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In this Supplementary Material, we present the detailed results on both mass-insensitive and speed-
controllable one-way topological phonon transport, which is fully independent of the directions of the
encirclement around the exceptional point (EP). Specifically, this document consists of three sections:
(i) Effective non-Hermitian Hamiltonian and its EP; (ii) Topological-energy-transfer quality factor and
unidirectional topological phononics independent of both the direction of the EP-including control loop and the
mass of quantum device, which is enabled by the Fizeau light-dragging effect; (iii) Innovativeness, importance
and timeliness of our proposal, (iv) Underlying physical mechanism of our work, (v) Detailed discussions on the
experimental feasibility of the proposed physical model, and (vi) Application of our approach to non-Hermitian
N-state systems and its combination with non-Abelian nature.
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I. EFFECTIVE NON-HERMITIAN HAMILTONIAN OF THE SYSTEM AND ITS EXCEPTIONAL POINT

In this section, we derive in detail the equations of motion for the optical and phononic modes in a three-mode
optomechanical system, which consists of two motional modes coupled to a common spinning optical cavity via radiation-
pressure interactions [S1–S3]. We also detailedly calculate an effective Hamiltonian of our system by adiabatically eliminating
the optical mode, and analyze an exceptional point (EP) of the physical system.

A. Effective non-Hermitian Hamiltonian

We here study the mass-tolerant and speed-tunable unidirectional topological transfer of energy between two vibrational
normal modes using multi-vibration optomechanical platforms. Specifically, we analyze, as shown in Fig. 1(a) of the main text,
a uniform optical mode is supported by a spinning silica microsphere with an external driving field, and the radiation-pressure
effect leads to the coupling of the optical mode to the two vibrational modes [S1–S3]. To further control the optical degrees of
freedom, a mechanical rotating is applied to the optical microsphere cavity, which is evanescently coupled to a tapered fiber. Note
that such a mechanical-spinning device had been demonstrated to achieve one-way optical signals and quantum entanglement in
recent experiments and proposals [S4–S9].

Let us detailedly consider a multimode optomechanical device, where a spinning silica-microsphere cavity coupled to two
motions is positioned close to a tapered region of a single-mode telecommunication fibre. The evanescent coupling of the light
into this spinning setup is caused by the tapered region of the fibre, and via the same coupler, the light can be coupled out
through the other side of the fibre [S4]. Consequently, both input and output ports can be simultaneously served by each side of
the fibre, and relying on the input port, the light circulates in the silica sphere in either clockwise or counter-clockwise direction,
resulting in an optical mode aR or aL (with resonance frequencies ωR,L

c ), respectively. Then, the Hamiltonian of the physical
system associated with spinning reads (with ℏ = 1):

H = ωR,L
c a†R,LaR,L +

∑
j=1,2

[ω jb
†

jb j + g ja
†

R,LaR,L(b†j + b j)] +HR,L
driv, (S1a)

H
R,L
driv = i

√
κinϵin(a†R,Le−iωR,Lt − aR,LeiωR,Lt), (S1b)

where a†R,L (aR,L) and b†j (b j) are, respectively, the creation (annihilation) operators of the optical mode (with optical resonance
frequencyωR,L

c ) and the jth vibrational mode (with vibrational resonance frequencyω j). The light-vibration interactions between
the optical mode and the two vibrational modes are described by the radiation-pressure-coupling g j terms, with g j being the
strengths of single-excitation coupling rates. The term Hdriv depicts the driving of the system, where ϵin =

√
P/(ℏωR,L) is the

driving-field amplitude of the optical mode, with P and ωR,L being the power and frequency of the driving laser for the cavity,
respectively. Experimentally, the aerodynamic process plays a vital role in fiber-resonator interactions in a rotating setup, which
drags air into the region between the sphere and tapered fiber, yielding an air-lubrication layer in this region. The thin air film
then lets the fiber fly at a few nanometres above the sphere. Owing to the “self-adjustment” process, the taper floats back to its
initial position, once it is caused to rise higher than the stable-equilibrium height by any perturbation. The critical coupling of
light into the silica sphere is enabled via the self-adjustment behavior, whereby an optical drag, identical in size but opposite in
sign, is experienced by the countercirculating light (see the detailed deviations and analysis in Sec. V).

For conventional optomechanical devices consisting of an optical mode linearly coupled to a vibrational mode, a pair of
coupled differential equations for both optical and vibrational modes are resulted from an input–output approach to these systems.
Then, these equations of motion can be easily treated in the Fourier domain for better understand the optical modification of
the vibrational susceptibilities. We here focus on a simple extension of these standard models, by considering two motional
modes, each coupled to a common optical mode. Subsequently, this yields the following equations of motion for both optical
and vibrational modes:

ȧR,L = −

(
κ

2
+ iωR,L

c

)
aR,L − ig1aR,Lz1 − ig2aR,Lz2 +

√
κinϵin, (S2a)

ḃ1 = −

(
γ1

2
+ iω1

)
b1 − ig1a†R,LaR,L +

√
γ1η1, (S2b)

