We note that some typos in the corresponding equation in [46] have been corrected here to
ensure that the numerical results can be accurately reproduced. The terms of the master equation describe,
respectively: (1) oscillations, (2) erroneous bit flips at a rate γ−, and (3, 4) dissipation with rates γx and γy
along the x- and y-axes of the Bloch sphere, respectively. This dissipative model exhibits a Z2 symmetry, as it
remains invariant under the transformation σ̂− →−σ̂− [56, 57]. It is a prototype model that can be applied
to various systems beyond the one studied here. For instance, it can describe a spin- 12 particle in a uniform
magnetic field along the z-axis, assuming relaxation of the particle along the x- and y-axes, and allowing for
spin-flip errors. The oscillations induced by the Hamiltonian, the dissipation occurring along the x and y
axes, and the spin flipping induced by σ̂− determine how quickly the system reaches a steady state.

The lack of HEPs is evident due to the diagonal structure of the effective NHH in the standard
computational basis, i.e.

Ĥeff =
1

2
diag

([
ω− iγx − iγy − iγ−,−ω− iγx − iγy

])
, (11)

as there is no way to adjust the parameters to make the two eigenvalues equal. Despite this, the Liouvillian
still exhibits LEPs. Specifically, one finds the eigenvalues [46]:

λ0 = 0,

λ1,2 =−γ−
2

− γx − γy ±Ω,

λ3 = γ− − 2
(
γy + γx

)
, (12)

together with the corresponding right eigenmatrices:

ρ̂0 ∝ diag
([
γx + γy,γx + γy + γ−

])
,

ρ̂1,2 ∝ antidiag
([
−iω±Ω,γx − γy

])
,

ρ̂3 ∝ diag([−1,1]) , (13)

where Ω2 = γ2x + γ2y − 2γxγy −ω2. See appendix F for more analytical results. In the case γy > ω, this
Liouvillian exhibits two LEPs at γ±x ≡ γy ±ω. We study this configuration experimentally by setting γ− = 0
and γy = 2ω. Figures 2–4 show theoretical eigenvalues λ0,1 and modified eigenvalues, which are obtained via
a more-realistic QPT simulation assuming white noise. Specifically, experimental pure-like states, which are
the input states for QPT, are always mixed with some amount of white noise. This undesired effect was
included in our refined simulations. These simulated eigenvalues are compared with λexpn reconstructed from
our single-, two-, and three-qubit experiments.

4. Implementing completely positive maps with unitary gates

To implement non-Hermitian dynamics using only unitary operations, we purify (coherify) the quantum
process by embedding it in a larger Hilbert space, where the joint evolution of the system and its
environment is unitary. In particular, starting with the superoperator S, we find its Choi representation χ̂.
Depending on the number of nonzero eigenvalues of the Choi matrix, we choose the dimension of the
required ancillary system. This approach to implement completely positive maps is well known (see, e.g.
[98]). As we can implement an arbitrary unitary operation on a programmable quantum computer, we use
this approach to demonstrate LEPs experimentally with a noisy intermediate-scale quantum processor.

Completely positive (CP) maps are linear maps that preserve the positivity of density matrices. To express
a CP map EH between the Hilbert spacesH and K as a unitary operator we can use the Choi–Jamiołkowski
isomorphism [99, 100] between the map and operator χ̂. The associated quantum operation can be
expressed as

ρ̂out = trH
[
χ̂ρ̂Tin ⊗ 1̂K

]
, (14)

6
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Figure 4. Real (a), (d) and imaginary (b), (e) parts of the eigenvalues λ1 and λ2 of the experimental and theoretical Liouvillians,
and the overlaps (c), (f), O12 = |⟨σ̃1|ρ̃2⟩|, of the eigenmatrices ⟨σ̃1| and |ρ̃2⟩. In the experimental data, λ1 is indicated by red
squares, and λ2 by green squares when λ1 ̸= λ2. Experimental results are reconstructed from single-qubit (a)–(c) and two-qubit
(d)–(f) measurements performed on an IBMQ processor [84] (squares) and shown together with the corresponding theoretical
predictions including white noise (black solid curves) and without it (blue broken curves). Each measurement was carried out
with 20 000 shots and ωdt= 1/15. To enhance plot clarity, the two less relevant real eigenvalues (specifically, λ0 = 0 and the
smallest eigenvalue λ3) are omitted here but are displayed in other figures. The results shown in panels (a)–(c) for the single-qubit
circuit are clearly less noisy than those in panels (d)–(f) for the two-qubit circuit and are significantly less noisy than the results in
figure 3(a), which were obtained using the three-qubit circuit. The selected eigenvalues from panels (a), (b) and (d), (e) are listed
explicitly in tables 1 and 2, respectively.

where the operator, which is isomorphic to the map, reads

χ̂ = EH ⊗IH (|ϕ⟩⟨ϕ |) , (15)

where trK[χ̂] = 1̂H, |ϕ⟩=
∑dimH

j=1 |j⟩1|j⟩2, I is an identity map, and 1̂H denotes the identity operator onH.
The corresponding Kraus decomposition reads [98]:

ρ̂out = E (ρ̂in) =
∑
l

Âlρ̂inÂ
†
l , (16)

where
∑

l Â
†
l Âl = 1̂H. which can be rewritten, by substituting A(l)

ki ≡ ⟨k|Âl|i⟩, as
∑

k,lA
∗(l)
ki A(l)

kj = δij. The

number of the Âl operators corresponds to the number of nonzero eigenvalues of the χ̂matrix; χ̂ and Âl can

be related to each other by the eigenvalues rl and the eigenstates |πl⟩ of the χ̂ operator: A(l)
ki =

√
rl⟨k|⟨i|πl⟩,

where |i⟩ ∈ H and |k⟩ ∈ K are the states in the input and output Hilbert spaces, respectively. Finally, we have

ρ̂out = trenv
[
Ûρ̂in ⊗ (|0⟩⟨0|)env Û

†] , (17)

where Û=
∑

l Âl ⊗ (|l⟩⟨0|)env is the unitary operation decomposable into quantum gates.
For the discussed driven lossy qubit model, the number of the nonzero eigenvalues of the Choi matrix is

⩽4. The simplest single-qubit circuit implementing the CP map applies a unitary operation corresponding
to A(l) at random with probability rl, as described by the Kraus representation. When applied repeatedly to
the initial quantum state, the resulting final state approximates the time-evolved quantum state of the
simulated system. However, this is not a fully quantum simulation of the quantum dynamics, as an external
random number generator is required.

The second simplest experiment is embedded in a two-qubit Hilbert space and utilizes two-qubit unitary

operations and a single-qubit environment, ρ̂(1)env, and reads as

ρ̂out ⊗ ρ̂(1)env =
∑
m=0,2

Âm (ρ̂in ⊗ |0⟩⟨0|)Â†
m, (18)
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Table 1. Experimental nonzero eigenvalues λn ≡ λ
(m)
n selected from figures 4(a) and (b) obtained using the single-qubit circuit: Real

and imaginary parts of λn for chosen values of the damping coefficient γx . Both λn and γx are given in units of ω. The error bars are
indicated in the figures. The Liouvillian spectral gap (referred to here simply as the ‘gap’) is defined as the non-zero eigenvalue with the

smallest modulus of its real part. The minimal measured eigenvalue is given by λmin =minn,mλ
(m)
n = λ

(7)
3 among all eigenvalues

n= 1,2,3 for theM= 29 measured Liouvillians (m= 1, . . . ,M) plotted in the figures. The trivial zero eigenvalue, λ
(m)
0 = 0, is omitted.

