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Experimental relative entanglement potentials of single-photon states
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Entanglement potentials (EPs) enable the characterization and quantification of the nonclassicality of single-
mode optical fields by measuring the entanglement generated through beam splitting. We experimentally
generated single-photon states and tomographically reconstructed the corresponding two-qubit states to deter-
mine EPs defined via popular two-qubit measures of entanglement. These include the potentials for the relative
entropy of entanglement (REEP), concurrence, and negativity. Among our experimental states, we found those
that are very close (at least for some ranges of parameters) to the theoretical upper and lower bounds on relative
EPs (or relative nonclassicality), i.e., when one EP is maximized or minimized for a given value of another
EP. We experimentally confirmed the counterintuitive theoretical result of Miranowicz et al. [Phys. Rev. A 92,
062314 (2015)] that the relative nonclassicality (specifically, the negativity potential for given values of the
REEP) of single-photon states can be increased by dissipation.
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I. INTRODUCTION

Nonclassical states of light play a key role in various
quantum technologies, ranging from quantum communica-
tions and information processing to quantum metrology. Their
properties facilitate inherently secure cryptography [1–3],
supremacy of quantum computing [4], and imaging and sens-
ing with resolutions above classical limits [5,6]. An effective
and experimentally suitable approach for the nonclassicality
description is thus an indispensable ingredient enabling these
technologies.

A quantum-optical state is considered nonclassical if its
Glauber-Sudarshan P function is not positive semidefinite [7].
Based on this definition, various measures of single-mode
nonclassicality have been proposed and studied, such as (1)
the nonclassical distance [8], defined as the distance of a given
state to the closest classical state, (2) the nonclassical depth
[9,10], defined as the minimum amount of Gaussian noise
required to convert a given nonclassical state into a classical
one, and (3) entanglement potentials (EPs) [11]. The latter are
studied in detail in this paper. For a comparative study of these
nonclassicality measures see Ref. [12]. Moreover, nonuniver-
sal criteria (often referred to as nonclassicality witnesses) are
often applied in quantifying single- or multimode nonclassi-
cality. These include the nonclassical volume [13], the Wigner
distinguishability [14], and the potentials for quantum steering
and Bell nonlocality [15], among dozens of other criteria (see,
e.g., [16] and references therein). Here we apply the EPs,
which have a number of advantages compared to other meth-
ods: (1) some of the EPs can be easily calculated (as shown
in the following sections) contrary to, e.g., the nonclassical
distance, (2) they can distinguish the nonclassicality degree
of a wider variety of the classes of states compared to the

nonclassical depth, (3) they are measurable, as we recently
demonstrated experimentally [17], and (4) they are universal
[11], as required for good nonclassicality measures, in con-
trast to nonclassicality witnesses. Thus, EPs prove to be a very
convenient and experimentally feasible tool for describing
and quantifying nonclassicality. This concept is built upon
the ability of a nonclassical state to produce entanglement by
interacting with purely classical states, usually the vacuum
(see Fig. 1). An example of this effect is the single-photon
state that transforms into a Bell state after interacting with the
vacuum on a balanced beam splitter (BS).

Classical state

Input state
Output state

Interaction

FIG. 1. Conceptual scheme of entanglement potentials. A tested
state interacts with a purely classical state. The entanglement de-
tected in the output two-mode state reveals the nonclassicality of
the tested state and corresponds to its entanglement potential, as
quantified by a chosen entanglement measure.
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A practical benefit of EPs is that they exploit the
well-developed formalism for the quantification of bipartite
entanglement to describe single-mode nonclassicality. More-
over, any entanglement measure might be used to define the
corresponding EP, thus allowing us to gain a deeper un-
derstanding of nonclassicality by studying mutual relations
between various EPs. In this work, we focus on the EPs de-
fined by the Wootters concurrence [18], the Peres-Horodecki
negativity [19,20], and the relative entropy of entanglement
(REE) [21].

This paper studies EPs, so it is related to our former the-
oretical [12,15,22] and experimental [17] works. However,
we should emphasize that the results and their physical im-
plications reported here are different from those described
in our related experimental works [17], which focused on
the relative potentials for entanglement, Einstein-Podolsky-
Rosen (EPR) steering, and Bell nonlocality. In contrast to
that work, we report here experimental relative EPs. Thus,
this paper presents an experimental demonstration validating
the theoretical predictions outlined in Refs. [12,22], while our
previous experiment reported in [17] confirmed the concepts
and predictions of Ref. [15].

Specifically, we experimentally generate maximally and
minimally nonclassical single-photon states by quantifying
their nonclassicality with relative EPs and refer to them as
the relative nonclassicality measures of a single photon. By
considering two EPs (say, EP1 and EP2) defined via different
measures of entanglement, we refer to the maximal (minimal)
relative EP1 vs EP2 if EP1 is maximized (minimized) with re-
spect to a given value of EP2 for arbitrary single-qubit states.
We experimentally demonstrate that we can increase the rela-
tive EPs for some entanglement measures by dissipation, thus
experimentally confirming the predictions of Ref. [22], as well
as some predictions of Refs. [12,23–25] on the bounds of
relative entanglement measures.

The measured value of a given EP is affected by both the
genuine properties of a tested state and the imperfections in
its interaction with the chosen classical state. In this paper,
we show that by analyzing the mutual relations among sev-
eral EPs defined by standard entanglement measures, one can
distinguish between these two effects. This capability makes
the EPs a considerably more reliable tool for experimental
nonclassicality quantification.

