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Abstract: We propose how to achieve chiral photon blockade by spinning a nonlinear optical
resonator. We show that by driving such a device at a fixed direction, completely different
quantum effects can emerge for the counter-propagating optical modes, due to the spinning-
induced breaking of time-reversal symmetry, which otherwise is unattainable for the same device
in the static regime. Also, we find that in comparison with the static case, robust non-classical
correlations against random backscattering losses can be achieved for such a quantum chiral
system. Our work, extending previous works on the spontaneous breaking of optical chiral
symmetry from the classical to purely quantum regimes, can stimulate more efforts towards
making and utilizing various chiral quantum effects, including applications for chiral quantum
networks or noise-tolerant quantum sensors.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Chirality, a mirror symmetry widely existing in nature, plays an essential role in modern science
and technology [1]. In particular, optical chirality can serve as a unique degree of freedom to
engineer light-matter interactions, allowing for applications in e.g., unidirectional-microlasers
[2–4], exceptional single-photon emissions [5–9], and enhanced optical gyroscopes [10,11]
or nanoparticle sensors [12,13]. In a recent experiment, the spontaneous breaking of chiral
symmetry in the classical domain, characterized by a transition from symmetric bidirectional
optical transmissions to a one-way optical flow, was demonstrated by driving a nonlinear resonator
beyond a critical point of a pump power [14]. Besides, the chiral absorption via backscattering can
be achieved experimentally by adjusting the phase difference of two counterpropagating driving
fields in a single resonator [15]. Other ways to achieve classical optical chiral effects include e.g.,
inducing non-Hermitian phase transitions [2] or exploiting optical spin-orbit coupling [16–19].
However, the possible emergence of highly asymmetric quantum optical correlations in a single
nonlinear resonator, as far as we know, has not been explored till now, hindering its potential
applications in chiral quantum engineering.

Here we propose how to achieve chiral photon blockade by spinning a nonlinear optical
resonator. We note that in a very recent experiment, nonreciprocal propagation of light with
99.6% isolation was realized by spinning a purely optical resonator [20]. The merits of such
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a spinning device include: continuous tunability, the absence of a power threshold, and easy
extension to the quantum domain. Based on spinning systems, nonreciprocal quantum effects
i.e., distinct quantum correlations exhibited for output lights when driving the same system from
opposite directions, were predicted and soon experimentally confirmed with different systems
[21–26]. Similar spinning techniques were also used to achieve analog thermal materials [27],
quantum droplets [28], and adaptive thermal cloaking [29]. However, these works mainly focused
on nonreciprocal effects featuring different directions of incident light on the same device, without
exploring the exotic possibility to achieve quantum chiral effects for a fixed input light.

Specifically, we consider a spinning Kerr resonator and reveal the possibility of achieving chiral
photon blockade. We find that by increasing the angular velocity, optical chirality can emerge
not only for classical optical mean numbers of the opposite propagating modes, but also for their
quantum correlations. As a result, highly asymmetric photon blockade, a purely quantum effect
[30–36], can emerge only for one mode but not for the other one. Also, we find that robustness
against random losses and even a coherent switch of photon blockade can be achieved for such a
quantum chiral system, by tuning its angular velocity. Our work indicates that experimentally
accessible chiral devices cannot only be used to control classical transmission of light, but also
serve as a powerful tool to achieve and manipulate quantum chiral effects, with applications in
chiral quantum networks [37–40] and backscattering-immune multi-photon blockade [41–43].

2. Physical system

In recent experiments, spinning devices have been used to realize directional heat flow [27,44],
resonator gyroscope [45], and sound isolators [46,47]. Particularly, an optical diode with 99.6%
isolation was demonstrated by spinning an optical resonator [20], without relying on any magnetic
materials or complex structures. Spinning systems have been used to predict nonreciprocal
quantum correlation effects [21,22], which were then demonstrated with a solid-state device [25]
and a cavity QED system [24] in very recent experiments. However, the novel possibility of
achieving quantum chiral effects for a fixed input light by utilizing such a spinning scheme, as far
as we know, has not been explored.