The terms ‘closest,’ ‘largest,’ and ‘smallest’ specifically refer to the extremal eigenvalues of these experimental Liouvillians.

m γx/ω Reλ1 Imλ1 Reλ2 Imλ2 λ3 Gap Remarks

1 0 −0.88 0 −4.31 0 −4.95 0.88 Smallest spectral gap
2 0.83 −3.21 0 −3.52 0 −6.60 3.21 Non-spiraling point nearest LEP 1
3 0.97 −3.55 0.13 −3.55 −0.13 −6.89 3.55 Spiraling point closest to LEP 1
4 2.07 −4.64 1.04 −4.64 −1.04 −9.10 4.64 Largest spiraling
5 2.90 −5.48 0.33 −5.48 −0.33 −10.77 5.48 Spiraling point closest to LEP 2

and largest spectral gap
6 3.03 −5.25 0 −5.90 0 −11.01 5.25 Non-spiraling point nearest LEP 2

7 4.00 −4.82 0 −8.38 0 −12.92 4.82 λ
(7)
3 =minn,mλ

(m)
n

Table 2. Similar to table 1, but this table presents the experimental eigenvalues selected from figures 4(d) and (e), which were obtained
fromM= 30 Liouvillians measured on the two-qubit circuit, shown in figure 1(b).

m γx/ω Reλ1 Imλ1 Reλ2 Imλ2 λ3 Gap Remarks

1 0 −1.14 0 −4.82 0 −5.24 1.14 Smallest spectral gap
2 0.83 −3.04 0 −4.31 0 −6.67 3.04 Non-spiraling point nearest LEP 1
3 0.97 −3.82 0.47 −3.82 −0.47 −7.11 3.82 Spiraling point closest to LEP 1
4 2.48 −5.14 0.89 −5.14 −0.89 −9.66 5.14 Largest spiraling
5 3.31 −6.02 0.38 −6.02 −0.38 −11.40 6.02 Spiraling point closest to LEP 2

and largest spectral gap
6 3.45 −5.85 0 −6.43 0 −11.64 5.85 Non-spiraling point nearest LEP 2

7 0 −5.23 0 −8.26 0 −12.73 5.23 λ
(7)
3 =minn,mλ

(m)
n

where

Âm =
∑
l=0,1

Âl+m ⊗ |l⟩⟨0|, (19)

which requires using two random two-qubit operations (m= 0,2). Finally, a completely coherent quantum
three-qubit experiment requires applying a single unitary operation and a two-qubit environment, as
described by equation (17).

When working with a programmable quantum computer, we are mostly limited to applying noisy unitary
operations and imperfect readout. There are many approaches towards implementing qubits on quantum
computers. Here we focus on transmon qubits, which are nowadays commonly used in superconducting
quantum processors. These processors are able to implement sets of elementary instructions containing both
single- and two-qubit unitary operations. Not every two qubits in a quantum chip are coupled directly. This
requires transpiling a given unitary operation into elementary gates according to a coupling map of a given
quantum processor. While the fidelities of single- and two-qubit operations are typically high, the gate errors
can accumulate to an unacceptable level. If the time required to execute all the gates is comparable to the
coherence time T2 of the used transmons, then the results are largely affected by decoherence. All of these
limitations should be taken into account when designing an experiment. It is evident that the experimentally
reconstructed dynamics is usually perturbed with respect to the expected one. The effective perturbations in
the eigenvalues (δλ) and eigenmatrices (|δρ̃n⟩ and ⟨δσ̃n|) of an experimental Liouvillian Lexp = L0 + δL, with
the eigenspectrum obtained experimentally, compared to the ideal unperturbed Liouvillian L0 and its
eigenspectrum (denoted with superscript (0)), can be estimated as [101] (see appendix D for details):

δλn ≈ ⟨σ̃(0)
n |δL|ρ̃(0)n ⟩, (20)

|δρ̃n⟩ ≈ −
∑

i (i ̸=n)

(
⟨σ̃(0)

i |δL|ρ̃(0)n ⟩
λ
(0)
i −λ

(0)
n

)
|ρ̃(0)i ⟩, (21)

⟨δσ̃n| ≈ −
∑

i (i ̸=n)

(
⟨σ̃(0)

n |δL|ρ̃(0)i ⟩
λ
(0)
i −λ

(0)
n

)
⟨σ̃(0)

i |. (22)
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The y-axis error bars depicted in figure 4 were calculated according to these equations. Thus, based on these
estimations, we can select the most noise-robust experimental strategy. Moreover, the uncertainties of γx, as
plotted in figure 4, are estimated in appendix E.

5. Experiment

Here, we explain how we conducted experiments using the single-, two-, and three-qubit circuits, as
illustrated in figure 1 for the latter two cases, to demonstrate the LEPs in the model described by
equation (10).

The model we experimentally implemented is, in fact, more general than that given by equation (10), as
we constructed a three-qubit model, which is then reduced to three different single-qubit models.
Specifically, by measuring one of the three qubits and tracing out the other two, we could derive the
previously studied model, along with two additional models that have not been examined before.

Figure 2 illustrates the real parts of all the eigenvalues of the Liouvillians that describe the dynamics of
the three single-qubit dissipative models based on our simulated experiments using the three-qubit circuit
shown in figure 1(a). Furthermore, we conducted experiments on this circuit, measuring the third qubit to
obtain the eigenvalues displayed in figure 3(a) and the second qubit for those in figure 3(b). These figures
present our experimental results alongside their simulations from figure 2 for both models.

For the sake of simplicity and clarity, we hereafter focus on the specific cases illustrated in figures 2(a),
3(a) and 4, which correspond to the model given by equation (10).

In our experiments the system ρ̂in ≡ ρ̂(t) was prepared in one of the six input states, which are the
eigenstates of the three Pauli operators. Then, the evolution under a given map was applied. Finally, we
measure ρ̂out ≡ ρ̂(t+ dt) in the x, y, and z bases to reconstruct L (and, consequently, L). The results of the
experiments, conducted on an IBMQ processor (i.e. Nairobi) [84], were plotted in figures 3 and 4. The
measurements were performed for 30 points with 20 000 shots per experiment, and the evolution step was
ωdt= 1/15. Quantum processors are error-sensitive due to their susceptibility to noise and decoherence. To
mitigate errors, we used dynamic decoupling. This involves applying a sequence of pulses to each qubit to
protect it from ambient noise. The idea behind the method is to repeatedly apply a series of the inversion or
refocussing pulses that reverse the effect of noise. These pulses effectively separate the qubit from its
environment and can increase the qubit coherence time. This method is conceptually similar to the
spin-echo method. Specific examples of our reconstructed Liouvillians including their experimental errors
are presented in figures 2–4 in comparison to our theoretical predictions.

Examples of the coupling map and calibration data for the used quantum processor are shown in
figure 5. Our experiments were implemented on a seven-qubit IBM processor (Nairobi) [84] and we used the
Qiskit Runtime environment, which provides a controllable error mitigation and suppression to perform our
experiment. Note that, we also performed experiments on several other quantum processors (including the
Oslo processor) from IBM, which we selected based on their coupling maps. However, the Nairobi processor
resulted in the best results compared to our theoretical predictions and the lowest experimental errors.