We support our theoretical predictions [22] with a proof-
of-principle experiment on the platform of linear optics.
In this experiment, we first generate the vacuum and one-
photon superposition (VOPS) states that then interact with
the vacuum on a BS. To avoid the need for the experi-
mentally demanding vacuum detection, while reconstructing
the output state, we encode the single-photon state into the
horizontal polarization of a photon and the vacuum into
its vertical polarization, which can be treated as a place-
holder. We utilize the fact that a vertically polarized photon
state has a vacuum component in its horizontal mode, i.e.,
|0〉H |1〉V , where the numbers denote the Fock states in the
horizontal and vertical modes, respectively. For a more de-
tailed description of the experimental implementation, see
Sec. III.

II. NONCLASSICALITY QUANTIFIED
BY ENTANGLEMENT POTENTIALS

A. Entanglement potentials

We calculate EPs for VOPS states, which can be described
by the density matrix

σ (p, x) =
(

1 − p x

x∗ p

)
(1)

expressed in the basis of the vacuum |0〉 and the Fock single-
photon state |1〉, with p being the single-photon probability
and x being a coherence term. Alternatively, one can write
x = eiφDxmax, where xmax = √

(1 − p)p is the maximal pos-
sible absolute value of the coherence term, D ∈ [0, 1] is a
dephasing factor, and φ ∈ [0, 2π ) is an arbitrary phase. The
dephasing factor can be interpreted by assuming a pure state
affected by a dephasing channel, with a phase-flip probability
of f ; then D = |1 − 2 f |.

Assuming a given VOPS state at one port of a BS and the
vacuum state at the other port, the output density matrix reads
[15]

ρwr (p, x) =

⎛
⎜⎜⎜⎝

1 − p −wrx wtx 0

−wrx∗ pr2 −pw2rt 0

wtx∗ −pw2rt pt2 0

0 0 0 0

⎞
⎟⎟⎟⎠, (2)

given in the standard computational basis
{|00〉 , |01〉 , |10〉 , |11〉}, where r and t are the reflection and
transmission coefficients, respectively. Due to the fact that the
phases of r and t do not affect any reasonable entanglement
measure, we assume they are both real non-negative. We
assume that both output ports of the BS are uniformly affected
by phase damping (see Appendix A 7), as described by the
phase-damping parameter κ ≡ κ1 = κ2 or, equivalently, the
parameter w = √

1 − κ for w, κ ∈ [0, 1], where w = 1
corresponds to a perfectly coherent interaction.

The matrix in Eq. (2) can be used to calculate any en-
tanglement measure. In this paper, we use the negativity,
the concurrence, and the REE to quantify the output state
entanglement.

The negativity [19,26,27], which is related to the Peres-
Horodecki entanglement criterion, is defined for a two-qubit
state ρ as either zero or the absolute value of the smallest
negative eigenvalue of a partially transposed density matrix
and is multiplied for convenience by a factor of 2:

N (ρ) = max[0,−2 min eig(ρ� )], (3)

where the superscript � denotes partial transposition.
The Wootters concurrence can be calculated using the for-

mula [18]

C(ρ) = max

(
0, 2λmax −

∑
j

λ j

)
, (4)

where λ2
j = eig[ρ(Y ⊗ Y )ρ∗(Y ⊗ Y )], λmax = max jλ j , the

asterisk (∗) denotes complex conjugation, and Y is a Pauli
operator.
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FIG. 2. Relative entanglement potentials: (a) CPwr (σ ) vs NPwr (σ ), (b) CPwr (σ ) vs REEPwr (σ ), and (c) NPwr (σ ) vs REEPwr (σ ) for
arbitrary single-qubit states σ . Note that the two-qubit states ρwr , which can be generated from σ by a balanced BS (t = r = 1/

√
2) and

assuming no damping (w = 1) in a perfect EP-detection setup, are located in the yellow regions. By contrast to this, the cyan regions in
(c) indicate those ρwr which cannot be generated from σ in this way; their generation requires an additional resource, i.e., a tunable BS with
t �= r, amplitude, or phase damping (w < 1). Characteristic points are plotted at (E1 ≈ 0.228, N1 ≈ 0.377), (E2 ≈ 0.385, N2 ≈ 0.527), and
(E3 ≈ 0.397, N3 ≈ 0.6). Their meaning is explained in the text.

The REE [21] is another popular two-qubit entanglement
measure and is defined as

REE(ρ) = S
(
ρ
∣∣∣∣ρopt

sep

) ≡ min
ρsep∈D

S(ρ||ρsep) (5)

in terms of the Kullback-Leibler distance, S(ρ||ρsep) =
Tr(ρ log2 ρ − ρ log2 ρsep), of a given two-qubit state ρ from
the closest separable state ρ

opt
sep, where D is the set of all

two-qubit separable states ρsep.
Thus, one can define the negativity potential (NP), the

concurrence potential (CP), and the relative entropy of entan-
glement potential (REEP) as

NPwr[σ (p, x)] = N[ρwr (p, x)], (6)

CPwr[σ (p, x)] = C[ρwr (p, x)], (7)

REEPwr[σ (p, x)] = REE[ρwr (p, x)], (8)

respectively. In particular, these generalized EPs reduce to the
standard ones assuming a balanced BS (with t = r) and no
damping (w = 1). Note that the potential is attributed to the
single-mode state σ by evaluating the entanglement of the
two-mode state ρ.