ḃ2 = −

(
γ2

2
+ iω2

)
b2 − ig2a†R,LaR,L +

√
γ2η2, (S2c)

where the parameter κ is the dissipation rate corresponding to the linewidth, the parameter κin is the input coupling rate of the
cavity field, and the position operate z j = b†j + b j describes the jth mechanical mode. In addition, the parameters ω j, γ j, and
g j denote the motional resonance frequency, mechanical dissipation rate, and single-photon coupling strength, respectively. The
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optical and mechanical modes are, respectively, driven by input fields ϵin and η j. The parameter ωR,L
c denotes the effective optical

resonance frequency experiencing the Sagnac-Fizeau shift [S4–S9]. Note that owing to the spinning of the silica sphere with
an angular velocity S, a Sagnac-Fizeau shift is experienced by the light, i.e., ωc → ωc + δs, where ωc is the nonspinning (i.e.,
standard) system and δs = ±SΛ denotes the Sagnac-Fizeau shift of the driving detuning, withΛ = ζrωc[1−1/ζ2−(λ/ζ)dζ/dλ]/c,
where the parameters r, ζ, c, and λ are the silica-sphere radius, the refractive index, the speed of light in vacuum, and the
wavelength of light, respectively. The relativistic origin of the Sagnac effect is characterized by the dispersion term (i.e., dn/dλ),
which is small in typical materials (up to ∼ 1%). By rotating the silica sphere along only in the clockwise direction, the resulting
δs > 0 (δs < 0) corresponds to the case, where the driving laser is injected from its left-hand side (LHS) or right-hand side
(RHS) of the fibre, leading to an optical mode aL or aR, respectively. Therefore, the clockwise (aR) and anticlockwise (aL)
optical frequencies are, respectively, defined as ωR,L

c = ωc ± |δs|. Note that δs = 0 (i.e., S = 0) denotes the nonspinning (i.e.,
standard) case, where we obtain aR,L = a and ωR,L

c = ωc).
Next, we apply a linearization procedure to simplify the physical model, and this is realized by considering the strong-driving

regime of the quantum system. Specifically, we express both optical and mechanical operators used in Eq. (S2) as the sums of
their steady-state mean values and quantum fluctuations, i.e.,

aR,L = āR,L + δaR,L, b j = b̄ j + δb j. (S3)

By separating the classical motion from their quantum fluctuations, we obtain the equations of motion for the classical-motion
variables and then, the steady-state mean of the optical dynamical variable is obtained as:

āR,L =

√
κinϵin

κ/2 − i∆R,L
, (S4)

where we introduce the normalized driving detuning

∆R,L ≈ ∆ ∓ |δs|, (S5)

with the driving detuning ∆ = ωR(L) − ωc for ωR = ωL. Meanwhile, the linearized equations of motion for these quantum
fluctuations are given by:

δȧR,L = −

(
κ

2
− i∆R,L

)
δaR,L − iG1,R,Lδz1 − iG2,R,Lδz2, (S6a)

δḃ1 = −

(
γ1

2
+ iω1

)
δb1 − i

(
G∗1,R,LδaR,L +G1,R,Lδa

†

R,L

)
+
√
γ1η1, (S6b)

δḃ2 = −

(
γ2

2
+ iω2

)
δb2 − i

(
G∗2,R,LδaR,L +G2,R,Lδa

†

R,L

)
+
√
γ2η2, (S6c)

where δaR,L (δa†R,L) and δb j (δb†j ) are the quantum fluctuation annihilation (creation) operators of the optical mode and the jth
vibrational mode, respectively. The parameters G j,R,L = g jāR,L are the linearized optomechanical-coupling strength between the
optical mode and the jth vibrational mode. Note that, in the following discussions, āR,L is assumed to be real, which is accessible
by choosing a proper driving amplitude. This indicates that the linearized optomechanical-coupling strengths G j,R,L are real too.

The topological energy transfer can be solved by finding the solution of Eq. (S6), and this can be realized by transforming these
variables into the frequency domain with the Fourier transformation, which is used to understand better the optical modification
of the mechanical susceptibilities. Under the definition for an operator o and its conjugate o†, i.e.,

o (t) =
1
√

2π

∫ ∞

−∞

eiωto (ω) dω, o† (t) =
1
√

2π

∫ ∞

−∞

e−iωto† (ω) dω, (S7)

where the operators o = aR, aL, b1, and b2. The equations of motion shown in Eq. (S6), by performing the Fourier transformation
in Eq. (S7), can be expressed in the frequency domain as:

−iωδaR,L (ω) = −
(
κ

2
− i∆R,L

)
δaR,L (ω) − iG1,R,Lδz1 (ω) − iG2,R,Lδz2 (ω) , (S8a)

−iωδa†R,L (ω) = −
(
κ

2
+ i∆R,L

)
δa†R,L (ω) + iG∗1,R,Lδz

†

1 (ω) + iG∗2,R,Lδz
†

2 (ω) , (S8b)

−iωδb1 (ω) = −
(
γ1

2
+ iω1

)
δb1 (ω) − i

[
G∗1,R,LδaR,L (ω) +G1,R,Lδa

†

R,L (ω)
]
+
√
γ1η1, (S8c)

−iωδb2 (ω) = −
(
γ2

2
+ iω2

)
δb2 (ω) − i

[
G∗2,R,LδaR,L (ω) +G2,R,Lδa

†

R,L (ω)
]
+
√
γ2η2. (S8d)
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Based on the above Eq. (S8), we subsequently obtain:[
κ

2
− i

(
ω + ∆R,L

)]
δaR,L (ω) = − iG1,R,Lδz1 (ω) − iG2,R,Lδz2 (ω) , (S9a)[

κ

2
+ i

(
∆R,L − ω

)]
δa†R,L (ω) = iG∗1,R,Lδz

†

1 (ω) + iG∗2,R,Lδz
†

2 (ω) , (S9b)[
γ1

2
− i (ω − ω1)

]
δb1 (ω) = − i

[
G∗1,R,LδaR,L (ω) +G1,R,Lδa

†

R,L (ω)
]
+
√
γ1η1, (S9c)[

γ2

2
− i (ω − ω2)

]
δb2 (ω) = − i

[
G∗2,R,LδaR,L (ω) +G2,R,Lδa

†

R,L (ω)
]
+
√
γ2η2, (S9d)

where the optical susceptibility χR,L (ω) is defined as:

