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Optimized optical tomography of quantum states of a room-temperature alkali-metal vapor
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We demonstrate an experimental technique for the quantum-state tomography of the collective qutrit states of
a room-temperature alkali-metal vapor. It is based on the measurements of the polarization of light traversing
the vapor subjected to a magnetic field. To assess the technique’s robustness against errors, experimental
investigations are supported with numerical simulations. This not only allows us to determine the fidelity of the
reconstructed states, but also to analyze the quality of the reconstruction for specific experimental parameters,
such as light tuning and the number of measurements. By utilizing the conditional number, we demonstrate that
the reconstruction robustness can be optimized by a proper adjustment of experimental parameters, and further
improvement is possible with the repetition of specific measurements. Our results demonstrate the potential of
this high-fidelity reconstruction method of quantum states of room-temperature atomic vapors.
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I. INTRODUCTION

Quantum technologies are founded upon the precise
manipulation and reconstruction of quantum states. When
dealing with single microscopic quantum objects, the recon-
struction of states becomes challenging. This stems from a
(usually) destructive nature of the reconstruction and small
amplitudes of recorded signals. To address these difficulties,
some researchers have turned their focus towards studying
ensembles of quantum objects, which display a collective
quantum behavior [1–15].

Atomic vapors serve as a prime example of a medium
utilized for the engineering of collective quantum states. In
their ultracold form, they allow for precise quantum control
through light and other external fields, albeit the implementa-
tion of such control requires complex experimental setups. On
the other hand, room-temperature vapors can be studied using
simpler apparatuses, but they simultaneously present chal-
lenges in terms of theoretical understanding of to which extent
collective ensembles are quantum [3]. Despite these prob-
lems, however, room-temperature atomic vapors were used
to demonstrate various quantum-mechanical effects including
coherent population trapping [4], spin squeezing [5,6], macro-
scopic entanglement [7,8], spin waves [8,9], squeezed-light
generation [5,10,11], and the entanglement of light modes
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[12]. A rubidium vapor was also used to construct an on-
demand quantum memory [13,14]. These experiments have
revived the interest in such media, while also necessitating
the development of reliable quantum state tomography (QST)
methods.

In this work, we demonstrate an experimental implementa-
tion of the recently proposed QST method [15]. The method
enables the reconstruction of a complete collective density
matrix of a room-temperature atomic vapor. It is based on
the illumination of the vapor with an off-resonant probing
light, and monitoring properties of the light after traversing a
medium subjected to an external magnetic field. This enabled
us to reconstruct a collective quantum state of 87Rb atoms
residing in the F = 1 ground state (qutrit), as shown in Fig. 1.

To evaluate the efficiency of the tomographic technique,
we used the so-called conditional number [16–18]. Previously,
the parameter was used for a comprehensive comparison of
the optical tomographic methods of two polarization qubits
[17] or the nuclear magnetic resonance (NMR) tomography
of two 1H spins 1/2 (two qubits) [19] and a single nuclear
spin 3/2 (a quartit) in a semiconductor quantum well [20]. We
demonstrate that, by an appropriate tuning of a probing light,
the conditional number can be minimized (corresponding to
an optimized reconstruction), reaching as small value as 2.25.
We also discuss the methods for further improvement of the
reconstruction efficiency by repeating specific measurements.

II. PRINCIPLES OF THE OPTICAL TOMOGRAPHY

We begin with a brief overview of the QST technique
developed in Ref. [15]. This method relies on measuring the
polarization rotation of linearly polarized probe light travers-
ing a medium (e.g., room-temperature alkali-metal atoms)
subjected to a longitudinal magnetic field. We assume that the
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FIG. 1. Energy-level diagram corresponding to the 87Rb D1 line
(presented energy gaps are not in scale), with measured qutrit marked
with green. Additionally, tunings of all the laser beams are presented;
red lines correspond to the pumping and repumping light used for
the state preparation, and the blue line shows the probing beam
which is blue detuned from the resonance by � and used for state
reconstruction.

amplitude of the light is small, which allows us to describe
its interaction with atoms using a perturbation theory of the
lowest order (linear interaction). At the same time, unlike pre-
vious approaches (see, e.g., Refs. [21,22]), we do not assume
a significant detuning of the light from the optical transition.
This allows us to consider not only vector contributions to a
polarization rotation [21,23,24], but also a tensor contribution
[25], and hence reconstruct the whole collective density ma-
trix of the atoms. It is noteworthy that this reconstruction is
achieved without full control over the system, as successive
magnetic sublevels are equally split due to a weak magnetic
field (due to the linear Zeeman effect) and, hence, cannot be
selectively addressed [26].

In Ref. [15], the relation between a time-dependent po-
larization rotation δα(t ) and operators α̂R,I and β̂ was
introduced. These operators are associated with the coherence
and population difference of specific magnetic sublevels and,
hence, provide the access to specific density-matrix elements.
In this work, we employ a slightly modified version of that
relationship, i.e.,

δα(t ; �) = η(�)(e−γ1t [〈α̂R〉 sin(2�Lt )

+ 〈α̂I〉 cos(2�Lt )] − ζ (�)e−γ2t 〈β̂〉), (1)

where η(�) = χVR(�) and ζ (�) = VI (�)/VR(�) are the
global and local scaling factors associated with the real (VR)
and imaginary (VI ) parts of the Voigt profile, respectively,
and χ is related to experimental parameters, such as an
atomic density and a transition frequency (for more details see
Appendix A). As shown in Eq. (1), the time dependence of the
polarization rotation is determined by the Larmor frequency
�L and the longitudinal and transverse relaxation rates γ1

and γ2.
Since a single measurement described by Eq. (1) allows us

to extract only limited information about the system (specif-
ically the population difference and the coherence between
magnetic sublevels with �mF = 2), it is necessary to expand
the set of measured signals to obtain a more comprehensive
information. To achieve this, we introduce a series of unitary
operations known as control pulses, which modify the state.
This provides us the access to other density-matrix elements
and, hence, offers a complete characterization of the system

[15]. In turn, the reconstruction problem can be presented
as [15]

OρV = b, (2)

where O represents the coefficient matrix determined by
the set of observables, and ρV = [ρR

1̄1̄
, ρR

1̄0
, ρI

1̄0
, . . .]T (where

ρR
mn = Re{ρmn} and ρI

mn = Im{ρmn}, and 1̄ = −1) is the vec-
torized form of a standard-form (square) density matrix ρ with
elements ρi j (see Appendix A for more information). More-
over, b is the observation vector, which contains the values of
measured observables. In a typical experimental scenario, the
set of measurements, given in Eq. (2), is often overdetermined,
and it is advantageous to rescale it to a more suitable form,

CρV = b̃, (3)

where C = O†O and b̃ = O†b. This rescaling enables the
calculation of the density operator by simply inverting the
aforementioned linear problem.