We highlight again that to acquire a “true” EP of the in-
put state one needs to have a balanced (r = t = 1/

√
2) and

lossless (w = 1) BS; otherwise, the values of the observed
EPs are diminished due to imperfect interactions. Simultane-
ously, such imperfect interactions can increase relative EPs;
thus, they can be considered a resource, as explained in detail
below.

B. Relative entanglement potentials

We refer to the relative entanglement potentials and rela-
tive nonclassicality of a single-mode state when considering
an EP for a given value of another EP calculated for the same
state. Specifically, we study the following relative EPs: the CP

vs NP, CP vs REEP, and NP vs REEP and vice versa, as shown
in Fig. 2.

The yellow regions in all the panels of Fig. 2 show the
allowed values of the relative EPs for arbitrary single-photon
states assuming a perfectly balanced (t = r) and lossless BS.
As predicted theoretically in Ref. [22], the cyan regions in
Fig. 2(c) can be reached by relative EPs only for imperfect
BSs, e.g., assuming their phase damping, amplitude damping,
or unbalanced splitting.

Note that a straight line is observed for pure states when
comparing the CP and NP, as shown in Fig. 2(a). However,
the REEP is defined by logarithms, while the CP and NP are
not. Thus, straight lines are not observed for pure states in
Figs. 2(b) and 2(c).

This work reports our experimental generation and tomo-
graphic detection of (1) the states in the cyan regions of
Fig. 2(c) and (2) the states close to the maximally nonclassical
states, which are explicitly defined in the Appendix.

III. EXPERIMENTAL SETUP

We constructed an experimental setup on the platform of
linear optics (see Fig. 3). As mentioned above, we employ
polarization encoding, where the horizontal component of
the polarization represents the single-photon state while the
vertically polarized component represents the vacuum state.

Separable photon pairs are generated using a type-I
spontaneous parametric down-conversion (SPDC). One
photon from each pair is guided through an optical fiber
into the single-qubit-preparation stage. There, using a set of
motorized quarter-wave (QWP) and half-wave (HWP) plates,
the photon is transformed into any pure single-qubit state
in the form of Eq. (1) with D = 1. To tune the value of D,
a set of two beam displacers (BDs) with a half-wave plate
rotated by 45◦ in the middle is used. The second BD can by
tilted by a piezoactuator, allowing us to set a path difference
and thus a phase shift 	φ between the two polarization
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FIG. 3. Scheme of the experimental setup. SPDC stands for
spontaneous parametric down-conversion, BBO denotes beta barium
borate (β-BaB2O4) crystal, and PDBS stands for polarization-
dependent beam splitter.

components. By changing randomly, with proba-
bility f , between the identity (	φ = 0) and the
phase-flip (	φ = π ) operations, a desired value
of D is achieved. The single qubit is then guided
through another optical fiber into the first port of the
polarization-dependent beam splitter (PDBS). The second
photon from each pair is vertically polarized, as it plays the
role of the vacuum, and is guided directly from the SPDC
source into the second port of the PDBS.

The PDBS allows for independent tuning of the beam-
splitting ratio for the horizontal and vertical polarization
modes. The PDBS is implemented by means of a Mach-
Zehnder interferometer composed of two polarizing beam
splitters (PBSs) with a motorized HWP in each arm. The
horizontal (vertical) polarization components of both photons

meet in armH (armV) after implementing a bit-flip operation
to one of the inputs (HWP2).

For example, a vertically polarized photon from port2 is
transmitted through PBS1, while a vertically polarized photon
from port1 is first transformed, via the bit-flip operation, into
a horizontally polarized photon and subsequently reflected
by PBS1. At this point the originally vertical polarization
components of the first and second input modes are directed
into the same spatial mode with the horizontal and vertical po-
larizations, respectively. Subsequently, these modes impinge
on HWPV, which acts on these polarization modes identi-
cally to a tunable BS acting on spatial modes. Mixing the
polarization states in the arms intertwines the signal from
different inputs; therefore, the reflection coefficients for each
polarization component are set by the rotation of the wave
plates: rH;V = sin(2θH;V). The rotation of HWP3 is offset by
45◦ to compensate for the initial bit-flip operation. For all
measurements, θV is set to 22.5◦, accomplishing a balanced
splitting for the vertical polarization component, correspond-
ing to the symmetric behavior of the vacuum on a BS, while
θH is tuned.

Because a HWP rotated by 22.5◦ serves as a balanced
beam splitter for the polarization components, the origi-
nally vertically polarized photons, which are directed by
PBS1 into the same spatial mode as orthogonal polariza-
tions, are subjected to the Hong-Ou-Mandel effect |H〉 |V 〉 →
(|H〉 |H〉 − |V 〉 |V 〉)/

√
2. Thus, both the vacuum placeholders

are bunched at the output of PBS2.
Note that the rotation of HWPH enables us to achieve the

optimal splitting ratio for the horizontal polarization; we set
the rotation by 22.5◦ for balanced splitting. However, in this
experiment, we also investigate the effect of an imperfect in-
teraction upon the studied potentials. Then, the splitting ratio
for the horizontal polarization, representing the single-photon
component, is tuned by rotating HWPH.