χR,L (ω) =
[
κ

2
− i

(
ω + ∆R,L

)]−1
. (S10)

Thus, we can easily obtain

δaR,L (ω) = −iG1,R,LχR,L (ω)
(
δb†1 + δb1

)
− iG2,R,LχR,L (ω)

(
δb†2 + δb2

)
, (S11)

where the introduced position operates z j is defined as

z j = b†j + b j. (S12)

By substituting Eq. (S12) into Eq. (S11), we obtain[
κ

2
+ i (∆ − ω)

]
δa†R,L (ω) = iG∗1,R,Lδz

†

1 + iG∗2,R,Lδz
†

2 = iG∗1,R,Lδz1 + iG∗2,R,Lδz2. (S13)

We then easily have

δa†R,L (ω) = iG∗1,R,Lχ
∗
R,L (−ω) δz1 + iG∗2,R,Lχ

∗
R,L (−ω) δz2, (S14)

where all the optical susceptibilities used are given by:

χR,L (ω) =
[
κ

2
− i

(
ω + ∆R,L

)]−1
, (S15a)

χ∗R,L (ω) =
[
κ

2
+ i

(
ω + ∆R,L

)]−1
, (S15b)

χR,L (−ω) =
[
κ

2
− i

(
−ω + ∆R,L

)]−1
, (S15c)

χ∗R,L (−ω) =
[
κ

2
+ i

(
∆R,L − ω

)]−1
. (S15d)

Consequently, we have

δaR,L (ω) = − iα1χR,L (ω)
(
δb†1 + δb1

)
− iα2χR,L (ω)

(
δb†2 + δb2

)
, (S16a)

δa†R,L (ω) = iα∗1χ
∗
R,L (−ω)

(
δb†1 + δb1

)
+ iα∗2χ

∗
R,L (−ω)

(
δb†2 + δb2

)
. (S16b)

The next step, we substitute the expressions of δaR,L and δa†R,L [i.e., Eqs. (S16)] into Eqs. (S9c) and (S9d) and then, we obtain[
γ1

2
− i (ω − ω1)

]
δb1 (ω) = − iG∗1,R,L

[
−iG1,R,LχR,L (ω)

(
δb†1 + δb1

)
− iG2,R,LχR,L (ω)

(
δb†2 + δb2

)]
− iG1,R,L

[
iG∗1,R,Lχ

∗
R,L (−ω)

(
δb†1 + δb1

)
+ iG∗2,R,Lχ

∗
R,L (−ω)

(
δb†2 + δb2

)]
+
√
γ1η1, (S17a)[

γ2

2
− i (ω − ω2)

]
δb2 (ω) = − iG∗2

[
−iG1,R,LχR,L (ω)

(
δb†1 + δb1

)
− iG2,R,LχR,L (ω)

(
δb†2 + δb2

)]
− iG2,R,L

[
iG∗1χ

∗
R,L (−ω)

(
δb†1 + δb1

)
+ iG∗2,R,Lχ

∗
R,L (−ω)

(
δb†2 + δb2

)]
+
√
γ2η2, (S17b)[

γ1

2
− i (ω − ω1)

]
δb1 (ω) =G1,R,LG∗1,R,L

[
−χR,L (ω) + χ∗R,L (−ω)

] (
δb†1 + δb1

)
+

[
−G∗1,R,LG2,R,LχR,L (ω) +G1,R,LG∗2,R,Lχ

∗
R,L (−ω)

] (
δb†2 + δb2

)
+
√
γ1η1, (S17c)[

γ2

2
− i (ω − ω2)

]
δb2 (ω) =

[
−G∗2,R,LG1,R,LχR,L (ω) +G2,R,LG∗1,R,Lχ

∗
R,L (−ω)

] (
δb†1 + δb1

)
+

[
−G∗2,R,LG2,R,LχR,L (ω) +G2,R,LG∗2,R,Lχ

∗
R,L (−ω)

] (
δb†2 + δb2

)
+
√
γ2η2. (S17d)
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Now, we can safely drop the counter-rotating terms (i.e., δb†1 and δb†2) and the mechanical drive terms η j, which are not necessary
for our physical model, as the system operates far from the ultrostrong coupling regime. This is mostly attributed to the fact that
we drive the system to a particular initial state, turn off the drive, and then, focus on the evolution of the system without any
mechanical drive applied. Therefore, the above equations shown in Eqs. (S17) become[

γ1

2
− i (ω − ω1)

]
δb1 (ω) =G1,R,LG∗1,R,L

[
−χR,L (ω) + χ∗R,L (−ω)

]
δb1 (ω)

+
[
−G∗1,R,LG2,R,LχR,L (ω) +G1,R,LG∗2,R,Lχ

∗
R,L (−ω)

]
δb2 (ω) , (S18a)[

γ2

2
− i (ω − ω2)

]
δb2 (ω) =

[
−G1,R,LG∗2,R,LχR,L (ω) +G∗1,R,LG2,R,Lχ

∗
R,L (−ω)

]
δb1 (ω)

+G∗2,R,LG2,R,L

[
−χR,L (ω) + χ∗R,L (−ω)

]
δb2 (ω) , (S18b)

and then, based on Eqs. (S18), we can easily have[
γ1

2
− i(ω − ω1)

]
δb1(ω) =

∣∣∣G1,R,L
∣∣∣2 [
χ∗R,L (−ω) − χR,L (ω)

]
δb1 (ω)

+G∗1,R,LG2,R,L

[
χ∗R,L (−ω) − χR,L (ω)

]
δb2(ω), (S19a)[

γ2

2
− i (ω − ω2)