III. EXPERIMENTAL DETAILS

A. Experimental setup

The heart of our experimental system is a paraffin-coated
spherical cell 3 cm in diameter, containing an isotopically
enriched sample of 87Rb atoms. The cell is heated up to
50 ◦C and placed inside a cylindrical magnetic shield made
of three layers of mumetal and a qubic innermost ferrite
layer (a shielding factor of about 105). Apart from the cell,
the shield additionally contains a set of magnetic-field coils,
which enables the residual-field compensation and genera-
tion of magnetic-field pulses in the x, y, and z directions.
During the application of magnetic-field pulses, which ro-
tate the states, other magnetic fields and all light beams are
switched off. Light used for the illumination of the rubidium
atoms is provided by three diode lasers, where the pump and
probe lasers are distributed-feedback lasers (DFBs), and the
repump laser is a Fabry-Pérot laser (ECDL). All the lasers
are independently tuned, and the repump laser wavelength is
frequency-stabilized using a dichroic atomic vapor laser lock
(DAVLL) [27]. The wavelengths of the other two lasers are
passively maintained due to their inherent temporal stability.
Performance of all the lasers is monitored using a wave meter,
while the pump and probe lasers are additionally monitored
through saturated absorption spectroscopy (SAS). The inten-
sities of the laser beams are dynamically controlled by three
acousto-optical modulators (AOMs). To generate a specific
quantum state in the vapor, the pump-light polarization is set
by polarizers (POLs) and a quarter-wave plate (λ/4), while
the repump light is linearly polarized in a direction orthog-
onal to the pump-light propagation direction (i.e., along the
y axis). The y polarization of the probe light is provided by
a Glan-Thomson polarizer placed before the shield and its
polarization rotation after the medium is measured using a
balanced polarimater consisting of a Wollastron prism (WOL)
and a balanced photodetector (BPD). To determine the local
scaling factor (see the discussion below), the intensity of the
probe light is monitored prior to the shield. The schematic of
the setup is shown in Fig. 2(a).
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FIG. 2. (a) Simplified scheme of the experimental setup used for the quantum-state generation and tomography of collective states of an
alkali-metal vapor. SAS: Saturation absorption spectroscopy; DAVLL: Dichroic atomic vapor laser lock; AOM: Acousto-optic modulator; PD:
Photodiode; Pol: Glan-Thompson polarizer; λ/4: Quater-wave plate; Rb: Parafin-coated vapor cell filled with 87Rb; Wol: Wollaston prism;
BPD: Balanced photodetector. (b) Experimental sequence used in our method. The initial state of atoms is prepared with the pump light turned
on for about 200 ms (red trace). After the preparation period, we apply a sequence of magnetic pulses to modify the state of the atoms (green
trace). Here, the CYCLOPS pulses (see Sec. III D) are first used and then the control pulses are implemented for a total time of about 1.5 ms.
Finally, the probe light is turned on, alongside with the longitudinal magnetic field, for about 1 s (blue) and the polarization rotation signal is
recorded.

B. Experimental sequence

The experimental sequence utilized in our measurements is
shown in Fig. 2(b). The sequence begins with a pumping pe-
riod during which a specific quantum state is engineered. This
stage typically consists of a 200-ms light pulse (optical pump-
ing), which is applied simultaneously with the repumping that
prevents the atoms from escaping into the dark (F = 2) state,
followed by a few short pulses (≈100 μs, a rotation-angle
uncertainty of 0.12◦), enabling the generation of a desired
complex state. Subsequently, a series of magnetic-field pulses
is used to mitigate technical problems (see Sec. III D), which
is followed by a set of control pulses. Once the pulses are
completed, a constant magnetic field is applied along the z
direction, ranging between 10 and 100 nT. At the same time,
the probe light, propagating along z with an intensity of 1–20
μW/cm2, is switched on. In order to improve the signal-to-
noise ratio (SNR), the intensity of the probe light is modulated
at a frequency of 200 kHz and a polarimeter signal is detected
using a lock-in amplifier.

C. Global and local scaling factors

An important element of the reconstruction of the density
matrix is the determination of the global scaling factor η(�)
in Eq. (1). This can be done by measuring the light absorption
in an unpolarized vapor. Using the absorption relationship
derived in Appendix C, the factor can be identified by com-
paring the absorption of the probe light, tuned to the same
wavelength as that during the tomography measurements (i.e.,
blue detuned from f = 1 → F = 2 by 50–400 MHz), with
the absorption of a far-detuned light (>15 GHz). The global
scaling factor is given by

η(�) = 27

16

⎛
⎝

√
U2(�)/U1(�)

U2(∞)/U1(∞)
− 1

⎞
⎠, (4)

where U1 is the voltage measured at the transimpedance pho-
todetector placed in front of the medium and U2 after it [see
Fig. 2(a) and Appendix C 1] with � indicating the probe light
tuned for QST and ∞ stands for the far-detuned light.

Experimental determination of the local scaling factor,
ζ (�) in Eq. (1) presents a greater challenge. It requires the
preparation of an anisotropic well-defined quantum state. In
this work, we select “stretched” states along the x and z axes.
This means that the state has maximal projection of its angu-
lar momentum on the respective axis. The first state can be
created by illuminating the atoms with a circularly polarized
pump light propagating along the x axis. The preparation of
the second state is more involved and requires the applica-
tion of an additional magnetic-field pulse after the optical
pumping, which rotates the atomic x polarization to the z
direction. Note that we have experimentally verified that this
process did not introduce dephasing, as evidenced by the un-
changed signal amplitude for a many-π pulse. Employing this
procedure allows us to mitigate the systematic errors arising
from varying polarization levels achieved with the pump light
propagating along different directions, while simultaneously
simplifying the experimental setup. The formulas for the light
polarization rotation corresponding to these two states are (see
Appendix C 2 for more details)

δα(z)(t ; �) = −5(1 − ε)

24
η(�)ζ (�)e−γ2t , (5)