Due to the specific nature of the applied encoding, which
implies the bunching at a BS of vertically polarized photons
corresponding to the vacuum, we cannot use standard quan-
tum tomography. We designed a special detection apparatus
and procedure to reconstruct the output-state density matrix.
The detection apparatus consists of a set of wave plates fol-
lowed by a polarizing BS in both output ports of the PDBSs.
One output port of each of these splitters is guided directly to
a single-photon detector, while the other is led to a fiber BS,
whose one output is then guided to a third detector. Using co-
incidence logic, events consisting of simultaneous detections
by two detectors are registered.

The reconstructed density matrix takes the form

ρout =

⎛
⎜⎜⎜⎝

ρ11 ρ12 ρ13 0

ρ21 ρ22 ρ23 0

ρ31 ρ32 ρ33 0

0 0 0 0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

MA MC MD 0

M∗
C 0MBM∗
D 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠,

MB =
(

ρ22 ρ23

ρ32 ρ33

)
, (9)

where MB is a 2 × 2 matrix, and we assume only
the absolute value of the off-diagonal elements because
any state in Eq. (2) can be transformed into a fully
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positive matrix using only local rotations and, as a result,
the entanglement measures are independent of the phases
in ρout.

We split the detection procedure into several steps corre-
sponding to the blocks in the matrix in Eq. (9). The term MA

corresponds to the case of two vertically polarized photons
on the input. Due to the rotation of HWPV and the Hong-
Ou-Mandel effect [28], such photons bunch at the output of
the PDBS, meaning they are both in one output port or the
other. Because they propagate symmetrically in both arms and
the vertical polarization serves only as a placeholder for the
vacuum, we register the signal only in one arm and correct
for the undetected signal accordingly. The term is measured
using detectors detA and detB, while the shutter in port4 is
closed and wave plates in port3 are set, so that the bunched
photons split in half of the cases. Overall, the measured signal
is multiplied by a factor of 4 (a factor of 2 from focusing only
on one output arm and another factor of 2 due to the splitting
probability).

The term MB corresponds to the case of one horizontally
polarized photon in either port3 (ρ22) or port4 (ρ33) and the
coherence factor between these cases (ρ23). The vertically
polarized component propagates symmetrically in both output
arms. In this case, we register the vertically polarized compo-
nent in the output port where the horizontal component is not
detected. To correct for neglecting the vertical component in
the other arm, we multiply the signal by the factor of 2. The
submatrix MB itself is measured by standard two-qubit state
tomography [29,30] using detA and detC, and a maximum-
likelihood estimation is applied. This leads to a matrix of the
form

ρB =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0

M̃B0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎠, (10)

where M̃B is the normalized MB. A proper renormalization
takes into account the measurement of MA.

The terms MD and MC in Eq. (9) are calculated directly
from the visibility v of the interference pattern, which is re-
lated to the coherence term v(ρ11 + ρ33)/2 = |MD|, while the
position of the interference pattern corresponds to the phase
of MD. Thus, to acquire the MD term, we measure directly
the coherence between ρ11 and ρ33 via an interference pattern
on the fiber BS using the detectors detA and detB. In port3,
we project onto the term ρ11 using the same setting as when
measuring MA. In port4, the shutter is left open, and the wave
plates are set such that the term ρ33 is projected onto the
same set of detectors, leading to the interference of the two
projected terms. A piezo-driven phase shifter (PA3) is used to
sweep through the whole interference pattern, whose maxima
and minima can be used to calculate the absolute value of
the coherence term. Note that due to the instability of the
interferometer formed by the PBS2 and a fiber BS, it is impos-
sible to precisely determine the phase of MD. Fortunately, this
is unnecessary for our purposes. On the other hand, precise
determination of the maxima and minima of an interference
pattern is guaranteed by sweeping multiple times through the

pattern. Using the same measurement method with settings
symmetrically swapped for port3 and port4, we acquire the
value of MC . For more details about the measurement proce-
dure, see [17], where we used this setup for a conceptually
different experiment.

The applied tomography method includes several modifi-
cations compared to typical two-qubit tomography schemes
(see, e.g., [31–34] and references therein). The key difference
lies in the fact that in this experiment, the cases when both
photons leave the PBS2 at the same output port must be
detected in order to evaluate all the components of a given
density matrix. This is not the case in typical two-qubit to-
mography, in which measurement is performed solely on the
coincidences across the output ports. This difference con-
stitutes the reason for the step-by-step reconstruction of the
density matrix from the blocks described in Eq. (9). Specifi-
cally, the off-diagonal terms have to be evaluated by adding
a fiber coupler superimposing the output ports. We benefit
from the fact that the phase value of these components does
not have any physical impact on the evaluated entanglement
measures. As a result the interferometer formed by PBS2 and
this fiber coupler is not required to be phase stable, and only
the interference visibility needs to be measured. A maximum-
likelihood procedure is used in the final stage of the estimation
to ensure the physicality of the reconstructed density matrices.
A similar procedure requiring an additional fiber coupler and
a step-by-step reconstruction of the density measurement was
successfully tested before, e.g., to verify the preparation of the
two-photon Knill-Laflamme-Milburn states [35,36].