Specifically, the theoretical and reconstructed process matrices S, at the first LEP in figures 4(a) and (b),
are shown in figure 6 obtained for a single-qubit circuit. Analogously, figure 7 shows S obtained for the
two-qubit circuit (depicted in figure 1(b)) for the first LEP in figures 4(d) and (e). Moreover, in figures 4(c)
and (f), we show the scalar products (overlaps) Oexp

12 = |⟨σ̃exp
1 |ρ̃exp2 ⟩| between the experimental left and right

eigenmatrices, σ̃exp
1 and ρ̃exp2 , compared to Oth

12 = |⟨σ̃(0)
1 |ρ̃(0)2 ⟩| for the ideal theoretical case. It is seen that σ̃exp

1

and ρ̃exp2 are practically coalescent (as Oexp
12 ≈ 1) near γ±x confirming the generation of LEPs. We can conclude

that the observed bifurcations of the experimental eigenvalues at LEPs for γ±x = (2± 1)ω, and the
coalescence of the corresponding eigenmatrices reconstructed for both the single- and two-qubit
experiments are in good agreement with our theoretical predictions.

In the single-qubit case, we applied the Qiskit optimization level 1, which enables a single-qubit gate
optimization, together with the resilience level 1, which enables readout error mitigation. In the two-qubit
experiments, we used the optimization level 3, which enables a dynamical decoupling error suppression,
together with the resilience level 1. Moreover, we experimentally tested different qubits to find that the best
results were obtained for: Qubit #0 in the single-qubit experiment and Qubits #4 and #5 for the two-qubit
experiments. See table 3 for more experimental characteristics of chosen qubits and gates.

In general, our single-qubit experiments are less noisy compared to the two-qubit and, especially,
three-qubit experiments. However, at a single point, γx/ω = 1.379, we observed a sudden jump in both the
real and imaginary parts of λ1,2, with values increasing by three orders of magnitude compared to other
measured values in a single-qubit experiment. Consequently, this data point is not visible in figures 4(a)
and (b) as it lies beyond their axis range. In contrast, our two-qubit experiment, along with single-qubit and
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Figure 5. Examples of the calibration data of the seven-qubit IBMQ processor (i.e. Nairobi) for (a) single- and (b) two-qubit
experiments, as completed on 18 and 22 April 2023, respectively. (a) and (b) Reproduced with permission from [84]. Here, H
stands for the Hadamard gate.

Figure 6. Theoretical (a) and experimental (b) matrix elements Sij = L ′
ijdt+ 1, corresponding to the Liouvillian elements L ′

ij , for

our single-qubit experiment performed for ωdt= 1/15 and γ/ω = 0.96. These matrices correspond to the first LEP shown in
figures 4(a) and (b). Comparison of the cross-sections of the figures in panels (a) and (b) for chosen input states: |x+⟩ (c) and
|y−⟩ (d), where the theoretical predictions are represented by blue bars, and the experimental results by red bars.

two-qubit simulations at this point, showed no such singularity. Therefore, this sudden peak is most likely
due to a malfunction in the experimental setup.

Finally, we note that our experiments for demonstrating the NHH dynamics are challenging even for
simple systems due to highly entangling three-qubit operations Û(3) =

∑
l Âl ⊗ |l⟩⟨0| implemented by

quantum circuits. The results of our three-qubit experiments on IBMQ processors [84] are quite noisy and
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Figure 7. Same as in figure 6, but for our two-qubit experiment. These matrices correspond to the first LEP shown in figures 4(d)
and (e).

Table 3. Calibration data of the IBMQ Nairobi superconducting processor used for our experiments with 1 and 2 qubits. Here, Rz is a
single-qubit rotation around the z-axis for various angles, while T̄1 and T̄2 are, respectively, the relaxation and decoherence times of a
given qubit averaged for a few days (i.e. 14–16 April 2023). The CNOT error rate between qubits #4 and #5 is estimated to be
6.5× 10−3. Qubit numbers#n refer to those in figure 5. Reproduced with permission from [84].

Freq. Anharm. Single-qubit
Qubit T̄1(µs) T̄2(µs) (GHz) (GHz) gate error Basic gates

#5 109± 14 76± 7 5.18 −0.34 2.98× 10−4 I,RZ,X,
√
X, CNOT

#4 155± 23 20± 1 5.29 −0.34 2.68× 10−4

#0 126± 15 33± 2 5.26 −0.34 2.27× 10−4 I, RZ, X,
√
X

not shown here. Although our main experimental results, presented in figures 3 and 4, are limited to single-,
two-, and three-qubit experiments, they show the potential of QPT for revealing and manipulating LEPs.

6. Physical interpretation of transitions at LEPs

Tables 1 and 2 present experimental eigenvalues depicted in figure 4, which are essential for interpreting the
decay transitions observed at the LEPs. In the ideal version of our model, LEPs should theoretically occur at
the γx/ω values of 1 and 3. However, in our experiments, these points were shifted. Specifically, for our
one-qubit experiments, the first and second LEPs were observed within the ranges (0.83, 0.97) and
(2.90, 3.03), respectively. Similarly, in the two-qubit experiments, the LEPs appeared within the ranges
(0.83, 0.97) and (3.31, 3.45). As indicated in the tables, achieving exact tuning to the LEPs was not possible.
For instance, in both experiments, the value γx/ω = 0.97 already exceeded the first LEP; this suggests that the
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LEP is shifted from 1 to a slightly smaller value on the γx/ω axis, by at least 0.03. Additionally, the second
LEP appears shifted from 3 to a slightly smaller value for the one-qubit experiment, whereas in the two-qubit
experiment, it is shifted to a much higher value by over 0.31 compared to ideal predictions. Consequently, we
were unable to precisely adjust the system to match the experimental LEPs; nonetheless, our measurements
for both one- and two-qubit setups are relatively close to these points. For clarity, we refer to LEPs at
approximate γx/ω values of 1 and 3, understanding that these points are slightly shifted in our experimental
configurations.

Before interpreting the observed LEPs and related effects, it is helpful to revisit both the geometric and
physical interpretations of four types of system evolutions (paths), each associated with a specific type of a
Liouvillian eigenvalue as described in [55, 56]: Type 1: For λn = 0, the corresponding Liouvillian
eigenvectors determine the system’s steady state. Type 2: When λn < 0, the system exhibits exponential decay
to zero over time. Type 3: If two eigenvalues form a complex-conjugate pair, the system follows a spiraling
trajectory as these eigenvalues decay to zero in the infinite-time limit. These three types of eigenvalues are
observed in our model. For completeness, we also mention Type 4, which occurs when an eigenvalue is
purely imaginary. In this case, the system exhibits oscillating coherences, following a circular path
geometrically. Here, the eigenmatrix associated with such an eigenvalue is preserved in the infinite-time
limit. However, Type 4 is not observed in our model. Overall, the general evolution of the system results from
the superposition of these distinct types of evolutions.