δα(x)(t ; �) = − (1 − ε)

48
η(�)e−γ1t cos(2�Lt ), (6)

where ε is the isotropic part of state. This allows one to
calculate the local scaling factor as

ζ (�) = 1

10

δα(z)(0; �)

δα(x)(0; �)
. (7)
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D. CYCLOPS-like measurements

Equation (1) shows that our reconstruction method is
sensitive to the initial phase of the measured signal. As un-
controllable phase delays are present in every experiment, the
identification of the quadrature components of the signal be-
comes difficult. To address this issue, we adapt the cyclically
ordered phase sequence (CYCLOPS) method, commonly uti-
lized in NMR [28,29]. In our approach, we leverage the fact
that the π rotation of the state around the y axis leads to
a sign reversal of 〈α̂I〉 and 〈β̂〉 (for more information, see
Appendix D). At the same time, by applying the pulse rotating
the state by π/2 around the z axis and next the pulse rotating
the state around the y axis by π , the signs of the 〈α̂R〉 and
〈β̂〉 are reversed (see Appendix D). By subtracting these two
transformed states from the initial signal, we obtain

(δα − δα(Y ) )(t ; �) = 2η(�)[−ζ (�)eγ2t 〈β̂〉
+ e−γ1t 〈α̂I〉 cos(2�Lt + ϕ)], (8)

(δα − δα(ZY ) )(t ; �) = 2η(�)[−ζ (�)eγ2t 〈β̂〉
+ e−γ1t 〈α̂R〉 sin(2�Lt + ϕ)], (9)

where ϕ is an unknown phase shift originating from the ex-
perimental apparatus. In our CYCLOPS-like measurements,
the problem of the unknown phase is alleviated, as the final
signals, given by Eqs. (9) and (10), depend only on one
quadrature (via either sine or cosine time dependence) and,
thus, ϕ becomes insignificant. The procedure also allows us to
remove systematic shifts of the signals associated with the im-
balance of the polarimeter (for more details, see Appendix D).

E. Technique limitations

Our technique has two main limitations. The first is associ-
ated with the intensity of the light used to probe the atoms.
From the point of view of the SNR this intensity should
be maximized. On the other hand, the developed theoretical
model should adequately describe the considered system. The
model, given in Ref. [15], assumes a negligible population
of the excited state. This condition is fulfilled if the optical
transition is not saturated, i.e., when

κo = �2
R

�2
� 1, (10)

where κo is the saturation parameter of the optical transition,
�R is the Rabi frequency of the probe light, and � is the
natural width of this transition. For the uncoated vapor cell,
the saturation intensity of 87Rb atoms which are excited at
the D1 line is 2.39 mW/cm2. It should be noted, however,
that in paraffin-coated cells the intensity saturating the optical
transition needs to be normalized over the whole cell volume
[30].

To fulfill the model assumptions, we also need to ensure
that the probing beam is not pumping atoms, i.e., that the
thermalized state (the steady state when the pump beam is
switched off) differs from the isotropic state. To ensure that
we can use hyperfine saturation parameter κhf [31], which
also incorporates correction for the Doppler broadening of the
medium and the differences between the cell volume and its

illuminated part:

κhf = �2
R

�γ

�

�D

Vi

Vc
, (11)

where γ is the relaxation of the atomic state (in our case
γ = γ1), �D is the Doppler width of the transition, Vi is the
volume of the atoms illuminated by the probing beam, while
Vc is the volume of the entire cell. Using Eq. (11) we determi-
nate hyperfine saturation intensity as Ihf

sat ≈ 27.9 μW/cm2.
Second limitation comes from the fact that it is assumed

that the light characteristic parameters (amplitude, polariza-
tion angle, ellipticity, and phase) remain constant throughout
the medium which holds when medium is considered to be
optically thin. This allows us to approximate the initial values
of the parameters during our calculations. However, in the
scenarios where the medium is optically thick, we need to
solve differential equations for these parameters when the
light propagates through the medium [32]. As the density ma-
trix is influenced by the light field, this leads to an increased
complexity of the analysis.

IV. RECONSTRUCTION OF STATES

To perform QST, we conducted the above-described nine
measurements, consisting of three sets of CYCLOPS-like
pulses for each of the three control pulses. To ensure the
self-consistency of our reconstruction procedure, we simulta-
neously fit all of the polarization-rotation signals with shared
parameters, such as the global phase, relaxation rates, and
oscillation frequency. The fitting values are then used to deter-
mine the observables and reconstruct the qutrit density-matrix
elements using the linear inversion method given in Eq. (3).
However, as this method does not guarantee the reconstructed
matrices to be positive semidefinite, we utilize a maximum
likelihood method with the Euclidean norm [20,33] to find the
closest physical realization of the reconstructed matrix.

To validate our tomography technique, we compare the
reconstructed density matrices with numerical simulations of
the states obtained during the pumping stage. For the simula-
tions, we assume the interaction of an appropriately polarized
light with a Doppler-broadened medium consisting of the
atoms of the energy-level structure similar to that of the D1

line in 87Rb. As in the real experiment, we assume that there
are two distinct spatial regions between which the atoms can
freely move. In the first region, the atoms evolve in a ho-
mogeneous magnetic field and relax to thermal equilibrium
due to the collisions with vapor-cell walls and between one
another. This corresponds to the atoms residing outside of
the light beams. In the second region, the atoms still interact
with the magnetic field, but also with the pump and repump
light. Moreover, we neglect the wall relaxation in this region.
The latter region corresponds to the atoms inside the light
beams. All the parameters used in the simulations match the
parameters of our experimental setup. We have validated the
robustness of our technique by aligning experimental data
with corresponding simulations of selected basic states, which
we could readily generate. Looking ahead, we aim to extend
this methodology to reconstruct more complex states that pose
experimental challenges. This capability is crucial, especially
for applications like quantum process tomography.
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FIG. 3. Comparison of two experimentally reconstructed density
matrices (blue bars), with simulated ones (red bars), including their
amplitude (upper panels) and phase (lower panels). The first state
(a) is pumped with circularly polarized light and the second state
(b) is pumped with linearly z-polarized pumps, propagating along
the x axis. The fidelity achieved between the experimental results
and simulations in both cases exceeds 0.99.