At the end of this section, let us also explain the differ-
ence between our current experiment and that reported in
Ref. [17]: (1) We are effectively using the old experimen-
tal setup, which, however, now encompasses an unbalanced
splitting of photons and the possibility of incoherent interac-
tions. Specifically, the difference is that the wave plate HWPH

within the PDBS device is varied to introduce the incoherent
interaction, whereas it remained at a fixed setting in Ref. [17].
Thus, tunability was possible with the previous setup; how-
ever, it was not explored since that was not the goal of our
previous experiment. (2) We perform measurements of new
classes of states. Specifically, the states that have undergone
imperfect interaction, i.e., with an unbalanced beam-splitting
ratio and controllable incoherent interactions. (3) We perform
a previously unused postprocessing of the measured states.
Specifically, we apply a probabilistic mixing of the registered
counts for HWPH rotated to ±22.5◦ in order to achieve the
incoherent beam splitting.

IV. EXPERIMENTAL RESULTS

Here we analyze the following experimentally obtained
classes of states: (i) pure input states and coherent interaction
with the vacuum (for the BS parameters r ∈ [0, 1] and w =
1), (ii) dephased input states and coherent interaction with the
vacuum, and (iii) a one-photon state subjected to an incoher-
ent interaction with the vacuum with a varying incoherence
parameter. For the ranges of density-matrix parameters see
Table I.

To verify that the setup is properly adjusted and the pro-
duced states qualify as class (i), we put a condition on the
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TABLE I. Classes of experimentally measured states, where p is
the single-photon probability, x is the coherence parameter, xmax =√

p(1 − p) is the maximum value of the coherence parameter, r
is the reflectivity amplitude, and w characterizes the output state
coherence.

Class of states p x r w

(i) Pure input [0,1] xmax [0,1] 1
(ii) Dephased input [0,1] 0 1/

√
2 1

(iii) Incoherent interaction 1 0 = xmax 1/
√

2 [0,1]

value of the off-diagonal terms:
√

ρ12/ρ
max
12

√
ρ13/ρ

max
13 > 0.5,

where ρmax
1 j = √

ρ11ρ j j is the maximal possible value of ρ1 j

given the values of ρ11 and ρ j j for j ∈ {2, 3}.
The incoherent interaction needed to prepare states of class

(iii) was achieved by randomly swapping θH between ±22.5◦
and summing the registered coincidence counts.

For all of the output states, we calculated the three entan-
glement measures: the negativity, the concurrence, and the
REE. All these quantities were estimated with uncertainties
typically below 0.03. In Fig. 4, we plot their mutual relations
for the measured states. In these three plots, the white area
represents mutual relations that are unphysical for any two-
qubit state. In Fig. 4(a) we show the mutual relation between
the negativity and the concurrence for the experimental states.
This relation allows us to separate dephased input states from
pure input states independently of the (in)coherence of the
interaction. For a better understanding, this plot depicts the-
oretical loci for states of various parameters D and w.

Figure 4(a) shows that our experimentally generated states
are located relatively close to the theoretical lower boundary
states (labeled P) for any values of NP. Even though the
experimental states dephased at the input [class (ii)] do not
lie exactly on the opposing boundary D, they are clearly sep-
arated from the other classes. Moreover, Fig. 4(b) shows the
relation between the concurrence and the REE. States of class
(iii) do cover the boundary line B as theoretically predicted.
On the other hand, the experimental states of classes (i) and
(ii) do not correspond exactly to the theoretical boundaries
P and D, respectively. Nevertheless, they can be mutually
separated by the boundary line B.

Figure 4(c) demonstrates distinct regions of physically
possible EPs. The yellow inner region represents the EPs
attainable with any input state interacting on a balanced and
lossless BS. The cyan areas are achievable only if the interac-
tion is incoherent (larger upper area) or the BS is unbalanced
(small lower area). As a result, by analyzing the mutual re-
lation between the REE and the negativity, we can clearly
uncover imperfections in the interaction. It is seen that states
of class (iii) are located in the cyan region, while all the other
states remain in the yellow region (up to experimental imper-
fections). Note that the smaller cyan area on the right-hand
side is theoretically reachable by unbalanced beam splitting.
In experiment, this area proved to be unattainable because
the area is very small and dephasing of the output (and other
experimental imperfections) pushes the states to the left-hand
side of the plot. This shortcoming, however, does not diminish
the main point shown by this plot. Observing EPs outside of

0.0

0.2

0.4

0.6

0.8

1.0

10
0.0

0.2

0.4

0.6

0.8

1.0

lait
net

o
p
ec

ner r
uc

n
o
C

0.0 0.2 0.4 0.6 0.8 1.0

Negativity potential

(a)

(i) Pure input

(ii) Dephased input

(iii) Incoher. interact.

D = 1.0
w = 1.0

D = 0.95
w = 1.0

D = 0.8
w = 1.0

D = 0.0
w = 1.0

D = 0.0
w = 0.95

D

P

0.0

0.2

0.4

0.6

0.8

1.0

10
0.0

0.2

0.4

0.6

0.8

1.0

lait
net

o
p
ec

nerr
uc

n
o
C

0.0 0.2 0.4 0.6 0.8 1.0

REE potential

(b)

(i) Pure input

(ii) Dephased input

(iii) Incoher. interact.

D

P

B

0.0

0.2

0.4

0.6

0.8

1.0

10
0.0

0.2

0.4

0.6

0.8

1.0

lait
net

o
p
yti

vita
ge

N

0.0 0.2 0.4 0.6 0.8 1.0

REE potential

(c)

(i) Pure input

(ii) Dephased input

(iii) Incoher. interact.