As shown in tables 1 and 2, and figures 2–4, all four eigenvalues are non-positive for any value of the
damping rate γx. Specifically, for γx/ω < 1 and γx/ω > 3, the eigenvalues are four distinct real values: one
zero and three negative. In these regions, the system decay at long times is exponential. In contrast, within
the range γx/ω ∈ (1,3), two of the eigenvalues form a complex-conjugate pair, λ1 = λ∗2 , accompanied by one
zero and one negative eigenvalue, as in the previous cases. Here, the decay rate Re(λ1) = Re(λ2) is modulated
by an oscillatory (or spiraling) term Imλ1. When complex-conjugate pairs with negative real parts are
present, the system is in the ‘spiraling regime,’ following a spiral trajectory (superposed with the exponential
decay). Otherwise, it is in a ‘non-spiraling regime,’ where decay is purely exponential without oscillations.

At the LEPs, where the Liouvillian is not diagonalizable, the transition between these spiraling and
non-spiraling regimes takes place. The tables also show the Liouvillian spectral gap (also known as an
asymptotic decay rate), commonly defined as the absolute difference between the real parts of the largest and
second-largest eigenvalues of the Liouvillian. Given that λ0 = 0 here, the spectral gap is simply |Re(λ1)|, as
given in tables 1 and 2. In Markovian processes (as studied here), the spectral gap correlates with the
convergence rate to a steady state, representing the slowest non-zero rate of convergence to the infinite-time
state. Therefore, a larger spectral gap indicates faster system mixing or convergence.

Therefore, the experimental observation of the transitions at the LEPs is not merely a mathematical
curiosity; it carries significant physical implications.

7. Discussion and conclusions

We experimentally demonstrated how to engineer and tune a quantum process to approach and detect
quantum LEPs via quantum process tomography. We believe it is important to highlight here the following
aspects of our experiment in comparison to previous studies:

1. Numerous experimental studies on HEPs have been documented. However, to our knowledge, only four
experiments, reported in [21, 22, 48, 49], focus on LEPs. It is important to emphasize that, unlike HEPs,
LEPs account for the effect of quantum jumps [46]. As a result, LEPs represent true quantum phenomena,
whereas HEPs are semi-classical, although there are quantum systems in which LEPs and HEPs coincide.

2. For the first time, we experimentally demonstrated a system exhibiting LEPs without HEPs, thus
confirming the prediction made in [46] that such systems exist.

3. Furthermore, to our knowledge, we are the first to report experimental LEPs revealed through QPT.
Unlike QST, which reconstructs only quantum states, QPT allows for the complete reconstruction of
Liouvillians and their associated LEPs. Previous experimental observations of LEPs in quantum circuits
have relied on QST [20–22].

We note that QST is used to characterize the output state of a quantum processor by measuring the
output at various measurement bases assuming that identical states are input to the processor at each run
of the QST protocol. QPT on the other hand is used to characterize the map or the transformation that
the processor applies to any input state. Here, the processor is probed using different input states and
QST is performed at the output of the processor for each of these input states. Thus, QST helps
characterize the output state of a processor but does not tell the inner workings of the processor. QPT on
the other hand involves QST and is used to understand the inner workings of the processor.
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4. In previous experimental studies of LEPs [21, 22, 48, 49], a single qutrit was employed to simulate the
dissipative evolution of a qubit. In contrast, we use, in particular, two and three qubits on an IBMQ
processor to simulate the evolution of a single qubit, leading to a more complex system. We then
employed tomographic techniques to reconstruct the experimental Liouvillians and their LEPs using
both single- and two-qubit operations.

5. We acknowledge that there are experimental studies on QPT for single superconducting qubits (as
discussed below). However, these studies did not reveal any LEPs, as LEPs can only be observed with
specifically designed damping and/or amplification channels using precisely tuned parameters. In
contrast, our experiment utilized additional qubits to implement the desired damping channels, enabling
the observation of LEPs.

Let us emphasize again that QPT is a well-established method frequently applied to systems like
linear-optical setups and trapped ions. However, its applications in circuit QED systems have largely focused
on characterizing specific aspects of device performance, such as testing quantum gate fidelities (see, e.g. [79,
102, 103]). Consequently, QPT has often been replaced by other quantum characterization techniques,
including QST, gate set tomography, or randomized benchmarking (see, e.g. [104] and references therein).
Only in a few recent experiments with superconducting qubits, QPT (in generalized forms) has been
employed to fully characterize dissipative dynamics [80, 81]. Specifically, in [80], a refined QPT technique
known as Lindblad tomography was developed and used to reconstruct an idling channel, fully
characterizing the natural (non-engineered) noise of a superconducting quantum processor. In contrast, our
work applies QPT to fully characterize the dynamics of qubits with specifically engineered dissipation
channels. More importantly, to our knowledge, QPT has not been applied at EPs before. Various studies (see,
e.g. [105–112] and references therein) showed that noise at EPs can significantly increase, making it unclear,
prior to our experiment, whether reliable results could be obtained through QPT at these quantum
singularities not only on circuit-QED platform, but on any experimental platform. We have successfully
demonstrated that quantum LEPs can indeed be reliably and fully revealed experimentally via QPT.

While QPT enables complete identification and characterization of LEPs, it is not the only approach.
QPT can indeed be substituted by alternative approaches such as: (i) topological engineering through
encircling an LEP, (ii) Lindblad tomography, or (iii) Heisenberg–Langevin methods. (i) Topological
techniques are widely applied to reveal and characterize HEPs in classical physics (see, e.g. [113–115] and
references therein). Experimental observations of an LEP, which can be considered a form of topological
engineering, have been recently reported in [49], where the enhancement of a quantum Otto heat engine
through encircling an LEP was observed. In contrast, (ii) Lindblad tomography, which is a modified QPT
method introduced recently in [80], has yet to be employed for LEP identification. Finally, (iii) LEPs can also
be fully characterized using the Heisenberg–Langevin equations of motion, as studied theoretically in [62,
116–119], though these approaches for detecting LEPs in dissipative systems remain experimentally untested.

It is also notable that earlier LEP experimental demonstrations relied not only on reported experiments
but on preliminary trials that located these singularities and validated theoretical predictions. In our
approach, we reveal LEPs solely using the physical system, independent of a pre-existing theoretical model.
This process is illustrated in figure 3(b), where we first obtained experimental data and subsequently
developed and applied a theoretical simulation shown in figure 2(b).

LEPs are distinguished by both degenerate Liouvillian eigenvalues and coalescent eigenmatrices,
underscoring the usefulness of Liouvillian tomography in distinguishing LEPs from Liouvillian diabolical
points. Although an LEP can also be identified by measuring topological properties around it [49] (See also
topological methods developed for detecting HEPs, such as those discussed in [120] and references therein),
partial QPT is still highly beneficial. It aids in pinpointing a potential LEP, guiding optimal paths to encircle
and reveal its topological properties.

Regarding our experiments, the operations for all the experiments are automatically transpiled into a
sequence of single- and two-qubit gates, which were physically implemented on a given quantum processor.
The physical qubits were selected based on their quality and connectivity, which contribute to the optimal
performance of the quantum circuit. To suppress the noise even more, we have explored the state-of-the-art
noise-canceling techniques for quantum processors. While we applied experimentally various methods, we
found the dynamical decoupling technique to be the most useful. Various QPT methods, which are
equivalent under ideal measurement conditions, can be used for revealing LEPs as discussed in appendix C.
However, we observed that the least perturbed Liouvillians for our experimental data were obtained for the
QPT method described above (Method 1).