]
δb2(ω) =G∗1,R,LG2,R,L

[
χ∗R,L (−ω) − χR,L (ω)

]
δb1 (ω)

+
∣∣∣G2,R,L

∣∣∣2 [
χ∗R,L(−ω) − χR,L(ω)

]
δb2(ω). (S19b)

We below rewrite Eq. (S19) as a standard form:

−iωδb1 (ω) = −
(
γ1

2
+ iω1

)
δb1 (ω) +

∣∣∣G1,R,L
∣∣∣2 [
χ∗R,L (−ω) − χR,L (ω)

]
δb1 (ω)

+G∗1,R,LG2,R,L
[
χ∗c (−ω) − χc (ω)

]
δb2 (ω) , (S20a)

−iωδb2 (ω) = −
(
γ2

2
+ iω2

)
δb2 (ω) +G∗1,R,LG2,R,L

[
χ∗R,L (−ω) − χR,L (ω)

]
δb1 (ω)

+
∣∣∣G2,R,L

∣∣∣2 [
χ∗R,L (−ω) − χR,L (ω)

]
δb2 (ω) . (S20b)

Therefore, the matrix form based on Eq. (S20) can be obtained as

−iω
(
δb1 (ω)
δb2 (ω)

)
=

 −
(
γ1
2 + iω1

)
0

0 −
(
γ2
2 + iω2

)  ( δb1 (ω)
δb2 (ω)

)

+

 ∣∣∣G1,R,L
∣∣∣2 G∗1,R,LG2,R,L

G∗1,R,LG2,R,L
∣∣∣G2,R,L

∣∣∣2
 [χ∗R,L (−ω) − χR,L (ω)

] ( δb1 (ω)
δb2 (ω)

)
. (S21)

In a traditional optomechanical system, the single-mode optomechanical self-energy can be obtained as∑
R,L

(ω) = i
∣∣∣G j,R,L

∣∣∣2 [
χ∗R,L (−ω) − χR,L (ω)

]
. (S22)

Note that
∑

R,L (ω) is often called the optomechanical “self-energy”, and represents the optical modification of the mechanical
resonance. This arises from the self-interaction occurring via the dynamical system formed by the optics/mechanics. From
the definition of

∑
R,L (ω), we see that it will be a complex quantity depending on the laser power and detuning (through its

dependence on incavity photon numbers āR,L and and optical susceptibly χR,L
c ). We also note here that the dependence onω comes

only through the cavity susceptibility, which varies with w on a scale of κ. Since we are considering only a weak interaction,
we can assume that the width of the mechanical resonance will be significantly less than κ. Thus, we can assume that χR,L

c (ω)
and hence

∑
R,L (ω) will be constant with respect to ui over the relevant mechanical bandwidth. Therefore, we can eliminate the

frequency dependence and simply evaluate the self-energy at the mechanical frequency:
∑

R,L (ω) ≈
∑

R,L (ω0) =
∑

R,L.
By inspecting the appearance of

∑
R,L in the effective susceptibility, we see that the real part of

∑
R,L corresponds to a shift

in the mechanical frequency (“optical spring”), while the imaginary part results in a change in the effective damping rate of the
oscillator (“optical damping”). This dynamical backaction is the mechanism by which one is able to control the motion in an
optomechanical system, by exploiting and controlling the radiation pressure force. We will now explore this control in more
detail, to better understand its limitations and tunability.
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Specifically, the above equation shown in Eq. (S22) can be rewritten as:

∑
R,L

(ω) =

 i
∣∣∣G1,R,L

∣∣∣2 i
∣∣∣G∗1,R,LG2,R,L

∣∣∣
i
∣∣∣G∗1,R,LG2,R,L

∣∣∣ i
∣∣∣G2,R,L

∣∣∣2
 [χ∗R,L (−ω) − χR,L (ω)

]
=

(
−ig2

1σR,L −ig1g2σR,L
−ig1g2σR,L −ig2

2σR,L

)
, (S23)

where the complex vibrational susceptibilities σR,L, which are introduced by the laser driving, are defined as

σR,L =
Pκin

ℏωR,L

[(
κ
2

)2
+ ∆2

R,L

] [
1

κ
2 − i

(
ω0 + ∆R,L

) − 1
κ
2 + i

(
−ω0 + ∆R,L

) ] . (S24)

Now, we can have

−iω
(
δb1 (ω)
δb2 (ω)

)
=

 −
(
γ1
2 + iω1

)
0

0 −
(
γ2
2 + iω2

)  ( δb1 (ω)
δb2 (ω)

)
− i

∑
R,L

(ω)
(
δb1 (ω)
δb2 (ω)

)
, (S25)

and, then, Eq. (S25) can be rewritten as a matrix form as:

−iωB (ω) = −


(
γ1
2 + iω1

)
0

0
(
γ2
2 + iω2

)  B (ω) − i
∑
R,L

(ω) B (ω) , (S26)

where the matrix B (ω) is defined as

B (ω) =
(
δb1 (ω)
δb2 (ω)

)
. (S27)

Before moving back to the time domain, we note that
∑

R,L (ω) varies on the scale of κ, whereas the vibrational modes are
susceptible to the drives only within their linewidth, which is substantially smaller than κ, by our assumption. Therefore, it is
both safe and sufficient to consider the following assumptions:∑

R,L

(ω) ≈
∑
R,L

(ω1) ≈
∑
R,L

(ω2) ≡
∑
R,L

, (S28)

where ∑
R,L

=
∑
R,L

(ω0) =
∑
R,L

(
ω1 + ω2

2

)
, (S29)

for

ω0 =
ω1 + ω2

2
. (S30)

We note that the motional modes are also assumed to be nearly degenerate. Therefore, owing to the fact that
∑