B
P

A

Z

D

FIG. 4. Relative entanglement potentials defined by various en-
tanglement measures for the experimental states representing classes
(i)–(iii). The gray middle curve in (c) corresponds to our theoretical
predictions for the states in class (iii).

the yellow area signals imperfections in the BS interaction
and warns that the observed potentials underestimate the true
values of EPs of the tested states.
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Therefore, these relations allow us to distinguish between
the three tested classes of states. The relation between the CP
and the NP distinguishes classes (i) and (iii) from class (ii),
while the relation between the REEP and the NP distinguishes
classes (i) and (ii) from class (iii).

Finally, one can observe in Fig. 4(c) that our experimen-
tally generated states are located relatively close to theoretical
boundary states A, B, Z , D, and even P for some ranges of
the NP. But we must admit that we failed to generate high-
quality pure states P for NP > 0.4. We note that all the raw
and processed experimental data, along with the processing
scripts, are provided in the Supplemental Material [37].

V. DISCUSSION AND CONCLUSIONS

We both theoretically and experimentally analyzed the re-
lations among the three EPs for various classes of states.
These include the potentials: REEP, CP, and NP. Specifically,
we compared CP and NP, CP and REEP, and NP and REEP for
experimentally generated and tomographically reconstructed
states. Our experimental results are consistent with previous
theoretical expectations in the sense of relative EPs reachable
by states belonging to these classes.

We conducted different experiments using essentially the
same optical setup as that used in Ref. [17]. Therefore, the
main differences from the previous experiment lie in the
results (obtained here for both balanced and unbalanced split-
ting of photons) and their interpretation. Specifically, we
experimentally generated single-qubit states close to those
with maximal and minimal relative EPs. Note that Ref. [17]
focused on showing the feasibility of our experimental setup
for demonstrating the hierarchy of the potentials for quantum
entanglement, EPR steering, and Bell nonlocality.

In our experiments, we employed photon polarization
instead of photon-number encoding, which is typically con-
sidered for the determination of EPs. Specifically, we assumed
that the horizontal and vertical components of polarization
states represent the single-photon and vacuum states, re-
spectively. We emphasize again that the applied polarization
encoding serves as an effective analog to the encoding of
VOPS states, significantly simplifying their physical realiza-
tion. Indeed, polarization encoding offers a much simpler
approach than photon-number encoding or single-rail encod-
ing, which are affected by photon loss and dark counts.
Nevertheless, the use of polarization encoding does come
with its own experimental challenges. Most notably, an imper-
fect polarization adjustment using polarization encoding may
manifest as photon creation in the framework of the VOPS
states. We minimize this adverse effect by fine tuning of the
setup and by adding polarizers to the input, thus purifying
the polarization states obtained from the two-photon source.
It should be pointed out that a similar problem arises in
the genuine VOPS encoding considering that single-photon
detection is burdened by dark detection events. Photon loss
that cannot be easily prevented poses a significant challenge
to the implementation of VOPS states. This issue does not
affect the results obtained in the polarization encoding be-
cause of the postselection on two-photon detection events.
Thus, we can overcome the majority of technological losses
which are polarization independent, including fiber coupling,

back-reflection, absorption on imperfect components, and de-
tector efficiency.

Based on the experimentally reconstructed two-qubit states
generated from single-photon states, we determined the EPs
defined by the Peres-Horodecki negativity, the Wootters
concurrence, and the relative entropy of entanglement.
Among our experimental states we were able to find those
which are very close to the theoretical upper and lower bounds
of the relative EPs, as predicted in Refs. [12,15,22].

Moreover, we confirmed experimentally the counterintu-
itive theoretical result of Ref. [22] that the NP for given values
of the REEP can be increased by dissipation. We note that our
improved experimental setup, in contrast to that of Ref. [17],
enables performing unbalanced splitting of photons and the
possibility of introducing controllable incoherent interactions.
This is accompanied by postprocessing of the measured state,
which was not used in the previously reported experiment.

We documented the benefits of studying the relations be-
tween EPs, as they allow us to detect imperfect interaction
between the tested state and the classical state. Detect-
ing imperfections in the interaction is critical in preventing
misjudging the states’ true nonclassicality. Considering that
imperfections are unavoidable in experimental reality, espe-
cially in near-future quantum technologies, we believe that our
findings are relevant for the practical deployment of EPs as a
method for nonclassicality quantification.

Further analysis could be performed to allow us to estab-
lish markers of various interaction flaws (unbalanced beam
splitting, decoherence, and amplitude damping). One could,
for instance, immediately deduce the incoherence of the in-
teraction by comparing the absolute value of the term ρ12 to
its maximum value ρmax

12 . Our analysis, however, enables us to
estimate the impact of this incoherence on the observed EPs.
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APPENDIX: MAXIMALLY NONCLASSICAL
SINGLE-QUBIT STATES

Here we recall, after Refs. [12,22], definitions of maxi-
mally nonclassical single-qubit states and their corresponding
two-qubit states, which are located at the upper or lower
theoretical bounds of various relative EPs, as shown in Figs. 2
and 4. Note that Appendix A 1 to A 4 define the boundary
state for the yellow area in Figs. 2 and 4, while the remaining
sections define the boundary states for the extended cyan area.