Our experiment and data postprocessing were specifically designed to reconstruct Liouvillian
(non-Hermitian) dynamics, not those of an NHH. However, the Hermitian Hamiltonian Ĥ and the quantum
jump operators {L̂µ}, and thus also the corresponding NHH for the studied system could, in principle, be
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determined using the above-mentioned Lindblad tomography, as demonstrated in a circuit-QED system in
[80]. Lindblad tomography is an adaptation of Liouvillian tomography (i.e. standard QPT), specifically
aimed at separately reconstructing the Lindbladian dissipators and Hamiltonian of a given process, rather
than directly reconstructing its full Liouvillian. This method relies on a series of pre- and post-pulses to
perform rotations needed to reconstruct a channel (or process) at each discrete time step, consistent with
standard QPT; and practically the same approach we employed in our experiments. The experimental data,
encompassing all combinations of pre- and post-pulses and channel durations, are then processed using a
classical optimizer based on maximum likelihood estimation, as detailed in [80]. This postprocessing step in
Lindblad tomography differs from standard QPT (i.e. Liouvillian tomography), including the approach we
followed, in that we did not apply this type of postprocessing for NHH reconstruction. This is because our
primary focus was on demonstrating LEPs, rather than experimentally verifying the absence of HEPs, which
we assumed. A strong agreement between the theoretical and experimentally reconstructed Liouvillians,
particularly for the single- and two-qubit circuits, also provides indirect validation of our assumption
regarding the form of the corresponding NHH and the absence of its HEPs.

We implemented our model using unitary gates, as only unitary operations can be executed on IBMQ.
However, the model can also be realized on different platforms, particularly in a linear-optical system. The
advantage of such systems is that damping channels can be directly applied to a single qubit, without the
need for auxiliary qubits to simulate dissipative evolution. Single- and two-qubit QPT methods can be
readily applied to linear-optical systems, where qubits are encoded in photon polarization. Moreover,
controllable damping channels can be implemented through various techniques (see, e.g. [82, 121] and
references therein), making it feasible to realize the current or alternative models exhibiting LEPs in
linear-optical systems. This approach could also enable a more precise reconstruction of the Liouvillian, due
to significantly lower noise levels of optical systems compared to circuit QED systems.

Regarding experimental feasibility beyond two or three qubits, we emphasize that the IBMQ processors
used in our experiments (specifically Nairobi and Oslo) were relatively noisy, which hindered our ability to
obtain clear evidence of LEPs with the three-qubit circuits for the studied model. The fidelity achieved was
much lower than that of single- and two-qubit circuits, as illustrated by comparing figure 3(a) with
figures 4(a) and (d). In contrast, quantum computing platforms based on trapped ions, such as those from
IonQ, Honeywell, or Alpine Quantum Technologies, generally exhibit significantly lower noise levels.
Therefore, implementing QPT to reveal and characterize LEPs in larger systems with more qubits appears
more feasible on such a platform.

For potential further applications of QPT in identifying LEPs or their generalizations, it is noteworthy
that Lin et al [122] has recently generalized the concept of quantum EPs fromMarkovian to non-Markovian
dynamics. Their approach utilizes exact methods for non-Markovian dynamics, specifically the pseudomode
equation of motion and hierarchical equations of motion (see, e.g. [123] and references therein). Both
methods rely on auxiliary degrees of freedom, which can be implemented through additional qubits or by
utilizing higher-energy levels in superconducting systems, such as transmons. These auxiliary systems
effectively increase the dimensionality of the superoperators being studied, while fundamentally allowing for
the application of QPT to identify quantum EPs in non-Markovian systems. The pseudomode approach is
particularly analogous to the standard Markovian master equation, possessing a Lindblad-type structure.
Thus, as proposed in [122], by defining an extended Liouvillian superoperator, non-Markovian EPs can be
characterized by the degeneracies in its complex spectrum. This framework appears well-suited for
experimentally generating EPs in non-Markovian systems and revealing them via QPT. Notably, there is no
fundamental distinction between applying QPT to the standard master equation and the generalized version
based on pseudomodes. The key difference lies in the use of additional auxiliary qubits and/or qudits to
simulate the desired non-Markovian dynamics. While there appears to be no fundamental obstacle to
applying a modified QPT for revealing LEPs in non-Markovian systems, at least within a few-qubit
framework, a more in-depth analysis is necessary to develop the specific details for implementing QPT of
experimentally simulated dynamics using IBMQ systems. Moreover, the challenge arises with the increased
noise associated with a larger number of qubits. Consequently, implementing such non-Markovian EPs on
IBMQ presents significant difficulties as we encounter in the present study. In contrast, utilizing a
trapped-ion quantum computer (as mentioned above) could provide a more favorable platform for realizing
these dynamics, given their lower experimental noise.

To highlight potential future studies on LEPs and underscore the importance of this work compared to
HEPs, it is worth noting that HEPs have already garnered significant interest for their unique topological and
other distinctive properties. This research into HEPs holds value not only for fundamental reasons, such as
studying novel types of quantum phase transitions, but also for potential advanced applications, including
quantum sensing. However, HEPs rely on a semi-classical dissipation model that omits quantum jumps,
potentially leading to fundamental issues, such as the preservation of canonical commutation relations. For
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small quantum systems, a correct dissipation model (at least without postselection on quantum trajectories)
must account for quantum jumps. Consequently, LEPs, as natural extensions of HEPs with proper inclusion
of quantum jumps, should be used in place of HEPs. Initial theoretical and experimental results of other
groups suggest that encircling an LEP could enhance the efficiency of quantum heat engines [48, 49]. While
further research is essential to establish their full potential for improving quantum sensing and the
performance of quantum heat engines when encircling LEPs in small quantum systems, we believe such
investigations are highly valuable. With future experimental investigations into LEP applications in mind, we
have demonstrated that QPT is a practical and effective tool for characterizing, verifying, and validating the
dynamics of few-qubit systems near LEPs through precise engineering and control of dissipation channels.

In discussing potential future work, it is worth mentioning LDPs. While LDPs are not the focus of the
current work, they can be uniquely revealed by QPT and their occurrence signals intriguing physical
phenomena, such as Liouvillian spectral collapse [60] predicted within the Scully-Lamb laser model. Note
that HEPs and LEPs for systems described by the Scully-Lamb model have also been predicted [30, 31], and
HEPs have even been observed [37, 38].

In summary, since their introduction five years ago, LEPs have garnered increasing interest. The majority
of LEP studies remain theoretical, with only five experimental demonstrations to date of LEPs (and only in
single qutrits) [20–22, 48, 49], underscoring the importance of experimental investigations in this field. We
believe our work not only presents the first observations of LEPs in one-, two-, and three-qubit systems but
also demonstrates the feasibility of process tomography as a universal method for detecting LEPs.
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Quantum Hub operated by the Poznań Supercomputing and Networking Center (PSNC). The views
expressed are those of the authors, and do not reflect the official policy or position of IBM or the IBM
Quantum team. This work was supported by the Polish National Science Centre (NCN) under the Maestro
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equivalent QPT methods.