R,L is not a
function of ω, we can easily move back to the time domain and then, we obtain:

Ḃ (t) = −


(
γ1
2 + iω1

)
0

0
(
γ2
2 + iω2

)  B (t) − i
∑
R,L

B (t) . (S31)

Mathematically, by adiabatically eliminating the optical mode, an effective Hamiltonian only for the two motional modes b1 and
b2 can be obtained as:

iḂ(t) = HR,L
eff B (t) , (S32)

and

H
R,L
eff =

(
ω1 −

iγ1
2 − ig2

1σR,L −ig1g2σR,L

−ig1g2σR,L ω2 −
iγ2
2 − ig2

2σR,L

)
, (S33)
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where the simplified complex vibrational susceptibilitiesσR,L, introduced by the laser driving and based on Eq. (S24), are defined
as:

σR,L =
Pκin

[
χR,L(ω0) − χ∗R,L(−ω0)

]
ℏωR,L

[
(κ/2)2 + ∆2

R,L

] , (S34)

with the optical susceptibilities

χR,L(ω0) =
[
κ

2
− i

(
ω0 + ∆R,L

)]−1
. (S35)

Below, we derive in detail the exceptional point of the physical system, and analyze the performance of energy transfer based on
the HamiltonianHR,L

eff , shown in Eq. (S33).

B. Exceptional point

Here we study a multimode optomechanical system consisting of two vibrational modes, each of which is linearly coupled
to a common optical mode, i.e., the two motional modes are uncoupled to each other. By adiabatically removing the optical
mode, the driving-laser field can generate a tunable effective interaction between these two motional modes that are exploited
for inducing an EP. Specifically, in the following detailed analysis, it is safe to eliminate the common evolution, with the average
frequency ω0 defined as in Eq. (S30), and the average decay rate Γ of the two vibrational modes defined as

Γ = (γ1 + γ2)/2. (S36)

Specifically, the parameters ω1, ω2, γ1, and γ2 can be smoothly replaced with the redefined parameters ω0, Ω, Γ, and γ. Thus
the effective HamiltonianHR,L

eff shown in Eq. (S33) becomes:

H
R,L
eff =

(
ω0 − i Γ2 −Ω − i γ2 − ig2

1σR,L −ig1g2σR,L

−ig1g2σR,L ω0 − i Γ2 + Ω + i γ2 − ig2
2σR,L

)
, (S37)

where the introduced new parameters Ω and γ are, respectively, defined as:

Ω = (ω2 − ω1)/2, (S38)

and

γ = (γ1 − γ2)/2. (S39)

Below, we can easily have the following equations:

i
d
dt

(
b1 (t)
b2 (t)

)
=

(
ω0 − i Γ2 −Ω − i γ2 − ig2

1σR,L −ig1g2σR,L

−ig1g2σR,L ω0 − i Γ2 + Ω + i γ2 − ig2
2σR,L

) (
b1 (t)
b2 (t)

)
,

=

(
ω0 − i Γ2 0

0 ω0 − i Γ2

) (
b1 (t)
b2 (t)

)
+

(
−Ω − i γ2 − ig2

1σR,L −ig1g2σR,L
−ig1g2σR,L Ω + i γ2 − ig2

2σR,L

) (
b1 (t)
b2 (t)

)
,

=


(
ω0 − i Γ2

)
0

0
(
ω0 − i Γ2

)  ( b1 (t)
b2 (t)

)
+ i

d
dt

(
b+ (t)
b− (t)

)
, (S40)

where

i
d
dt

(
b+ (t)
b− (t)

)
=

(
−Ω − i γ2 − ig2

1σR,L −ig1g2σR,L
−ig1g2σR,L Ω + i γ2 − ig2

2σR,L

) (
b1 (t)
b2 (t)

)
. (S41)

Based on Eq. (S37) and using the mathematics, the eigenvalues of our effective physical system can be obtained:

λR,L
∓ = −

i
2

(
g2

1 + g2
2

)
σR,L ∓ λR,L, (S42)

where the parameter λR,L is defined as

λR,L = i

√
g2

1g2
2σ

2
R,L +

1
4

[
γ +

(
g2

1 − g2
2

)
σR,L

]2
−Ω2 − iΩ

[
γ +

(
g2

1 − g2
2

)
σR,L

]
. (S43)
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FIG. S1: Complex eigenvalues of the two motional normal modes. The vibrational decay rate (see the vertical axis) and the vibrational
resonance frequency (see the horizontal axis) of the two motional normal modes as functions of the driving detuning ∆ and the driving laser
power P when the system operates in both (a) nonspinning (i.e., S = 0) and (b) spinning (i.e., S , 0) cases. That is for the spinning case, we
consider the situations where the rotating silica sphere is driven from the LHS or RHS of the fibre. Here the values of the laser power P = 130
uW, 185 uW, and 220 uW are, respectively, described by the green, blue, and orange; and the complex eigenvalues of the quantum system are
varied with the driving detuning ∆ ∈ [−2ω1, 0] at fixed P = 130 uW (green), 185 uW (blue), and 220 uW (orange). Note that for lower values
of the laser power P, each eigenvalue follows a closed trajectory, which ends and begins at the same point. In stark contrast to the case of the
low powers, for higher values of the driving power P, the eigenvalues follow open trajectories, each of which ends at the starting point of the
other. By tuning the laser power P and the driving detuning ∆, the EP which is described by the yellow star occurs. In our simulations, to
ensure the system stability, we choose experimentally feasible parameters [S4, S10], as shown in main text.