As shown in Fig. 1(a), we consider a spinning whispering-gallery-mode (WGM) resonator
with a Kerr-type optical nonlinearity. The WGM can resonator support two counterpropagating
optical modes, i.e., the clockwise (CW) and counterclockwise (CCW) modes, which are basically
degenerate. However, any non-ideality of the WGM resonator, such as surface roughness or
material inhomogeneity, can couple the CW and CCW modes with strength J and lift their
degeneracy due to the optical backscattering effect, which is unavoidable due to manufacturing
limitations [48–51]. For a low-quality (Q) WGM resonator, optical backscattering usually leads to
a broadened linewidth of the spectral response. On the other hand, for a high-Q WGM resonator,
there is a visible frequency splitting introduced to the transmission spectra [52]. When the WGM
resonator of a radius R rotates at an angular velocity Ω, the light circulating in this resonator
experiences a Sagnac-Fizeau shift, i.e., ωc → ωc + ∆sag, with [53]

∆sag = ±
n1RΩωc

c

(︄
1 −

1
n2

1
−
λ

n1

dn1
dλ

)︄
, (1)

where ωc is the optical resonance frequency for the static case, c (λ) is the speed (wavelength)
of light in vacuum, and n1 is the linear refractive index of the material. The dispersion term
dn1/dλ, characterizing the relativistic origin of the Sagnac effect, is relatively small in typical
materials (∼ 1%) [20,53]. By fixing the CCW rotation of the resonator, hence ∆sag>0 (∆sag<0)
corresponds to a Sagnac-Fizeau shift of the CW (CCW) mode, i.e., ωcw,ccw = ωc ±

|︁|︁∆sag
|︁|︁, as

shown in Fig. 1(a). In the rotating frame at the pump frequency ωl, the Hamiltonian of the
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spinning system, with a driving field input from the CW direction, read (ℏ = 1) [21,22,54]

Ĥ =
(︁
∆0 + |∆sag |

)︁
â†cwâcw +

(︁
∆0 − |∆sag |

)︁
â†ccwâccw

+ J
(︂
â†cwâccw + â†ccwâcw

)︂
+ χ

(︂
â†2

cwâ2
cw + â†2

ccwâ2
ccw

)︂
+ 2χâ†cwâcwâ†ccwâccw + ξ

(︂
â†cw + âcw

)︂
,

(2)

where ∆0 = ωc −ωl is the optical detuning between the cavity field and the driving field, acw (a†cw)
and accw (a†ccw ) are the annihilation (creation) operators of the CW and CCW modes, respectively.
The Kerr parameter is χ = ℏω2

ccn2/n2
1Veff , where n2 is the nonlinear refractive index of material,

Veff is the effective mode volume of the resonator. The Hamiltonian in Eq. (2) contains both
self-Kerr and cross-Kerr interaction terms. ξ =

√︁
γPin/ℏωl is the driving amplitude with a cavity

loss rate γ and a driving power Pin.
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Fig. 1. Spinning-induced optical chirality in a resonator with backscattering. (a) A Kerr-type
nonlinearity optical resonator with backscattering spinning along the CCW direction at an
angular velocityΩ. Moreover, imperfections of devices, such as surface roughness or material
defects, can cause optical backscattering, as effectively described by the mode-coupling
strength J between the CW and CCW modes. The Sagnac-Fizeau shift ∆sag versus Ω. By
fixing the rotation of the resonator, ∆sag>0 (∆sag<0) corresponds to the Sagnac-Fizeau shift
of the CW (CCW) mode. (b) The cavity excitation spectra Sj=cw,ccw in the breaking of
optical chiral symmetry can be observed by tuning various values of Ω. The parameters are
given in the second section of the main text. Specifically, in our simulations, we have chosen
the values J/γ = 2, χ/γ = 9.5, ξ/γ = 0.25.