Appendix A. Matrix representation of superoperators

To understand the basic idea of LEPs and their relation to QPT, we recall the matrix formalism of
superoperators which applies to Liouvillians. A general matrix Ô can be formally vectorized (or flattened)
with a function F as

Ô=
∑
m,n

Omn|m⟩⟨n| → |Õ⟩= F
(
Ô
)
=
∑
m,n

Omn|m⟩⊗ |n∗⟩, (A.1)

where ∗ denotes complex conjugate and, for clarity, flattened quantities are henceforth marked by tilde.
Thus, a single-qubit matrix ρ̂ can be flattened as

ρ̂=

[
ρ00 ρ01
ρ10 ρ11

]
−→ |ρ̃⟩= F (ρ̂) = [ρ00,ρ10,ρ01,ρ11]

T
, (A.2)

where T denotes transposition. The inverse function F−1(|ρ̃⟩) gives the standard form of the density matrix
ρ̂. Arbitrary right-hand-side (RHS) and left-hand-side (LHS) acting superoperators, say R[Ô1] and L[Ô1],
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can be represented by matrices R̃[Ô1] and L̃[Ô1], defined, respectively, as:

R̃
[
Ô1

]
|Õ⟩2 =

(
1N ⊗ ÔT

1

)
|Õ⟩2,

L̃
[
Ô1

]
|Õ⟩2 =

(
Ô1 ⊗1N

)
|Õ⟩2, (A.3)

where 1N is the identity operator of dimension N= size(Ô1). By applying this convention, the Liouvillian in
the Linblad master equation can be represented as

L̃=−i
(
Ĥ⊗1N −1N ⊗ ĤT

)
+
∑
n

Γ̂n ⊗ Γ̂∗
n −

1

2

(
Γ̂†
nΓ̂n ⊗1N −1N ⊗ Γ̂T

n Γ̂
∗
n

)
, (A.4)

or, equivalently,

L̃=−i
(
Ĥeff ⊗1N −1N ⊗ ĤT

eff

)
+
∑
n

Γ̂n ⊗ Γ̂∗
n , (A.5)

in terms of the effective Hamiltonian Ĥeff defined in equation (3). The last term in equation (A.5) represents
the effect of quantum jumps on the system evolution. And this effect can be decreased or even completely
removed by a proper postselection of quantum trajectories, as described by a hybrid Liouvillian
formalism [47].

Appendix B. Equivalent QPTmethods for finding exceptional points

LEPs can be calculated via the standard superoperator formalism as described in [46]. Here we consider three
methods of finding LEPs via QPT for a single qubit. The methods are equivalent assuming ideal
measurements.

B.1. Method 1
From an experimental point of view, it is convenient to determine LEPs via the QPT based on 6× 6
projectors, i.e. assuming that the input and output states (projections) are the eigenstates of all the Pauli
operators (i, j = x+,x−,y+,y−,z+,z−):

|ini⟩, |outj⟩ ∈ {|x+⟩, |x−⟩, |y+⟩, |y−⟩, |z+⟩, |z−⟩} , (B.1)

where |x±⟩= 1√
2
(|0⟩± |1⟩) , |y±⟩= 1√

2
(|0⟩∓ i|1⟩), |z+⟩ ≡ |0⟩, and |z−⟩ ≡ |1⟩. These are arguably the most

popular projectors used for QST and QPT of photon polarization qubits, but can also be applied to
transmon qubits. Thus, for an amplified-dissipative process, described by the Lindblad master equation with
a given Liouvillian L, one can measure all its elements

L ′
ij = ⟨outj|L(ρ̂= |ini⟩⟨ini|) |outj⟩, (B.2)

and, thus, we can reconstruct the 6× 6 transformation matrix L′, which represents L.

B.2. Method 2
LEPs can also be calculated via the QPT for all the Pauli operators (k= x,y,z), i.e.

σ̂k = |k+⟩⟨k+| − |k−⟩⟨k−|, (B.3)

σ̂0 = |z+⟩⟨z+|+ |z−⟩⟨z−|= 1, (B.4)

which can be obtained via the projections on their eigenstates, given in equation (B.1). Thus, by measuring
all the elements (m,n= 0, . . .,3):

L ′ ′
mn =

1

2
tr [L(σ̂m) σ̂n] , (B.5)

where σ̂1 ≡ σ̂x, σ̂y ≡ σ̂2, and σ̂3 ≡ σ̂z, we can reconstruct the 4× 4 Liouvillian matrix L′′ representing L.
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B.3. Method 3
Formally the simplest approach to find LEPs is via the QPT based on the following 4× 4 non-Hermitian
input/output projectors (k, l= 1, . . .,4):

ρ̂in,k, ρ̂out,l ∈ {|0⟩⟨0|, |0⟩⟨1|, |1⟩⟨0|, |1⟩⟨1|} . (B.6)

By measuring all the elements

Lkl = tr
[
L(ρ̂in,k)

†
ρ̂out,l

]
, (B.7)

one can reconstruct the 4× 4 transformation matrix L, which represents L. The method, although formally
straightforward, is usually experimentally challenging, and it is not applied here.

Appendix C. Equivalence of Methods 1, 2, and 3 under ideal experimental conditions

Here we briefly demonstrate that all the Liouvillian matrices L, L′, and L′′ have the same eigenspectra (up to
trivial zero values). It means that the exceptional points corresponding to the nonzero eigenvalues of L, L′,
and L′′ are of the same order. More details on this equivalence are given in Supplement 1.

The spectral decomposition of L reads L= UAV, where A is a diagonal matrix of the singular values of L
and the matrices U and V are unitary matrices constructed from the left and right eigenmatrices. It can be
verified via direct calculations and using the linearity of the Liouvillians L and L′′ that L= U ′ ′L ′ ′(U ′ ′)†,
where the respective unitary matrix reads

U ′ ′ =
1√
2


1 0 0 1
0 1 −i 0
0 1 i 0
1 0 0 −1

 . (C.1)

Hence,

L ′ ′ =
[
(U ′ ′)

†
U
]
A [VU ′ ′] = (U ′ ′)

†
LU ′ ′ (C.2)

is a spectral decomposition of L′′ with the same eigenspectrum as L given by A, but with in general different
left and right eigenmatrices given by unitary matrices (U ′ ′)†U and V(V ′ ′)†. Similarly, we can write the
transformation

L ′ ′ = U ′L ′ (U ′)
T
, (C.3)

where

U ′ =
1√
2


1 1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1
1 −1 0 0 0 0

 . (C.4)

We note that UT and (U ′)T are the respective pseudoinverse matrices to U and U ′, respectively. In
Supplement 1, by deriving and applying the unitary version of U ′, we demonstrate that L′′ and L′ have equal
ranks. We also demonstrate that L′′ and L′ have the same nontrivial eigenvalues. Thus, up to the two trivial
eigenvalues of L′, the spectra of L, L′, and L′′ coincide. This is confirmed by our numerical calculations.