Therefore, we have

λ̃R,L
∓ = ω0 −

iΓ
2
−

i
2

(
g2

1 + g2
2

)
σR,L ∓ λR,L. (S44)

By just simply tuning the complex vibrational susceptibilities σR,L, the system possesses an EP. Thus, one needs to control over
both Re(σR,L) and Im(σR,L). The real and imaginary parts of the complex eigenvalues of the two motional normal modes (i.e.,
b±) are the resonance frequencies ωR,L

± (∆, P) = Re(λR,L
± ) and the linewidths γR,L

± (∆, P) = −2Im(λR,L
± ), respectively. Note that

in our model, the control of the optomechanical system is achieved by a separate laser, and its driving power P and driving
detuning ∆ are set by an acousto-optic modulator. We can measure the vibration spectra of the mechanical motions as functions
of the driving detuning ∆ and the driving power P, so that the presence of the EP in our system can be accurately established.
In addition, these spectra are acquired by driving the vibrations and monitoring its response via a heterodyne signal. We fit each
spectrum to determine the two motional damping rates, γR,L

± (∆, P), and the two vibrational resonance frequencies, ωR,L
± (∆, P).

Note that the subscripts “±” refer to the vibrational normal modes of the resonators, when the optical field is introduced to the
physical system.

We shows measurements of the real and imaginary parts of the corresponding complex eigenvalues for the two vibrational
normal modes over a narrow range of the driving detuning ∆ and the driving power P, which are centred at ∆EP and PEP. Here the
parameters ∆EP and PEP denote the parameter position on the emergence of the EP. These measurements show the characteristic
features of an EP. In the vicinity of this point, they exhibit the same structure as the Riemann sheets of the complex square-root
function. The surfaces are such that if the driving-laser detuning ∆ and the driving-laser power P were varied to execute a single
closed loop, the resulting smooth evolution on the eigenvalue manifold would return to its starting point only if the loop does not
enclose the EP. By contrast, a loop enclosing the EP would result in a trajectory starting on one sheet, but ending on the other.

The complex eigenvalues of the two vibrational normal modes are shown in Fig. S1. Specifically, we plot the motional decay
rates [γR,L

± (∆, P), see the vertical axis] and the vibrational resonance frequencies [ωR,L
± (∆, P), see the horizontal axis] of the two

normal modes of the vibrations as functions of the driving detuning ∆ and the driving laser power P, when the system operates
in both non-spinning and spinning cases. Note that the values of the driving laser power P are described by the different colors,
and the eigenvalues of the system are varied with the driving detuning ∆ from −2ω1 to 0 at a fixed P. We find from Figs. S1(a)
and S1(b) that for a lower value of the driving-laser power P, each eigenvalue follows an enclosed path, which begins and ends
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at the same point; and that for a higher value of the driving power P, the eigenvalues follow open paths, each one starting at the
ending point of the other.

In particular, we reveal that the EP (see the yellow star in Fig. S1), where the eigenstates coalesce, occurs by just tuning the
laser power P and the driving detuning ∆. More specifically, we see from Eqs. (S33) and (S34) that in the resolved-sideband
regime, i.e.,

κ < ω0, (S45)

both reaching and encircling the EP require just to tune the driving power P and the driving detuning ∆, without the need of any
complicated arrangements [S11]. This is due to the fact that the parameters P and ∆ in our system can be easily steered in situ
with timing accuracy, a high-precision degree, and dynamic range. In addition, we reveal that when the rotating silica sphere is
driven from the LHS or RHS of the fibre, the circumference of the trajectory in the LHS driving is larger than that in the RHS
driving, because a profoundly different influence from the Fizeau-drag shift of the light emerges in these two cases.

Though the circumferences of the trajectory are different, the location of the EP actually keeps unchanged, as marked by
the yellow star in Fig. S1. Especially, the circumference in the LHS-driving case is larger than that in the non-spinning case,
which is also larger than that of the RHS injecting. Physically, the driving laser injected from the LHS of the fibre experiences
a Sagnac-Fizeau shift, whereas the light entering from the RHS of the fibre leads to the opposite shift. Owing to the existence
of the Fizeau light-dragging effect, the energy-transfer performance is significantly suppressed or even completely blocked in a
chosen entering direction of the fibre while enhanced in the other side. This nonreciprocal transfer is fully independent of the
encircling direction of the EP, which is otherwise unattainable in the previously established demonstrations [S12–S26].

II. ONE-WAY TOPOLOGICAL PHONONICS INDEPENDENT OF THE ENCIRCLING DIRECTION OF THE EP

In this section, we define a topological-phonon-transfer quality factor to quantify the energy transfer between the two motional
normal modes, and show in detail the topological unidirectional control without depending on the EP-encircling direction, the
speed-tunable phonon transfer, the tolerance against both masses and quality factors of quantum devices, and the strength-
dependent topological transfer of thermal phonons.

A. Topological-energy-transfer quality factor

The projection onto the instantaneous eigenbasis is necessary to see the state evolution during the applied perturbations. Allow

ν⃗±(t) to serve as the instantaneous eigenvectors of HR,L
eff . Whenever necessary, the solution b⃗(t) =

(
b1(t), b2(t)

)T
can be written

as a projection based on this basis:

b⃗(t) = b−(t)⃗ν−(t) + b+(t)⃗ν+(t). (S46)

If the perturbation is slow compared to the energy gap (λ+−λ−), one naive and unjustified approach to thinking about this system
would be to assume that adiabaticity (in the sense of smooth evolution along the eigenvalue surface) would occur as long as the
perturbation is slow. That is, if we were to prepare b−(0) = 1 and b+(0) = 0, then for all time t, b−(t) = 1 would remain the
dominant projection. We can use standard computational techniques to numerically integrate the linear differential equations to
see if this happens. The calculation provides a complete solution for the system’s time-dependent nature, b⃗(t). It’s worth pointing
out that this result is based on the differential equation, not the eigenbasis. (i.e. b1,2(t) not b±(t)). A change of basis defined by a
matrix of instantaneous eigenvectors is necessary to find the projection into the instantaneous eigenbasis:(

b+ (t)
b− (t)