First, we analyze the cavity excitation spectra,

Sj (∆0) =
Nj

n0
=

⟨â†j âj⟩

n0
, (j = cw, ccw) , (3)

where n0 = 4 ξ2/γ2 is the normalization factor. The cavity excitation spectra Sj (∆0) are the
rescaled intracavity photon numbers Nj = ⟨â†j âj⟩, which can be obtained by solving the Lindblad
master equation [55,56]

̇̂ρ = −i
[︁
Ĥ, ρ̂

]︁
+

∑︂
j

γ

2

(︂
2âj ρ̂â†j − âjâ†j ρ̂ − ρ̂âjâ†j

)︂
, (4)

where ρ̂ is the reduced density matrix of the system, ρss is steady-state solutions of the master
equation. In our calculations, the experimentally accessible parameters are given by [57–62]:
λ = 1550 nm, Q = 5 × 109, Veff = 310 µm3, n1 = 1.4, n2 = 3 × 10−14 m2/W, Pin = 2 fW,
R = 30 µm. Notably, Veff is typically 102 − 104 µm3 [58,59], and Q is typically 109 − 1012
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[60,61] for the WGM resonator. Also, we have used the dimensionless parameters χ/γ = 9.5 and
ξ/γ = 0.25. In addition, we have set J/γ = 2, which is well within the experimental feasibility.
In fact, a recent experiment [63] shows that such backscattering-induced mode coupling strength
can reach up to about 31.5 MHz, corresponding to J/γ ∼ 15.

For the static case (Ω = 0), we can observe a symmetry split resonance in the excitation
spectrum [i.e., max(Scw) = max(Sccw) = 0.21], where the field intensity distributions of the CW
and CCW modes are in balance [Fig. 1(b)]. In contrast, for the spinning case (Ω ≠ 0), such field
intensity distributions of Scw and Sccw are no longer equal, indicating that the split resonance
becomes asymmetric and the chiral symmetry is broken. By further increasing Ω, it is seen that
the excitation spectra of the CW mode Scw is characterized by a pronounced resonance peak
[max(Scw) = 0.65], whereas such peak almost vanishes for the CCW mode [max(Sccw) = 0.01].
Essentially, with the increase of the angular velocity, the frequency difference between the CW
and CCW modes is simultaneously amplified, thus diminishing the coupling between these
modes. As a result, the photons that scatter from the CW mode to the CCW mode induced by
the mode coupling tend to be suppressed when the WGM resonator spins faster, which leads
to the asymmetric split resonance. This asymmetric internal field distribution is the defining
hallmark of the chiral modes [2,14]. Similarly, when fixing the CCW rotation of the resonator
and applying the drive field input from the CCW direction, the chiral-symmetry breaking can
still be observed in the cavity excitation spectra.

3. Photon blockade effect

Now, we further extend our research to a quantum regime, i.e., exploring the influence of such
chirality on the photon blockade (PB) effect. The quantum feature of the light can be characterized
by the µth-order correlation function g(µ) (0) =

⟨︁
â†µâµ

⟩︁
/
⟨︁
â†â

⟩︁µ, where the average value is
taken over the steady state of the system. Under the weak-driving condition, the mean photon
number is much less than 1. Based on this, the condition g(2) (0)<1 defining the sub-Poissonian
photon-number statistics characterizes also single-PB (1PB), i.e., blockade of the subsequent
photons by absorbing the first one [64,65]. Similarly, two-PB (2PB) fulfills the conditions
g(3) (0)<1 and g(2) (0)>1 [41]. For photon-induced tunneling (PIT), the absorption of the first
photon favors also that of the second and subsequent photons, and it fulfills the conditions
g(µ≥2) (0)>1 corresponding to super-Poissonian photon-number statistics [66]. The correlation
function can be calculated numerically by solving the quantum master equation [Eq. (4)].