Thus, we have demonstrated that the three methods are formally equivalent, assuming perfect
measurements. However, it is important to stress that under realistic measurement conditions, the methods
usually lead to slightly different reconstructions of Liouvillians and their LEPs. Analogously, different QST
methods, which are formally equivalent under perfect measurement conditions, become inequivalent in
realistic situations. Consequently, this leads to varying reconstructions of experimental density matrices (for
comparative studies of QST methods based on their condition numbers see [125–128]).
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Appendix D. Estimation of errors in the eigenspectra of experimental Liouvillians

Here, we estimate, based on the derivation of [101], how much experimental (or numerical) perturbations
can affect the eigenspectra of an Liouvillian superoperator. Let us consider an experimental Liouvillian Lexp,
with the eigenspectra,

Lexp|ρ̃expn ⟩= λexpn |ρ̃expn ⟩,
⟨σ̃exp

n |Lexp = λexpn ⟨σ̃exp
n |, (D.1)

which slightly differ from the spectra of an ideal Liouvillian L0,

L0|ρ̃(0)n ⟩= λ(0)n |ρ̃(0)n ⟩,

⟨σ̃(0)
n |L0 = λ(0)n ⟨σ̃(0)

n |. (D.2)

So, one can write

Lexp = L0 + δL, (D.3)

assuming that δL is a small perturbation. Note that the completeness relation,
∑

n |ρ̃
(0)
n ⟩⟨σ̃(0)

n |= 14, and the

orthonormality condition, ⟨σ̃(0)
n |ρ̃(0)m ⟩= δnm, are satisfied for L0, and analogously for the corresponding

eigenmatrices of Lexp. Thus, if the Liouvillians are diagonalizable (i.e. apart from their LEPs), we have

f(L0) =
∑
i

f
(
λ
(0)
i

)
|ρ̃(0)i ⟩⟨σ̃(0)

i |, (D.4)

f(Lexp) =
∑
i

f
(
λ
exp
i

)
|ρ̃expi ⟩⟨σ̃exp

i |, (D.5)

for any well-behaved functions f of the Liouvillians. Assuming small perturbations in L and in related
quantities, we consider their power-series expansions:

Lexp = L0 + ϵL1 + . . . ,

λexpn = λ(0)n + ϵλ(1)n + . . . ,

|ρ̃expn ⟩= |ρ̃(0)n ⟩+ ϵ|ρ̃(1)n ⟩+ . . . ,

⟨σ̃exp
n |= ⟨σ̃(0)

n |+ ϵ⟨σ̃(1)
n |+ . . . , (D.6)

in some perturbation parameter ϵ. For simplicity, hereafter, we omit all the terms with higher powers of ϵ. So,
we can assume that δL≈ ϵL1. By inserting these expansions into equation (D.1), one instantly obtains
equation (D.2) for all the terms independent of ϵ. Moreover, by collecting all the terms proportional to ϵ in
these equations, one obtains:

F(0)n |ρ̃(1)n ⟩=−F(1)n |̃ρ(0)n ⟩, (D.7)

⟨σ̃(1)
n |F(0)n =−F(1)n ⟨σ̃(0)

n |, (D.8)

where F(k)n = Lk −λ
(k)
n 14 for k= 0,1. Multiplying equation (D.7) by ⟨σ̃n| from the LHS, one obtains

λ
(1)
n = ⟨σ̃(0)

n |L1|ρ̃(0)n ⟩, or, equivalently,

δλ≡ λexpn −λ(0)n ≈ ϵλ(1)n = ⟨σ̃(0)
n |(ϵL1) |ρ̃(0)n ⟩

≈ ⟨σ̃(0)
n |δL|ρ̃(0)n ⟩. (D.9)

By applying equation (D.4), with f(L0) = F(0)n , to equation (D.7), one obtains

|ρ̃(1)n ⟩ ≈ −
∑

i (i̸=n)

(
⟨σ̃(0)

i |L1|ρ̃(0)n ⟩
λ
(0)
i −λ

(0)
n

)
|ρ̃(0)i ⟩, (D.10)

which leads to

|δρ̃n⟩ ≡ |ρ̃expn ⟩− |ρ̃(0)n ⟩ ≈ |δρ̃(1)n ⟩= ϵ|ρ̃(1)n ⟩. (D.11)
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Figure D1. Overlaps O12 = |⟨σ̃1|ρ̃2⟩| of the Liouvillian vectorized eigenmatrices ⟨σ̃1| and |ρ̃2⟩measured in our single- (a) and
two- (b) qubit experiments on an IBMQ processor (blue squares) and compared to the corresponding theoretical predictions
including white noise (black curves). Same as figure 4, but the error bars δŌexp

12 are given here by equation (D.15).

Analogously, by using equation (D.8), one arrives at

⟨σ̃(1)
n |=−

∑
i (i̸=n)

(
⟨σ̃(0)

n |L1|ρ̃(0)i ⟩
λ
(0)
i −λ

(0)
n

)
⟨σ̃(0)

i |, (D.12)

which leads to

⟨δσ̃n| ≡ ⟨δσ̃exp
n | − ⟨δσ̃(0)

n | ≈ ⟨δσ̃(1)
n | ≡ ϵ⟨σ̃(1)

n |, (D.13)

as derived in [101].
Thus, the error bars Oexp

12 of the scalar products (overlaps) Oexp
12 = |⟨σ̃exp

1 |ρ̃exp2 ⟩| of the experimental
eigenmatrices ⟨σ̃exp

1 | and |ρ̃exp1 ⟩, which are shown in figure 4, are obtained as

δOexp
12 =

∣∣⟨σ̃exp
1 |ρ̃exp2 ⟩− ⟨σ̃(0)

1 |ρ̃(0)2 ⟩
∣∣

=
∣∣⟨δσ̃1|ρ̃(0)2 ⟩+ ⟨σ̃(0)

1 |δρ̃2⟩+ ⟨δσ̃1|δρ̃2⟩
∣∣. (D.14)

Note that these error bars are affected by the phase factors from the overlaps, which can be arbitrary and
depend on the applied diagonalization method. Thus, to avoid this phase dependence, one can redefine
δOexp

12 as

δŌexp
12 =

[∣∣⟨δσ̃1|ρ̃(0)2 ⟩
∣∣2 + ∣∣⟨σ̃(0)

1 |δρ̃2⟩
∣∣2 + ∣∣⟨δσ̃1|δρ̃2⟩∣∣2]1/2 . (D.15)

These error bars are depicted in figure D1, and can be compared with those in figure 4. Note that the point at
γx = 0 in figure 4(f) is fully consistent with our theoretical prediction using this redefined error bar, δS̄exp,
but it is not the case for δSexp.

Appendix E. Estimation of errors in γ/ω

In our experiments, we intended to prepare quantum circuits to be initially in pure states |ψ(γ)⟩, where the
dependence on γ is given by the simulated quantum model. However, due to random errors, the prepared
states are not exactly the intended pure states. Instead, we observe that the curves associated with the
prepared input states fit the experimental data best if we assume the input state to be

ρ= (1−w) |ψ (γ)⟩⟨ψ (γ) |+ w

d
1d, (E.1)

where d is the dimension of the Hilbert space and w stands for the level of white noise. On the other hand,
there are infinitely many ways to decompose unity or to express the noisy input ρ in a way that is compatible
with our observations. In particular, for a given γ, the associated noisy state ρ can be expressed as

ρ=

ˆ γ+γR

γ−γL

p(γ+ γ ′) |ψ (γ+ γ ′)⟩⟨ψ (γ+ γ ′) |dγ ′, (E.2)
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where p(γ) is a semipositive function defined on [γ− γL,γ+ γR], such that ρ is normalized. To simplify the
notation, let us set γ= 0 and ω= 1 in our model. Both expressions for ρ should result in the same fidelity
with respect to the target input state |ψ(γ)⟩, i.e.