)
= N(t)

(
b1 (t)
b2 (t)

)
. (S47)

where

N(t) =
[(⃗
ν+(t) ν⃗−(t)

)T ]−1

, (S48)

We have already mentioned that this energy transfer is a result of an adiabatic-like process, and should be influenced by the
geometry of the loop, in relation to the topology of the eigenvalue manifolds. A metric for quantifying energy transfer would
be beneficial, in order to systematically characterize this behavior. Essentially, if we initialize the system into a particular mode,
i.e., b±(t = 0) = 1, we would like to know the amplitude of the other mode at the end of the loop, i.e., b∓(t) = 1. Normalizing the
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FIG. S2: (a) Topological energy-transfer quality factor F+ versus the maximal driving detuning ∆Max, when the light enters from the LHS of
the fibre (i.e., aL, see the blue curves and symbols) or the RHS of the fiber (i.e., aR, see the red curves and symbols), for the angular velocity
S = 400 Hz of the spinning silica sphere. (b) Diagram of the topological energy-transfer quality factor F+ when the spinning silica sphere is
driven from the RHS (i.e., aR, see the upper half part) and LHS (i.e., aL, see the downer half part) of the fibre. We see that the topological
phonon transfer occurs when the silica sphere is driven in one chosen side but not in the other, and this leads to a unique topological energy-
transfer nonreciprocity, without depending on the direction of winding around the EP.

total energy at the end of the loop is necessary, owing to the growth/decay of the overall system energy. To quantify the energy
transfer from one motional normal mode (b+) to the other (b−), we define a quality factor of topological phonon transfer:

F+ =
|b+(τ)|2

|b+(τ)|2 + |b−(τ)|2
, (S49)

denoting the fraction of the remaining energy in the b+ mode after excuting the control loops. Note that before performing all
the control loops, the definition of F+ needs to satisfy the condition that all the energy remains in b+. For example, when we
prepare the system in the b+ mode at t = 0, the definition F− = (1 − F+) describes how much energy has been transferred to the
b− mode at t = τ (relative to the total energy at this time).

So, for the b+ initialization, if b− is the dominant projection at the end, then we find F− = (1 − F+) = 1 , whereas if the
dominant projection is still b+, then we have F+ = 0. Specifically, we see from Eq. (S49) that

F+ → 1 (S50)

indicates that no energy transfer occurs from the vibrational mode b+ to b−; while a perfect energy transfer happens from b+ to
b− when

F+ → 0. (S51)

That is before the adiabatic control loop, 100% of the energy is in the b+ mode, whereas after the adiabatic loop, 100% of the
remaining energy is the b− mode. We here should emphasize that our analysis and numerical simulations were all made assuming
injecting the initial drive to the motional normal mode b+, and subsequently, performing a control loop only in the counter-
clockwise direction. In this case, the adiabatic paths enclosing the EP correspond to the less-damped eigenmode for the majority
of the control loop. On the contrary, executing clockwise the same control loop leads to an adiabatic path, which corresponds
primarily to the more-damped eigenmode. Next, we will study in detail the one-way Topological control independent of the
EP-encircling direction.

B. Unidirectional Topological control independent of the EP-encircling direction

In this subsection, we show in detail how to achieve the topological energy transfer, which is independent of the encircling
direction of the EP.
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We here execute the case where the dynamical encirclement around the EP is adiabatically carried out only anticlockwise,
i.e., the encircling-EP adiabatic trajectory does not need to be traversed in the opposite direction. In this case, we find that
by splitting the counter-propagating lights of a spinning silica microsphere via the Fizeau light-dragging effect, an one-way
topological transfer of thermal phonons between two vibrational normal modes still can be achieved, i.e.,

F+ = 1→ 0. (S52)

This is clearly seen in Fig. S2. Concretely, in this case, the laser injected from the LHS of the fibre experiences a Sagnac-Fizeau
shift, which engenders an optimal energy transfer, whereas the light entering from the RHS of the fibre leads to an opposite
shift, which yields no transfer of phonons. Contrary to the previously established demonstrations, the resulting nonreciprocal
transport of phonons is fully independent of the encircling direction of the EP, which is otherwise unattainable in the well-known
protocols [S12–S26].

Specifically, the angular velocity of the spinning silica microsphere is set at S = 400 Hz, which is experimentally accessible.
Physically, the laser entering from one chosen side of the fibre experiences a Sagnac-Fizeau shift and however, the light entering
from the other side leads to an opposite shift. In Fig. S2, we display F+ versus the maximal driving detuning ∆Max for both
LHS-driving (i.e., aL) and RHS-driving (i.e., aR) cases. It is revealed that by injecting light from the RHS of the fibre, no energy
transfer is observed, i.e.,

F+ → 1; (S53)

while by injecting it from the LHS of the fibre, an excellent topological transfer of phonons occurs, i.e.,

F+ → 0, (S54)

without the need of any switch to the opposite direction of the EP-enclosing adiabatic control loops. This nonreciprocal
transfer does not depend on the direction of the EP encirclement, that has no counterpart in the previously established
demonstrations [S12–S26]. We point out that in our simulations, both the application of the initial drive to the mode b+ and
the execution of an anticlockwise EP-enclosing adiabatic control have been applied.

In fact, the resulting topological nonreciprocity here is different from that found in the previous studies, because in the standard
schemes of generating the topological nonreciprocal transfer of energy, the encircling-EP adiabatic paths could result in a less-
decayed eigenmode for the majority of the loop, and in stark contrast to this, the performing of the same control loop with
clockwise encircling the EP leads to an adiabatic path, which indicates primarily the more-decayed eigenmode.