As representative examples for our reconstruction, we con-
sider two states that can be easily generated experimentally
and simulated theoretically. The first state can be pumped
with a strong, pumping light which is circularly polarized
and propagating along the x axis [Fig. 3(a)]. The state has a
nonuniform population distribution and all its coherences are
nonzero. This allows us to demonstrate that our method can
reconstruct not only different coherences, but also determine
their amplitudes and phases with a high accuracy. Accord-
ing to the numerical simulations of the system, the repump
light pumps more than 98% of the atoms into the desired
hyperfine manifold and the created state is very close to the
perfect pure state [fidelity of 0.96946(91)]. Main uncertain-
ties of the pumping originate from the temporal variations
in the frequency and intensity of lasers. The results of the
experimental reconstruction and simulations are presented in
Fig. 3(a). As can be seen, the results are in a very good
agreement revealing a reconstruction fidelity of 0.995. As the
second example, we considered a state pumped with the π -
polarized light, propagating along the x axis. In the ideal case
(without experimental artifacts), this scheme leads to the total
depletion of the mF = ±1 states and no coherences between
any sublevels. In this case, the simulations suggest that, in
our experimental conditions, over 98% of atoms are pumped
into an effective pure state with a fidelity of 0.98029(38). As
shown in Fig. 3(b), our measurements demonstrate a good
agreement with numerical simulations, demonstrating the fi-
delity of 0.998. Nonetheless one can notice that a very small
amplitude of the coherences can lead to the deterioration
of the phase reconstruction. The very high quality of the
reconstruction of these two representative states demonstrates
the usefulness of our QST technique.

It is noteworthy that one of the most important advan-
tages of this tomography technique is its significant robustness
against white noise [15]. However, we also verified with nu-
merical simulations that the robustness remains practically
unchanged for the assumed noise that adequately represents
experimental noise (with a specific spectral structure). Specif-
ically, we tested the robustness of the method using the 1/ f
noise and noise arising at specific spectral components of
the signal, e.g., close to the Larmor frequency, where the
signal of interest arises. In the analysis, we observed a small
deterioration of the methods performance, but with the SNR
at a level of 5 a 0.99 fidelity was achieved.

V. CONDITIONING AND OPTIMIZATION OF QUANTUM
STATE TOMOGRAPHY

A. Condition number in linear inversion

The condition number κ is a useful parameter to evaluate
the reliability of a QST method [see Eq. (3)]. Specifically,
to quantify the ability to tolerate errors or sensitivity to the
errors, we use the condition number of a (nonsingular) matrix
C, which, assuming the spectral norm ‖ · · · ‖2, can be defined
as [34–36]

κ (C) = ‖C‖2 ‖C−1‖2

= max[svd(C)] max[svd(C−1)]

= max[svd(C)]

min[svd(C)]
� 1, (12)

where svd(C) denotes the singular values of C. The signif-
icance of this error-robustness parameter explains well the
Gastinel-Kahan theorem [35], which states that a relative
distance of a nonsingular square matrix C from the set of
singular matrices corresponds to the inverse of the condition
number. Utilizing the error δb̃ in the observation vector b̃
and the condition number κ (C), one can estimate the error
δρV in the reconstructed density matrix ρV from the Atkinson
inequalities [34]

1

κ (C)

‖δb̃‖
‖b̃‖ � ‖δρV ‖

‖ρV ‖ � κ (C)
‖δb̃‖
‖b̃‖ . (13)

The above equation allows for easier and more intuitive under-
standing of the usefulness of the condition number. One can
notice that, in the procedure of linear inversion, propagation of
the experimental uncertainty highly depends on the state that
is measured and which of the measured signals have higher
relative uncertainties. Equation (13) allows one to make a
general statement that, even though the relative uncertainty
of the reconstruction is state dependent, it is also bounded by
the relative uncertainty of the observation vector multiplied
by κ (C). This allows the interpretation that the condition
number is the measure of the stability of our method or, in
other words, it shows how our method in some particular cases
may amplify the experimental uncertainties and errors. When
the condition number approaches 1, it becomes apparent that
small relative variations in the observation vector b̃ always
result in correspondingly small relative changes in the recon-
structed state ρV . In order to account for the errors δC present
in the coefficient matrix C, these inequalities can be expanded
according to the formulation derived in Ref. [34], giving rise
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(a) (b)

FIG. 4. (a) Condition number κ (C) of a state measured versus the detuning � of the probing light from the center of the Doppler-
broadened f = 1 → F = 2 transition. The red points indicate the values calculated based on experiment (horizontal uncertainty comes from
the uncertainty of detuning; the evaluated vertical errors are so small that they are not visible in the plot), while the blue curve shows the
theoretical dependence calculated from the absorption measurements. The green dashed line indicates the smallest κ (C) = 2.25 achievable
using this approach. (b) Relative uncertainty of the linear inversion [see Eq. (13)] as a function of the condition number κ (C). Red points
correspond to the reconstruction of the state pumped with the circularly polarized light that propagated along the x axis [see Fig. 3(a)] and
blue points correspond to the reconstruction of the state generated with the linearly z-polarized pump light, propagating along the x axis [see
Fig. 3(b)]. It is seem that the uncertainty of the condition number is significantly smaller than the size of the data points. Solid lines are added
for clarity.

to the expression

‖δρV ‖
‖ρV ‖ � κ (C)

1 − κ (C)‖δC‖/‖C‖

[
‖δb̃‖
‖b̃‖ + ‖δC‖

‖C‖

]
. (14)

By referring to the inequalities in Eqs. (13) and (14), we can
infer that the quality of a QST method, in terms of its error
sensitivity or robustness, can be assessed through its condition
number κ (C), which characterizes the degree to which small
(large) changes in the observation vector b̃ lead to relatively
small (large) changes in the reconstructed state ρV . Thus, if
κ (C) is small (large), the QST method is well conditioned
(ill conditioned), indicating the robustness (sensitivity) of the
method to errors in the observation vector b̃. In the case of
ill-conditioned QST, even slight errors in b̃ can cause sig-
nificant errors in the reconstructed ρV . In short, the smaller
the condition number is, the stronger robustness of a given
linear-inversion-based QST method is against errors. Thus,
one can refer to an optimal method in this respect if κ (C) = 1.
Numerical examples of ill-conditioned QST problems can be
found in Refs. [17,34].