In addition, we can use the effective Hamiltonian method to describe the evolution of the
system. Here the evolution of the system is governed by the non-Hermitian Hamiltonian which is
formed by adding phenomenologically the imaginary dissipation terms into Hamiltonian [Eq. (2)]
as follows [67,68]

Ĥeff = Ĥ − i
γ

2

(︂
â†cwâcw + â†ccwâccw

)︂
. (5)

Under the weak-driving condition (ξ/γ ≪ 1), the Hilbert space can be restricted within a
subspace with few photons. In the subspace with N = m + n = 3 excitations, a general state of
the system can be expressed as

|ψ(t)⟩ =
3∑︂

N=0

N∑︂
m=0

Cm,N−m |m, N − m⟩, (6)

where Cmn (t) are the probability amplitudes corresponding to the bare states |m, n⟩. We substitute
the above general state and the Hamiltonian given in Eq. (5) into the Schrödinger equation
i|ψ̇ (t)⟩ = Ĥeff |ψ (t)⟩. In the weak-driving regime, we can approximate the probability amplitudes
of the excitations as Cm,N−m ∼ (ξ/γ)N . By using a perturbation method and discarding higher-
order terms in each equation for lower-order variables [69], we obtain the following equations of
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motion for the probability amplitudes:

iĊ10 (t) = ∆1C10 (t) + JC01 (t) + ξC00 (t) ,
iĊ01 (t) = ∆2C01 (t) + JC10 (t) ,

iĊ20 (t) = ∆3C20 (t) +
√

2JC11 (t) +
√

2ξC10 (t) ,

iĊ11 (t) = ∆4C11 (t) +
√

2JC20 (t) +
√

2JC02 (t) + ξC01 (t) ,

iĊ02 (t) = ∆5C02 (t) +
√

2JC11 (t) ,

iĊ30 (t) = ∆6C30 (t) +
√

3JC21 (t) +
√

3ξC20 (t) ,

iĊ21 (t) = ∆7C21 (t) +
√

3JC30 (t) + 2JC12 (t) +
√

2ξC11 (t) ,

iĊ12 (t) = ∆8C12 (t) + 2JC21 (t) +
√

3JC03 (t) + ξC02 (t) ,

iĊ03 (t) = ∆9C03 (t) +
√

3JC12 (t) ,

(7)

where
∆1 = ∆0 + ∆sag − iγ/2, ∆2 = ∆0 − ∆sag − iγ/2, ∆3 = 2 (∆1 + χ) ,
∆4 = ∆1 + ∆2 + 2χ, ∆5 = 2 (∆2 + χ) , ∆6 = 3 (∆1 + 2χ) ,
∆7 = 2∆1 + ∆2 + 6χ, ∆8 = ∆1 + 2∆2 + 6χ, ∆9 = 3 [∆2 + 2χ] .

(8)

By considering infinite-time limit condition (t → ∞), the steady-state solutions of the
probability amplitudes can be obtained

C10 = −
ξ∆2
η1

, C01 =
Jξ
η1

, C20 =
−
√

2ξ (η3C10 − J∆5C01)

ς1
,

C11 =
∆5ξ (2JC10 − ∆3C01)

ς1
, C02 =

√
2Jξ (∆3C01 − 2JC10)

ς1
,

C30 =
√

3ξ
−

(︁
η5∆7 − 4J2∆9

)︁
C20 +

√
2Jη5C11 − 2J2∆9C02

ς2
,

C21 = ξ
3Jη5C20 −

√
2η5∆6C11 + 2J∆6∆9C02

ς2
,

C12 = ξ∆9
−6J2C20 + 2

√
2J∆6C11 − η4C02
ς2

,

C03 =
√

3ξJ
6J2C20 − 2

√
2J∆6C11 + η4C02
ς2

,

(9)

where η1 = ∆1∆2 − J2, η2 = ∆3∆4 − 2J2, η3 = ∆4∆5 − 2J2, η4 = ∆6∆7 − 3J2, η5 = ∆8∆9 − 3J2,
ς1 = ∆5η2 − 2J2∆3, ς2 = η4η5 − 4J2∆6∆9. The probabilities of finding m particles in the CW
mode and n particles in the CCW mode are given by

Pmn = |Cmn |
2 . (10)