1. Pure states σP

First, we consider single-qubit pure states,

|ψp〉 =
√

1 − p |0〉 + eiφ√
p |1〉 , (A1)
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which are nonclassical for any p ∈ (0, 1]. Note that σP ≡
|ψp〉 〈ψp| is a special case of Eq. (1) for |x| = √

p(1 − p) =
xmax and φ = Arg(x). An arbitrary pure state |ψp〉, after being
mixed with the vacuum at the balanced and lossless BS, is
transformed into the entangled states for p �= 0:

|out (p)〉 =
√

1 − p|00〉 +
√

p

2
(|10〉 − |01〉), (A2)

which reduces to the singlet state for p = 1. The EPs are
simply given by

REEP(σP) = h
(

1
2 [1 +

√
1 − p2]

)
,

CP(σP) = NP(σP) = p, (A3)

where h is the binary entropy.
As seen in Fig. 2, single-qubit pure states are the maximally

nonclassical states corresponding to the upper bounds for (1)
the NP and (2) the REEP as a function of CP ∈ [0, 1], as
well as (3) the REEP as a function of NP ∈ [N2, 1], where
N2 ≈ 0.527.

Moreover, on the scale of Fig. 2(c), we cannot see any
differences between the curves for the pure states σP and the
optimally dephased states σZ , as defined below, if NP < N0 ≈
0.2. Experimentally, these σP and σZ cannot be distinguished
for this range of NP. Thus, effectively, pure states can also
be considered maximally nonclassical in terms of (4) the
largest NP as a function of the REEP for NP ∈ [0, N0], where
N0 ≈ 0.2 assuming a balanced and lossless BS.

2. Completely dephased states σD

Completely dephased single-qubit states, which are also re-
ferred to as completely mixed states [12,22], are the mixtures
of |0〉 and |1〉 corresponding to the special case of Eq. (1) for
the vanishing coherence parameter x = 0, i.e.,

σD = σ (p, x = 0) = (1 − p) |0〉 〈0| + p |1〉 〈1| . (A4)

We recall that σD is transformed by the balanced and lossless
BS (with the vacuum in the other port) into the Horodecki
state,

ρH(p) = ρout (p, 0) = p |−〉 〈−| + (1 − p) |00〉 〈00| ,
(A5)

which is a mixture of the singlet state, |−〉 = (|10〉 −
|01〉)/

√
2, and the vacuum. The entanglement (as well as EPR

steering and Bell nonlocality) of the two-photon Horodecki
states has been studied intensively (see, e.g., Refs. [20,38,39]
and references therein). The EPs for ρD thus correspond to the
known entanglement measures of the Horodecki states [25]:

REEP(ρD) = (p − 2) log2

(
1 − p

2

)
+ (1 − p) log2(1 − p),

NP(ρD) =
√

(1 − p)2 + p2 − (1 − p), (A6)

and CP(ρD) = p.
The completely dephased states ρD, as shown in Fig. 2, are

the maximally nonclassical single-qubit states with respect to
the largest values of (1) the CP as a function of NP ∈ [0, 1],
(2) the CP vs REEP ∈ [0, 1], (3) the REEP vs NP ∈ [0, N0],
where N0 ≈ 0.2, and (4) assuming a balanced and lossless BS,
the NP vs REEP ∈ [E3, 1], where E3 = 0.397.

3. Optimally dephased states σZ

Optimally dephased single-qubit states, which maximize
the NP for a given value of the REEP assuming a perfectly
balanced and lossless BS in an EP setup, are defined as [22]

σZ(N̄ ) = σ [popt, xopt = f (popt, N̄ )], (A7)

where, for brevity, we denote N̄ ≡ NP and

f (p, N̄ ) = 1
2

√
(1 + p/N̄ )[2N̄ (N̄ + 1) − (N̄ + p)2]. (A8)

The optimal probability popt is found numerically by minimiz-
ing

REEP{σ [popt, f (popt, N̄ )]} = min
p

REEP{σ [p, f (p, N̄ )]}.
(A9)

Here, the minimization is performed for p ∈
[N̄,

√
2N̄ (N̄ + 1) − N̄] for a given N̄ . It is seen in Fig. 2(c)

that σZ(N̄ ) is practically indistinguishable from σD for
N̄ > N3 ≈ 0.6 or, equivalently, for REEP > E3 ≈ 0.397.
Moreover, σZ(N̄ ) goes into pure states σP for small N̄ (say,
N̄ � 0.2). Thus, these partially dephased states become
completely dephased for large EPs and completely purified
for small EPs. However, σZ(N̄ ) is clearly different from both
σP and σD for N̄ close to N1 ≈ 0.377.

4. Optimally dephased states σY

Note that there exist optimally dephased single-qubit states
(say, σY) when comparing the NP and the REEP in Fig. 2(c),
for which NP(σY) has slightly lower values than both NP(σD)
and NP(σP), especially near the crossing at N1 ≈ 0.377 of
the curves for NP(σD) and NP(σP). Nevertheless, the states
NP(σY) cannot be distinguished from NP(σD) (if NP � N1)
and NP(σD) (if NP � N1) on the scale of Fig. 2(c); there-
fore, due to experimental uncertainty, they also cannot be
distinguished experimentally. Thus, σY are not discussed in
detail in this paper, and consequently, min[NP(σD), NP(σP)]
are considered to be an effective lower bound for the NP vs
REEP assuming a balanced and lossless BS in our setup.