As a quantifier (or a “measure”) of the “closeness” of two
quantum states, which in our case correspond to the simulated
state ρsim = ρV and the experimentally reconstructed state
ρexp = ρV + δρV , one can use a mixed-state fidelity [37]. It
is based on the Bures distance or the relative error (RE) in
ρexp, defined as ||ρexp − ρsim||/||ρsim|| = ||δρV ||/||ρV || for a
chosen norm. The estimation of the RE is especially simple
by applying the Atkinson inequalities, given in Eqs. (13) and
(14). Specifically, the inequalities give the lower and upper
bounds on the RE in ρexp due to (i) the experimental the RE
in b̃ (both statistical and systematic), (ii) the systematic RE in
C caused by, e.g., inaccurate experimental apparatus settings,
but also (iii) the condition number κ , which is a measure of the

error amplification due to the employed inversion in a given
linear reconstruction procedure.

B. Optimization via probe light tuning

In order to optimize a QST process, it is desired to make the
coefficient matrix C more isotropic, which means that each
measurement brings an equal amount of information about the
system. A simple example of such an optimized problem is
when each measurement brings information about only a spe-
cific density-matrix element, with all measurements having
the same weight [17,18]. In this case, the coefficient matrix
C is proportional to identity. Even though such optimization
is intuitive, it is often unpractical, because experimental trans-
formations, which are required to achieve a desired scheme,
are very complex. Instead, here we propose a scheme wherein
a single experimental parameter is adjusted. In our case, this
parameter is the probing light detuning �, which is incorpo-
rated in Eq. (1) through ζ (�).

It is important to note that our method does not guarantee
an optimal tomography process with κ (C) = 1. Therefore, to
explore the limit of the method, we calculate the eigenvalues
of the coefficient matrix with ζ (�) as a free parameter. In
our case, the eigenvalues of C can be analytically calculated,
taking the values { 1

100 , 1
150 , 1

225 , 1
225 , 1

225 ,
ζ 2

18 ,
ζ 2

9 ,
ζ 2

9 }. From
this, we obtain the dependence of κ (C) on ζ (�) [see Fig. 4(a)]
and a minimal possible conditional number, equal to 2.25 is
determined.

To further illustrate the effect of the probing-light detuning
on the reconstruction uncertainty and, hence, to demonstrate
the potential of this approach, we perform a series of
reconstructions of a state generated under the same conditions,
but reconstructed using different probing-light detunings. In
our experiment, the detuning is changed from 50 to 270 MHz.
The results of these investigations, shown in Fig. 4(b),
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FIG. 5. Minimum achievable condition number versus a number
of repetitions of specific measurements. Three sets of points cor-
respond to the condition number at different detunings: 300 MHz
(green triangles), 200 MHz (red squares), and 60 MHz (blue dia-
monds). The solid lines are added for eye guidance.

demonstrate that the reliability of
the reconstruction deteriorates with
the detuning and it achieves the minimum in the vicinity
of the center of the Doppler-broadened transitions
f = 1 → F = 2. This agrees with our theoretical prediction
of the condition-number detuning dependence, which we
calculate assuming that ζ (�) = VI (�)/VR(�).

C. Conditional number versus the number of measurements

The repetition of specific measurements offers a straight-
forward and versatile method for optimizing the relative
weights of the observables used in the state-reconstruction
procedure. This approach allows us to achieve the condition
number arbitrarily close to 1, making it particularly valuable
when the original method is infeasible or when the condition
number is desired to be smaller than the detuning-optimized
bound (e.g., 2.25). However, it should be noted that this tech-
nique is associated with a potential drawback. Namely the
number of repetitions required to attain κ (C) = 1 is typically
substantial, especially when dealing with initially high condi-
tion numbers, as illustrated in Fig. 5.

VI. CONCLUSIONS

In this study, we presented an experimental implemen-
tation of the quantum-state tomography technique, which
was originally proposed in Ref. [15]. The technique enabled
us to successfully reconstruct collective quantum states of
a qutrit in room-temperature rubidium vapor at the f = 1
ground state. Compared to other tomographic techniques
[21,22,38,39], our method distinguishes itself with a superior
fidelity, resilience against the SNR, and a straightforward
control protocol. However, these advantages come at the ex-
pense of longer measurement times compared to alternative
approaches. To overcome experimental challenges of the re-
construction, we adapted the CYCLOPS technique, which
allowed us to achieve a reliable reconstruction by mitigating
the problem of unknown phase delays present in measured

signals. Additionally, we presented a comprehensive analysis
of the technique by introducing the conditional number, which
quantifies the reliability of the reconstruction. This param-
eter was investigated versus different experimental factors,
including tuning of the probing light, i.e., the light used for
the reconstruction. We demonstrated that, by an appropriate
tuning of the light, conditional numbers as low as 2.25 can
be achieved (where the conditional number of 1 refers to an
ideal reconstruction). We also demonstrated that further im-
provement of the reconstruction (by lowering the conditional
number) can be achieved by the repetition of the specific
measurements.

The reported successful implementation of the presented
QST technique opens up avenues for measuring a range of
fundamental properties of qutrits. In the future, we plan to
focus on exploring different measures of nonclassicality and
establishing their ordering for various classes of quantum
states. We also plan a further development of the technique
to demonstrate quantum process tomography, i.e., to expand
the method’s capabilities in the characterization of quantum
operations and transformations. Finally, the ability to accu-
rately reconstruct the quantum states of atomic ensembles
allows for an experimental optimization of the generation of
metrologically appealing quantum states. This is the research
direction that we currently pursue in our work.

Our findings underscore the efficacy of high-fidelity
quantum-state reconstruction within room-temperature
atomic vapors, showcasing the promise of this approach for
advancing quantum research and applications.
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APPENDIX A: PRINCIPLES OF THE TOMOGRAPHY
METHOD

In Ref. [15], the relation between the time- and detuning-
dependent polarization rotation δα(t ; �) and the operators
α̂R,I and β̂, associated with the coherences and populations
difference of specific magnetic sublevels, is given as

δα(t ; �) = χe−γ t [〈α̂R〉VR(�) sin(2�Lt )

+〈α̂I〉VR(�) cos(2�Lt ) − 〈β̂〉VI (�)], (A1)

where VR(�) and VI (�) are the real and imaginary parts of
the Voigt profile, respectively, and χ is related to experi-
mental parameters such as an atomic density and transition
frequency. In order to derive Eq. (A1), the isotropic relaxation
of the atomic state was assumed. This may not be the case
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in a real experiment, where various experimental factors (e.g.,
magnetic-field gradients), may introduce additional dephasing
of coherences. In turn, the off-diagonal elements of the density
matrix relax faster than the diagonal ones. As the observables
α̂R,I depend exclusively on the coherences, while β̂ on the
population imbalance, to account for the fact, we introduce
two separate relaxation rates, slightly modifying Eq. (A1), i.e.,

δα(t ; �) = η(�)(e−γ1t [〈α̂R〉 sin(2�Lt )

+ 〈α̂I〉 cos(2�Lt )] − ζ (�)e−γ2t 〈β̂〉), (A2)

where η(�) = χVR(�) and ζ (�) = VI (�)/VR(�) are the
global and local scaling factors, respectively.