Based on this, we can finally derive the results for the second-order correlation functions:

g(2)cw (0) ≃
2P20

P2
10
= 4

|︁|︁|︁|︁|︁η1
∆2∆4∆5 + 2J2 χ

ς1∆
2
2

|︁|︁|︁|︁|︁2 , (11)

g(2)ccw (0) ≃
2P02

P2
01
= 16

|︁|︁|︁|︁η1J2 (∆4 − χ)

ς1J2

|︁|︁|︁|︁2 . (12)
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In the absence of optical backscattering (J = 0), the second-order correlation function [as done
in Eq. (11)] of CW mode can be approximately written as

g(2)cw (0) ≃
(︁
∆0 + ∆sag

)︁2
+ γ2/4(︁

∆0 + ∆sag + χ
)︁2
+ γ2/4

, (13)

which is consistent with a single-mode spinning resonator [21], as shown in the Fig. 3(b). While
for the CCW mode, the g(2)ccw (0) in Eq. (12) is meaningless due to P02 = 0 and P01 = 0.

In Fig. 2, we plot g(2)cw (0) and g(2)ccw (0) as a function of the optical detuning ∆0 for the static
case and the spinning case, respectively. It is seen that there is an excellent agreement between
the analytical results (based on the semiclassical quantum-jump-free approach using the non-
Hermitian Hamiltonian) and the numerical results (based on the fully quantum approach using
the master equation). This result indicates that the effect of quantum jumps for the observation of
PB can effectively be ignored for the studied ranges of the system parameters. We note that for
some specific parameters, the effect of such quantum jump plays a key role in the evolution of the
system dynamics and cannot be ignored in this situation [70].
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Fig. 2. Chiral photon blockade. (a) The correlation functions g(2)cw (0) and g(2)ccw (0) versus
the optical detuning ∆0 for the static (dashed curve) and spinning resonator (solid curves),
where markers (circles) are analytical solutions of the spinning resonator case. Different
quantum features appear in the CW and CCW modes, respectively. (b) The g(2)ccw (0) and
g(3)ccw (0) versus ∆0 for Ω = 30 kHz. (c) The chiral photon blockade can also be recognized
from the deviations of the photon-number distribution Pk = Tr[|k⟩ ⟨k| ρss] (k = m, n) to the
standard Poissonian distribution Pk = ⟨k⟩kexp(−⟨k⟩)/k! with the same mean photon number.
The parameters are the same as those in Fig. 1.

Figure 2(a) shows that, for the static case, the second-order correlation functions always
have the same photon-number statistics regardless of the direction of light propagation, that
is, exhibiting g(2)cw,ccw (0)>1 for ∆0< − 1.5 MHz, which corresponds to the super-Poissonian
photon-number statistics. In contrast, for the spinning case, the quantum features of the CW and
CCW modes become different due to the spinning-induced chirality. We find that 1PB emerges
around ∆0 = −3.5 MHz for the CW mode, while we have PIT for the CCW mode, i.e., g(2)cw (0)<1
and g(2,3)

ccw (0)>1 [Figs. 2(a) and 2(b)]. In addition, at∆0 = −2.3MHz, 1PB occurs in the CW mode,
due to g(2)cw (0) ∼ 0.01, while 2PB occurs in the CCW mode [g(2)ccw (0) ∼ 3.04, g(3)ccw (0) ∼ 0.02].
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Fig. 3. Spinning-induced revival and a switch of photon blockade. (a) The second-order
correlation function g(2)cw(0) versus the optical detuning ∆0 for different values of the coupling
strength J. (b) g(2)cw(0) versus ∆0 for the cases with (J/γ = 2, solid curves) and without
backscattering (J = 0, dotted curves) for different angular velocities Ω. (b) The evolution
of g(2)cw(0) as a function of ∆0 and Ω. (d) The correlation functions g(2)cw(0) (solid curve)
and g(3)cw(0) (dashed curve) versus Ω. (e) This quantum switch can also be confirmed by
comparing the photon-number distribution Pm with the standard Poissonian distribution Pm.
The parameters are the same as those in Fig. 1.