ˆ γR

−γL

P(γ ′) |⟨ψ (γ) |ψ (γ ′)⟩|2dγ ′ = 1−w(1− 1/d) . (E.3)

Assume the integrand vanish for γ ⩾ γR and γ ⩽ γL:

p(γ ′) |⟨ψ (γ) |ψ (γ ′)⟩|2 = 0 ⇒ p(γR) = p(−γL) = 0. (E.4)

Let p(γ) reach its maximum at γ = 0, which can be interpreted as preparing the target state with a maximum
likelihood. If we assume that p is a triangular distribution, we arrive at

ˆ 0

−γL

(aLγ
′ + b) |⟨ψ (γ) |ψ (γ ′)⟩|2dγ ′ +

ˆ γR

0
(aRγ

′ + b) |ψ (γ ′)⟩|2dγ ′ = 1−w(1− 1/d) , (E.5)

where aL = b/γL, aR =−b/γR, and P(0) = b.We find b from the normalization condition and γL,R are
found numerically from

b

ˆ γR

−γL

|⟨ψ (γ) |ψ (γ ′)⟩|2dγ ′ +

ˆ 0

−γL

aL|⟨ψ (γ) |ψ (γ ′)⟩|2γ ′dγ ′

+

ˆ γR

0
aR|⟨ψ (γ) |ψ (γ ′)⟩|2γ ′dγ ′ = 1−w(1− 1/d) . (E.6)

In this way, we estimated the maximum uncertainty in setting γ. In general, we end up with γL ̸= γR, which
corresponds to asymmetric uncertainties. We estimate the left and right uncertainties (error bars for γ),
respectively, as for two independent triangular distributions to be PLγL/

√
6 and PRγR/

√
6 [129], where

PL =

ˆ 0

−γL

p(γ ′)dγ ′ and PR =

ˆ γR

0
p(γ ′)dγ ′. (E.7)

Appendix F. Analytical formulas for the lossy driven qubit

Here we show analytical results on the QPT of the lossy driven qubit model analyzed in section 3.
Case 1: Assuming γ− = 0, we have

L ′ =
ω

4



−4 4 −1 1 0 0
4 −4 1 −1 0 0
1 −1 −2x 2x 0 0
−1 1 2x −2x 0 0
0 0 0 0 −y2 y2
0 0 0 0 y2 −y2

 , (F.1)

where x= γ/ω and yk = 2(x+ k). The eigenvalues of L′ are:

λ ′
1 =−2ω (2+ x) ,

λ ′
2 =−ω (2+ x− z) ,

λ ′
3 =−ω (2+ x+ z) , (F.2)

where z=
√
x2 − 4x+ 3, while the other three eigenvalues are zero. The corresponding eigenmatrices are:

|ρ̃ ′
1⟩= [0,0,0,0,−1,1]T ,

|ρ̃ ′
2⟩= [2− x− z,−2+ x+ z,−1,1,0,0]T ,

|ρ̃ ′
3⟩= [2− x+ z,−2+ x− z,−1,1,0,0]T . (F.3)

Analogously, we find

L ′ ′ = ω


0 0 0 0
0 −4 −1 0
0 1 −2x 0
0 0 0 −y2

 , (F.4)
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for which the nonzero eigenvalues of L′′ are the same as those of L′: λ ′
k = λ ′ ′

k (k= 1,2,3), but their
eigenmatrices:

|ρ̃ ′ ′
1 ⟩= [0,0,0,1]T ,

|ρ̃ ′ ′
2 ⟩= [0,−2+ x+ z,1,0]T ,

|ρ̃ ′ ′
3 ⟩= [0,−2+ x− z,1,0]T , (F.5)

are, in general, different from those of the corresponding ρ ′
k.

Case 2: Assuming γ− = ω, we have

L ′ =
ω

4



−9 9 −2 2 2 −2
9 −9 2 −2 2 −2
2 −2 −4x− 1 4x+ 1 2 −2
−2 2 4x+ 1 −4x− 1 2 −2
0 0 0 0 −2y2 2y2
0 0 0 0 2y3 −2y3

 , (F.6)

having the nonzero eigenvalues equal to:

λ ′
1 =−ω (2x+ 5) ,

λ ′
2 =−ω

2
(2x+ 5+ 2z) ,

λ ′
3 =−ω

2
(2x+ 5− 2z) , (F.7)

and the corresponding eigenmatrices:

|ρ̃ ′
1⟩=

[
x̄, x̄, x̄, x̄,−

(
x+ 3

x+ 2

)
,1

]T
,

|ρ̃ ′
2⟩= [2− x− z,−2+ x+ z,−1,1,0,0]T ,

|ρ̃ ′
3⟩= [2− x+ z,−2+ x− z,−1,1,0,0]T , (F.8)

where x̄=−1/[2(x+ 2)]. Analogously, we find

L ′ ′ =
ω

2


0 0 −2 0
0 −4x− 1 0 2
0 0 −4x− 10 0
0 −2 0 −9

 . (F.9)

As in Case 1, the nonzero eigenvalues of L′′ are the same as those of L′: λ ′
k = λ ′ ′

k (k= 1,2,3), but their
eigenmatrices are different as given by:

|ρ̃ ′ ′
1 ⟩=

[
1

2x+ 5
,0,1,1

]T
,

|ρ̃ ′ ′
2 ⟩= [0,−2+ x+ z,0,1]T ,

|ρ̃ ′ ′
3 ⟩= [0,−2+ x− z,0,1]T . (F.10)

Appendix G. Measurement times

Here we provide estimates for the total measurement times for the different circuits.

1. For the experiments using the single-qubit circuit: The number of experiments per data point was 72, the
number of shots per experiment was 20 000, and the time per shot was 5.7× 10−6 s. Thus, total number
of shots was Ntotal = 72experiments× 20000shots= 1440000shots and the total measurement time was
ttotal = 1440000shots× 5.7× 10−6 s≈ 8.208s.

2. For the experiments using the two-qubit circuit (shown in figure 1(b)): The number of experiments per
data point was 36, the number of shots per experiment was 20 000, and the time per shot was
6.5× 10−6 s. Thus, the total number of shots was Ntotal = 36experiments× 20000shots= 720000shots
and the total measurement time was ttotal = 720000shots× 6.5× 10−6 s≈ 4.68s
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3. For the experiments using the three-qubit circuit (shown in figure 1(a)): the number of experiments per
data point was 18 and we performed 20 000 shots per experiment with the time per shot about
8.9× 10−6s. Thus, the total number of shots is given by
Ntotal = 18experiments× 20000shots= 360000shots, and the total measurement time was
ttotal = 360000shots× 8.9× 10−6 s≈ 3.204s.

In summary, the estimated total measurement times are approximately: 8.21 s, 4.68 s, and 3.20 s for our
experiments using the single-, two-, and three-qubit circuits, respectively.

The same information can be expressed in the required numbers of the quantum processor cycles. Here,
we denote a single quantum processor cycle as τ, instead of standard dt, to distinguish this time from the
time scale of the studied dynamics. In our experiments τ = 0.2222ns. A single readout takes 2552 cycles,
which accumulates to 0.11s per experiment. Including the measurement time, the execution times of our
quantum circuits are: 26× 103τ , 29× 103τ, and 40× 103τ for the single-, two- and three-qubit experiments,
respectively.

Note that an additional approx. 1–2 s per experiment was required for readout mitigation. This time was
allocated for applying dynamical decoupling (similar to the spin-echo method commonly used in NMR) and
calibrating signals to account for detector imperfections. This added approximately 72 s for the single-qubit
experiments, 36 s for the two-qubit experiments, and 18 s for the three-qubit experiments.
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