The expectation values 〈α̂R,I〉 and 〈β̂〉 depend on the pop-
ulation deference and the coherences between the states of
the magnetic quantum-number difference �mF = 2. Thus, the
operators do not allow one to reconstruct an entire density
matrix of the system. In order to access the remaining density-
matrix elements (e.g., the coherences with the �mF = 1),
one needs to transform the measured observables, so that the
overall set of measurements defines a positive operator-valued
measure (POVM) [21]. This can be achieved by introducing
the unitary-evolution operators Ui, commonly called the con-
trol pulses, which modify the observable Ô in the following
manner:

Tr [ÔUiρU †
i ] = 〈U †

i ÔUi〉 = 〈Ô′〉, (A3)

where Ô can be either α̂R,I or β̂. With the set of the observables
Ôi, one can present the reconstruction problem in vectorized
forms as given by Eqs. (2) and (3).

It should be noted that reconstruction based on Eq. (3)
may produce unphysical results, which arise when the recon-
structed density matrix is not positive semidefinite. In such a
case, one may use several techniques to find a corresponding
physical realization of the matrix. The simplest approach is to
set negative eigenvalues to zero and renormalize the density
matrix. More elaborate techniques find the closest positive
semidefinite matrix using different norms using, for example,
a maximum likelihood method [20,33]. In the presented work,
we use such a method, assuming that a distance between
matrices is based on the Euclidean norm,

d2(A,B) =
∑

i j

|A − B|2i j . (A4)

The applied implementation of the method allows us to obtain
a physical density matrix, which gives the best approximation
of the measured observables.

APPENDIX B: RECONSTRUCTION OF QUTRIT STATES

The general theoretical discussion presented in this paper
may be used to reconstruct a three-level system (qutrit). In our
work, such a system is implemented using the ground-state
hyperfine level of 87Rb of the total angular momentum f = 1
(Fig. 1). In this case, the density matrix can be written as

ρ =

⎡
⎢⎢⎣

ρR
1̄1̄

ρR
1̄0

+ iρI
1̄0

ρR
1̄1

+ iρI
1̄1

ρR
1̄0

− iρI
1̄0

1 − ρR
1̄1̄

− ρR
11 ρR

01 + iρI
01

ρR
1̄1 − iρI

1̄1 ρR
01 − iρI

01 ρR
11

⎤
⎥⎥⎦, (B1)

where 1̄ = −1. It follows from above that Tr(ρ) = 1. It is
noteworthy that the normalization of the density matrix mod-
ifies the vector b by shifting its elements by a fixed value. It
can be shown [15] that, for a system probed on the transition
f = 1 → F = 2 (Fig. 1), the observables α̂R,I and β̂ are given
by

α̂R = d̂2
+ + d̂2

−
||d̂|| = 1

30
(|1̄〉〈1| + |1〉〈1̄|), (B2a)

α̂I = i(d̂2
+ − d̂2

−)

||d̂|| = i

30
(|1̄〉〈1| − |1〉〈1̄|), (B2b)

β̂ = d̂+d̂− − d̂−d̂+
||d̂|| = 1

6
(|1̄〉〈1̄| − |1〉〈1|), (B2c)

where d̂± are the dipole operators associated with the right (+)
and left (−) circular polarization components of the linearly
polarized probe light, and ‖d̂‖ is the reduced dipole-matrix
element corresponding to the transition.

To expand the set of observables used for tomography, we
introduce the control pulses Ui implemented as pulses of a
DC or nonoscillating magnetic field that induce a geometrical
rotation of the spin polarization by π/2 around the x or y axes.
The explicit forms of the control pulses are

Ux = 1

2

⎡
⎢⎣ 1 i

√
2 −1

i
√

2 0 i
√

2
−1 i

√
2 1

⎤
⎥⎦, (B3a)

Uy = 1

2

⎡
⎢⎣ 1 −√

2 1√
2 0 −√

2
1

√
2 1

⎤
⎥⎦. (B3b)

Applying Ux and Uy to the operators given by Eqs. (B2)
allows one to relate the observables αR,I and β with all
the other density-matrix elements and, hence, reconstruct the
whole density matrix.

APPENDIX C: DERIVATION OF SCALING FACTORS

1. Global scaling factor

An essential parameter of the presented QST technique
is the global scaling factor η(�) in Eq. (A2). The most
convenient way to calculate this parameter is based on the
measurements of the absorption of light by completely unpo-
larized atoms. From the formula describing the change in the
amplitude of the light traversing a medium, given in Ref. [15],
one obtains

δE

E
(t ; �) = 2η(�)

2 f + 1

f∑
n=− f

(
f 1 F

−n 1 n − 1

)2

, (C1)

where f and F are the total angular momenta of the ground
and excited states, respectively, which for our system are
f = 1 and F = 2. Additionally, one should notice that this
model was derived for a two-level system, while in more
complex systems of 87Rb, where the two ground states f = 1
and f = 2 exist, the absorption of light tuned to the f = 1
ground state results only from 3/8 of the total number of
atoms in the sample. As in our experimental procedure, we
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k
I I k

U

I k

I
k

FIG. 6. Simplified scheme of the experimental setup used for the measurements of the global scaling factor η(�). A nonpolarizing beam
splitter (BS) with 1-to-σ splitting ratio is used to measure the light intensity before the it enters atomic ensemble. The light intensity is measured
as a voltage U1(�) = r1σ I1(�), where r1 is the light power-voltage conversion factor in a transimpedance photodetector detector (PD1). The
light intensity is written as a function of the light detuning � to highlight the fact that the changes in the light frequency usually introduce
the corresponding changes in the light intensity emitted by the laser. After BS, there are various optical elements, introducing intensity losses
kin, and a vapor cell containing atoms whose state is to be reconstructed. Next, the beam experiences losses, kout, due to the elements situated
after the cell, and finally the light is split using the balanced polarimeter, consisting of a Wollastone prism and a balanced photodetector. The
output signal U2 is the sum of the voltages measured by each of the PDs that constitute the balanced photodetector. Both PDs have the same
conversion gain r2, thus U2(�) = r2I2(�)(1 − kout ).

repump all the atoms in the f = 1 state, and then Eq. (C1)
needs to be modified to account for the fact:

δE

E
(t ; �) = 8

3

2η(�)

3

1∑
n=−1

(
1 1 2

−n 1 n − 1

)2

= 16

27
η(�). (C2)

Since the amplitude of light is not a parameter easily mea-
surable experimentally, it is more convenient to replace the
light-amplitude change by the light-intensity change,

δE

E
=

√
1 + δI

I
− 1, (C3)

where I is the probing light intensity and δI is the change of
the light intensity resulting from the absorption in the medium
(note that δI is negative).