These results can also be confirmed by comparing the photon-number distribution Pm (Pn)
with the Poissonian distribution Pm (Pn) of the CW (CCW) mode [Fig. 2(c)]. We find that,
for the CW mode, the single-photon probability P1 is enhanced while Pm>1 are suppressed at
∆ = −3.5 MHz, which is in sharp contrast to the case of the CCW mode. These results reveal
a direction-dependent quantum effect, i.e., chiral PB. This occurs due to the interplay of both
the rotation-induced Sagnac effect and the nonlinearity-induced anharmonicity. For the CW
mode, when it is driven by light that satisfies the single-photon resonance, photon blockade
occurs due to the nonlinearity-induced anharmonicity of energy levels [g(2)cw (0)<1]. As for the
CCW mode, the Sagnac effect causes the resonance frequency of this mode to shift downward
with increasing angular velocity. If the driving frequency remains unchanged, this shift of
the resonance frequency can cause the original driving frequency, which does not satisfy the
resonance condition, to match the two-photon resonance frequency of the CCW mode. Therefore,
we can observe the result of g(2)ccw (0)>1.
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More interestingly, this spinning-induced chirality provides a feasible way to protect the devices
against backscattering losses. Figure 3(a) shows that, for a static cavity (Ω = 0), the minimum
value of g(2)cw (0) increases with the increase of the backscattering-induced mode coupling rate
J, resulting in the suppression of the emergence of PB. For the spinning resonator (Ω ≠ 0), we
find that the spinning-induced chirality has a revival effect on PB under the same non-ideal
conditions (J ≠ 0), i.e., the minimum value of g(2)cw (0) significantly decreases [Fig. 3(b)]. For
example, by choosing the angular velocity Ω = 30 kHz, we have min [g(2)cw (0)] ∼ 0.004, which
is almost the same as the case of an ideal cavity under the same conditions. Meanwhile, PB
can gradually revive to the level of the ideal cavity with the increase of the angular velocity
[Fig. 3(c)]. Therefore, we conclude that spinning-induced chirality has the ability to compensate
or even counteract the negative effects of backscattering [22].

Figure 3(d) shows different quantum effects, i.e., 1PB, 2PB, and PIT, which can be observed
by tuning the angular velocity Ω for the case of non-resonance. We find that PIT emerges with
g(2)cw (0) ∼ 21.55 and g(3)cw (0) ∼ 8.58 at Ω = 0 [Fig. 3(d)]. Increasing Ω to 10 kHz, the correlation
functions fulfill the conditions of the 2PB [g(2)cw (0) ∼ 1.98 and g(3)cw (0) ∼ 0.04]. By further
increasing the angular velocity (Ω = 30 kHz), 1PB appears. This result can also be clearly seen
in Fig. 3(e). With such a device, the switching between 1PB, 2PB, and PIT can be achieved by
tuning the angular velocity.

4. Conclusions

In summary, we studied a novel quantum effect, the chiral photon blockade effect, extending
previous work on the spontaneous breaking of classical optical chiral symmetry to the quantum
domain. Specifically, we find that for a fixed driving field direction, the light propagating along
the opposite direction in the microcavity exhibits completely different quantum effects, such as
photon bunching and anti-bunching effects, due to the spinning-induced breaking of time-reversal
symmetry. This novel chiral quantum device based on a single cavity has potential applications
in chiral quantum networks [37–40]. The spinning-cavity scheme is highly experimentally
feasible and has been used to realize nonreciprocal optical transmission [20]. Significantly, the
nonreciprocal quantum effect [21] based on the spinning-cavity scheme has been experimentally
demonstrated using different systems, which indicates that this novel effect in our work is also
expected to be realized in more experimental systems, including cavity QED systems [24] and
solid-state devices [25]. More interestingly, we have shown how to revive the photon blockade
effect suppressed by backscattering, and switch different types of quantum correlations with the
help of spinning which results can be further applied in chiral multi-photon bundles [71–73] and
backaction-immune quantum sensing [74–79].
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