5. Boundary states ρA by unbalanced beam splitting

The above four classes of two-qubit states can be generated
from single-qubit states assuming a perfectly balanced and
lossless BS (θ = π/2) in an ideal EP-detection scheme. Here
we assume that the BS can be tuned to change its reflectivity,
R = r2 = sin2(θ/2), and transmissivity, T = t2 = cos2(θ/2).
Then, a completely dephased state σD = σ (p, x = 0) is trans-
formed by a tunable BS into the generalized Horodecki state
[22]:

ρθ
out (p, x = 0) = p|q〉〈q| + (1 − p)|00〉〈00|

≡ ρGH(p, q = R), (A10)

where p, q ∈ [0, 1] and

|q〉 = √
q|01〉 −

√
1 − q|10〉. (A11)

The boundary states ρA, which are shown in Figs. 2(c) and
4(c), are given as

ρA(N̄ ) = ρGH[ p̄opt, q̄opt], (A12)
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where q̄opt = f1( p̄opt, N̄ ) and

f1(p, N̄ ) = 1

2p
[p ±

√
p2 − N̄2 − 2N̄ (1 − p)], (A13)

for the optimized value of the mixing parameter p̄opt (N̄ ),
which can be found numerically such that

REE{ρGH[ p̄opt, q̄opt )]} = maxp REE{ρGH[p, f1(p, N̄ )]}.
(A14)

Here, the maximization is performed for such p given N̄ that
f1(p, N̄ ) ∈ [0, 1].

6. Boundary states ρA by amplitude damping

Here we describe another method for generating the
boundary states ρA, where instead of an unbalanced BS, as
described above, we use again a balanced BS but allow for
amplitude damping.

A single-qubit pure state |ψp〉 is transformed by a bal-
anced BS into |out (p)〉, given by Eq. (A2). By applying
local unitary transformations, |out (p)〉 can be converted into
|q〉 [40], given by Eq. (A11), where q = (1 −

√
1 − p2)/2,

without changing its entanglement, as C(|out〉) = C(|q〉) =
2
√

q(1 − q) = p.
Let us assume now that each qubit (i = 1, 2) in |q〉 under-

goes amplitude damping, as described by the standard Kraus
operators [4]:

E0(γi ) = |0〉〈0| +
√

1 − γi|1〉〈1|, E1(γi ) = √
γi|0〉〈1|,

(A15)
with γi being amplitude-damping coefficients. Then a pure
state |q〉 for any q ∈ [0, 1] is transformed into the general-
ized Horodecki state [25,41]:

ρADC(q, γ1, γ2) = ρGH(p′, q′)

= p′|q′ 〉〈q′ | + (1 − p′)|00〉〈00|,
(A16)

where p′ = 1 − (1 − q)(1 − γ1) − q(1 − γ2) and q′ = q[(1 −
γ2)/(1 − p′)]. Thus, to generate a boundary state ρA, we opti-
mize p′ according to Eqs. (A12)–(A14), where p and q should
here be replaced by p′ and q′, respectively.

We conclude that ρA can be considered maximally non-
classical two-qubit states in terms of the largest REE for a

given value of the negativity assuming N ∈ (0, N2) or, ef-
fectively, for N ∈ (N0, N2) for N0 ≈ 0.2. Because ρA can be
generated from |ψp〉 by amplitude damping and from σD by
an unbalanced BS, we can consider these two classes of states
to be related to the maximally nonclassical single-qubit states
in terms of the largest REEP as a function of the NP for
N̄ ∈ (0, N2) or, clearly, for N̄ ∈ (N0, N2).

7. Boundary states ρB by phase damping

Here we show, after Refs. [22,25], how to generate the
boundary states ρB from |ψp〉, first by transforming it to
|out (p)〉 and then to |q〉 and, finally, applying phase damp-
ing. This method is analogous to generating ρA by amplitude
damping, which is here replaced by phase damping described
the Kraus operators [4]:

E0(κi ) = |0〉〈0| +
√

1 − κi|1〉〈1|, E1(κi) = √
κi|1〉〈1|,

(A17)
with κi being phase-damping coefficients with i = 1, 2. Thus,
a pure state |q〉 is changed into the mixed state [25]:

ρPDC(q, κ1, κ2) = (
1
2 − y

)|β1〉〈β1| + (
1
2 + y

)|β2〉〈β2|
+(

q − 1
2

)
(|β1〉〈β2| + |β2〉〈β1|), (A18)

given in the Bell-state basis, where |β1,2〉 = |∓〉 = (|10〉 ∓
|01〉)/

√
2 and y = √

q(1 − q)(1 − κ1)(1 − κ2). If we assume
the input state |ψp=1〉 = |1〉, which corresponds to setting q =
1/2, then ρPDC becomes the following Bell-diagonal state:

ρB(κ1, κ2) = ρPDC
(

1
2 , κ1, κ2

)
= λ−|β1〉〈β1| + λ+|β2〉〈β2|, (A19)

where λ± = [1 ± √
(1 − κ1)(1 − κ2)]/2. The states

ρB(κ1, κ2) for κi ∈ [0, 1] are examples of the boundary
states labeled B in Figs. 2 and 4.

Indeed, the states ρB can be interpreted as the maximally
nonclassical two-qubit states in terms of the largest nega-
tivity for a given value of the REE [24,25]. Since ρB can
be generated from |1〉, we have produced experimentally the
maximally nonclassical single-qubit states in terms of the
largest (generalized) NP as a function of the (generalized)
REEP in almost the entire range [0,1], as shown in Fig. 4(c).
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