In a real experiment, the intensity of transmitted light can
be influenced by losses at different optical elements within
the system (e.g., glass walls of the vapor cell). For a reliable
reconstruction, it is crucial to distinguish these losses from the
light absorption in the medium. To address this problem, we
measure the sum of the two outputs of a balanced polarimeter
used for the state reconstruction and the intensity of light
before its transmission through the atomic ensemble (Fig. 6).
This allows us to write

δI

I
= I2(�) − I1(�)(1 − kin )

I1(�)(1 − kin )

= r1σ

r2(1 − kin )(1 − kout )

U2(�)

U1(�)
− 1. (C4)

The most convenient way to determine the overall scaling
[corresponding to the first term in Eq. (C4)] is to measure the
signal for a far-detuned light, � → ∞. As in this case, the
light absorption is negligibly small, and one obtains

U1(∞)

U2(∞)
= r1σ

r2(1 − kin )(1 − kout )
. (C5)

Combining Eqs. (C2)–(C5), we obtain the final relation for the
global scaling factor η(�), which is given by

η(�) = 27

16

⎛
⎝

√
U1(∞)

U2(∞)

U2(�)

U1(�)
− 1

⎞
⎠. (C6)

2. Local scaling factor

The second important parameter that is needed for the
tomography method is the local scaling factor ζ (�). As
discussed in the main text, to calculate the parameter we com-
pare the rotation signals measured for the “stretched” states
pumped along the x and z axes, which are given by the density
matrices

ρz = (1 − ε)

⎡
⎣0 0 0

0 0 0
0 0 1

⎤
⎦ + ε

3
1, (C7a)

ρx = (1 − ε)

⎡
⎢⎢⎣

1
4 − 1

2
√

2
1
4

− 1
2
√

2
1
2 − 1

2
√

2
1
4 − 1

2
√

2
1
4

⎤
⎥⎥⎦

+ ε

3
1. (C7b)

Here, we assumed a small imperfection in pumping man-
ifesting through the isotropic term of the amplitude ε. It is
noteworthy that none of the observables used for the state
reconstruction [given by Eqs. (B2)] generates any signal cor-
responding to the isotropic term (ε = 0). Using Eqs. (B2)
and (A2) allows one to calculate the corresponding rotation
signals for the two cases,

δα(z)(t ; �) = −5(1 − ε)

24
η(�)ζ (�)e−γ2t , (C8a)

δα(x)(t ; �) = − (1 − ε)

48
η(�)e−γ1t cos(2�Lt ). (C8b)

By including the amplitudes of the oscillatory and DC
parts of the signals, the local scaling factor can be finally
calculated as

ζ (�) = 1

10

δα(z)(0; �)

δα(x)(0; �)
. (C9)
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APPENDIX D: CYCLOPS-LIKE MEASUREMENTS

In a real experiment, an oscillating part of the polarization-
rotation signal may experience additional phase shift ϕ and
the whole signal may have a DC offset, D. Thus, Eq. (A2) is
modified to

δα(t ; �) = η(�)
(
[〈α̂R〉 sin(2�Lt + ϕ)

+〈α̂I〉 cos(2�Lt + ϕ)]e−γ1t

− ζ (�)〈β̂〉e−γ2t
) + D. (D1)

These additional factors may arise due to electronics or the
imbalance of the polarimeter. As the reconstruction method
requires fine determination of the quadrature components of
the signal, one concludes that knowing the precise value
of ϕ is needed. In our work, we use a slightly different
approach, incorporating a π rotation around the y axis,
i.e.,

Uy(α) =

⎡
⎢⎢⎢⎣

cos2
(

α
2

) − sin(α)√
2

sin2
(

α
2

)
sin(α)√

2
cos(α) − sin(α)√

2

sin2
(

α
2

) sin(α)√
2

cos2
(

α
2

)

⎤
⎥⎥⎥⎦,

Uy(π ) =

⎡
⎢⎢⎣

0 0 1

0 −1 0

1 0 0

⎤
⎥⎥⎦. (D2)

This results in a sign change in 〈α̂I〉 and 〈β̂〉,〈
α̂

(Y )
R

〉 = 〈Uy(π )†α̂RUy(π )〉 = 〈α̂R〉, (D3a)〈
α̂

(Y )
I

〉 = 〈Uy(π )†α̂IUy(π )〉 = −〈α̂I〉, (D3b)

〈β̂ (Y )〉 = 〈Uy(π )†β̂Uy(π )〉 = −〈β̂〉. (D3c)

For such a pulse, the rotation signal is given by

δα(t ; �) = η(�)([〈α̂R〉 sin(2�Lt + ϕ)

−〈α̂I〉 cos(2�Lt + ϕ)]e−γ1t

+ ζ (�)〈β̂〉e−γ2t ) + D. (D4)

Calculating the difference between the signal with and with-
out the pulse, one obtains

(δα − δα(Y ) )(t ; �) = 2η(�)[−ζ (�)eγ2t 〈β̂〉
+ e−γ1t 〈α̂I〉 cos(2�Lt + ϕ)]. (D5)

As can be seen, this difference depends only on a single
oscillatory component, thus there is no problem with deter-
mining the initial phase. Additionally, one can see that the
difference is free from the offset due to the imbalance of the
polarimeter.

In a similar fashion, one can obtain a signal containing
the second quadrature using the following sequence of two
pulses, with the first pulse introducing the rotation around
the y axis by π (being identical to the previous pulse), and
the second pulse generating the rotation by π/2 around the z

axis:

Uz(α) =
⎡
⎣e−iα 0 0

0 1 0
0 0 eiα

⎤
⎦,

Uzy = Uz(π/2)Uy(π ) =
⎡
⎣0 0 −i

0 −1 0
i 0 0

⎤
⎦. (D6)

The pulses transform the expectation values of the observables
as

〈α̂(ZY )
R 〉 = 〈U †

zyα̂RUzy〉 = −〈α̂R〉, (D7a)〈
α̂

(ZY )
I

〉 = 〈U †
zyα̂IUzy〉 = 〈α̂I〉, (D7b)

〈β̂ (ZY )〉 = 〈U †
zyβ̂Uzy〉 = −〈β̂〉, (D7c)

which allows one to calculate the rotation difference,

(δα − δα(ZY ) )(t ; �) = 2η(�)[−ζ (�)eγ2t 〈β̂〉
+ e−γ1t 〈α̂R〉 sin(2�Lt + ϕ)]. (D8)

Similarly to the former case, the signal contains the infor-
mation about only one quadrature and no dependence on the
polarimeter imbalance.

The robustness of the signal against the unknown phase
shift or the signal offset motivated us to use the CYCLOPS
pulses for our quantum-state reconstruction.

APPENDIX E: EXAMPLES OF RECONSTRUCTION

In order to illustrate the reconstruction of a qutrit state,
we utilize six experimental polarization rotations, presented in
Fig. 7. The signals were observed for the state generated with
the circularly polarized light, propagating along the x axis.

The reconstruction process involved several stages. First,
we measured the absorption of the probing light in an un-
polarized sample to determine the global scaling factor (see
Sec. III C). In the considered experiment, we obtained η(�) =
0.3236(21). To determine the local scaling factor, we pumped
our ensemble using a circularly polarized light propagat-
ing along the x axis to prepare a stretched state in this
direction [see Sec. III C and Fig. 8(a)]. We compare the signal
with the similar results obtained with and without a mag-
netic π/2 pulse applied along the y direction [see Fig. 8(b)].
This allowed us to determine the local scaling factor, which,
in the considered case, was ζ (�) = −0.4790(12). Next, we
recorded nine signals measured with the control pulses. For
each control-pulse sequence (no pulse, π/2 rotation around
the y axis, and π/2 rotation around the x axis), we employed
three different sets of the CYCLOPS pulses (no CYCLOPS
pulse, a pulse in the y direction, and a CYCLOPS pulse in the
z and then y directions). These signals are used to generate the
difference signals [Eqs. (D5) and (D8)], which are shown in
Fig. 7, and then are fitted to reconstruct the expectation values
of the required operators. This is done with shared parameters,
including the frequency, global phase, and relaxation rates.
Finally, we used nine reconstructed observables to perform
linear inversion [according to Eq. (3)], and, thus to obtain a
matrix corresponding to the state. In the considered case, we
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 7. Detected polarization rotations (red dots) and fitted dependences (blue lines), corresponding to the first [Eq. (D5)] (a) and the
second [Eq. (D8)] (b) quadratures of the signal measured without the control pulses. (c) and (d) correspond to the same signals measured with
the pulse rotating the state by π/2 around the y axis, while (e) and (f) correspond to the pulse rotating the state by π/2 around the x axis.
The right column shows magnifications of the first 15 ms of the registered signals. The insets in (a), (c), and (e) show the angular-momentum
probability surfaces [40] of the reconstructed state after respective rotations (denoted with black dashed arrows). The red axis denotes the axis
of the magnetic field applied during detection, which coincides with the probe-light propagation direction.
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(a) (b)

FIG. 8. Results of the measurement of the atomic response when the atoms are polarized along (a) x and (b) z axes. Based on the
measurements, the local scaling factor was determined as ζ (�) = −0.4790(12).

obtained

ρ =

⎡
⎢⎢⎣

0.2363 −0.3903 − 0.0002i 0.2748 − 0.0033i

−0.3903 + 0.0002i 0.5175 −0.3737 + 0.0022i

0.2748 + 0.0033i −0.3737 − 0.0022i 0.2461

⎤
⎥⎥⎦. (E1)

It is evident from its eigenvalues, eig(ρ) = {1.057,−0.041,−0.016}, that the reconstructed matrix is not positive semidef-
inite. In order to address this problem, at the last stage, we applied the maximum likelihood method [33] to find the positive
semidefinite matrix closest to the reconstructed one. This process allowed us to obtain the following density matrix:

ρML =

⎡
⎢⎢⎣

0.2410 −0.3507 + 0.0003i 0.2447 − 0.0020i

−0.3507 − 0.0003i 0.5104 −0.3562 + 0.0027i

0.2447 + 0.0020i −0.3562 − 0.0027i 0.2486

⎤
⎥⎥⎦, (E2)

with nonegative eigenvalues, eig(ρ) = {1, 0, 0}. This state is graphically presented in Fig. 3(a).

[1] K. Mouloudakis, G. Vasilakis, V. G. Lucivero, J. Kong, I. K.
Kominis, and M. W. Mitchell, Effects of spin-exchange colli-
sions on the fluctuation spectra of hot alkali-metal vapors, Phys.
Rev. A 106, 023112 (2022).

[2] R. Shaham, O. Katz, and O. Firstenberg, Strong coupling of
alkali-metal spins to noble-gas spins with an hour-long coher-
ence time, Nat. Phys. 18, 506 (2022).

[3] W. Happer, Optical pumping, Rev. Mod. Phys. 44, 169 (1972).
[4] O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede, Steep

dispersion and group velocity below c/3000 in coherent popu-
lation trapping, Phys. Rev. A 53, R27(R) (1996).

[5] K. Hammerer, K. Mølmer, E. S. Polzik, and J. I. Cirac, Light-
matter quantum interface, Phys. Rev. A 70, 044304 (2004).

[6] H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M.
Petersen, J. I. Cirac, and E. S. Polzik, Entanglement generated
by dissipation and steady state entanglement of two macro-
scopic objects, Phys. Rev. Lett. 107, 080503 (2011).

[7] O. Katz, R. Shaham, E. S. Polzik, and O. Firstenberg, Long-
lived entanglement generation of nuclear spins using coherent
light, Phys. Rev. Lett. 124, 043602 (2020).

[8] K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M.
Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf,
and E. S. Polzik, Quantum memory for entangled continuous-
variable states, Nat. Phys. 7, 13 (2011).
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