C. Detailed comparison of standard and our methods

The previous one-way topological behaviors [S12–S26] are naturally limited by the strict dependence on the encirclement
direction of the EP in the parameter space, and this leads to a strong suppression effect on both the topological responses
and their non-reciprocities. Specifically, for an initial excitation in a chosen mode, an efficient topological behavior (e.g.,
topological transfer of energy or state) is observed when executing an adiabatic trajectory enclosing clockwise an EP; while for
counterclockwise encircling, no topological response happens [S12, S13]. This means that for the previous schemes, switching
to the other encircling direction of the EP-enclosing control loop will result in no topological behaviors [S12, S13], and that the
standard topological nonreciprocity relying on the EP-encircling direction will be generally suppressed or even fully destroyed
in a very wide parameter region [S12, S13]. Here, we break these long-standing limitations and suppression effects, and build an
excellent topological energy transfer and its nonreciprocity, independent of the EP-encircling direction, by just employing the
Fizeau light-dragging effect [S4–S6].

Now, we compare in detail the topological-energy-transfer nonreciprocity based on the standard method and that using our
proposal. Specifically, in the standard EP-encircling-direction-dependent nonreciprocity case, the topological-phonon-transfer
factor F+ is plotted as a function of the maximal driving detuning ∆Max, when the EP-enclosing control loop is counter-clockwise
(⟲, see the blue solid curve) or clockwise (⟳, the red solid curve), as shown in Fig. S3(a). Meanwhile, based on our method,
we plot F+ versus ∆Max, when the light enters from the LHS (the blue solid curve) or the RHS (the red dashed curve) of the
fiber, as shown in Fig. S3(b). We clearly see from Fig. S3(a) that in the standard-scheme case, there exists a valley around
−2.1 < ∆Max/ω1 < −1.3 (see the left area of the black dashed vertical line, i.e., the red shadow area), which denotes the
emergence of a strong suppression effect on the topological non-reciprocity (i.e., F⟲+ → 0 and F⟳+ → 0), and that an excellent
topological non-reciprocity (i.e., F⟲+ → 0 and F⟳+ → 1) can be observed only when ∆Max/ω1 > −1.3. However, for our proposal
[see Fig. S3(b)], no suppression effect on the topological nonreciprocity occurs in all the areas, which depicts an excellent
topological nonreciprocity (i.e., FLHS

+ → 0 and FRHS
+ → 1).

To further elucidate this suppression-immune topological nonreciprocity realized by our method, we compare the performance
of the nonreciprocity achieved by both the standard method and our proposal, in a wide frequency-detuning range (−2.1 <
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FIG. S3: (a) Topological-phonon-transfer factor F+ versus the maximal driving detuning ∆Max, when the EP is fully encircled in the counter-
clockwise (⟲, the blue solid curve) or clockwise (⟳, the red solid curve) direction, when S = 400 Hz. The red shadow area in (a) denotes the
suppression region of the topological nonreciprocity, corresponding to an imperfect topological nonreciprocity (F⟲+ → 0 and F⟳+ → 0, see the
left-side area of the black vertical dashed line). (b) F+ versus ∆Max, when the light enters from the LHS (the blue solid curve) or the RHS (the
red dashed curve) of the fiber for S = 400 Hz, by the counter-clockwise (⟲) encirclement of the EP. The blue shadow area in (b) depicts the
enhanced region of the topological nonreciprocity, corresponding to a perfect topological nonreciprocity (i.e., FLHS

+ → 0 and FRHS
+ → 1 ). (c)

Comparison of the red solid curve of (a) obtained by the standard scheme and the red dashed curve of (b) achieved by our proposal. We clearly
see that in a wide parameter region (i.e., −2.1 < ∆Max/ω1 < −1.3), the topological nonreciprocity is strongly suppressed with the standard
method but enhanced using our proposal, which yields a perfect topological nonreciprocity.

∆Max/ω1 < −1.3), as shown in Fig. S3(c). It is clearly shown that with increasing ∆Max, the topological nonreciprocity is strongly
suppressed with the standard method [S12, S13] but enhanced using our proposal, which results in an extremely excellent
topological nonreciprocity. These results confirm that compared to the conventional topological nonreciprocity inherently
existing a very wide suppression region, our method completely beats this suppression effect and builds an excellent topological
nonreciprocity.

In the above-mentioned analysis, the comparison of the standard and our methods, which produce the nonreciprocal
topological energy transfer when the EP-encircling control loop is counter-clockwise (⟲), has been studied in detail. Based
on the above comparison, we fully break these suppression effects on the nonreciprocal topological response, and realize an
excellent one-way topological energy transfer independent of the EP-encircling direction, by introducing the Fizeau light-
dragging effect. Below, we study in detail the unidirectional topological phonon transfer by using our method, when the
EP-encircling direction is switched to the clockwise (⟳) direction from the counter-clockwise (⟲) direction.

To this end, we plot in Fig. S4 the topological-phonon-transfer factor F+ as a function of the maximal driving detuning ∆Max
when the light is injected from the LHS (the blue curve) or the RHS (the red curve) of the fiber, in the case where the encircling
direction of the EP is clockwise (⟳). Using our method, we find that when switching to the clockwise-encircling direction (⟳)
from the anticlockwise-encircling direction (⟲) of the EP, the topological transfer of energy can also be observed and especially
this energy transfer is non-reciprocal, which is otherwise unattainable in conventional schemes [S12, S13]. This is attributed to
the fact that in the standard scheme, no topological response emerges when switching to the other encircling direction of the
EP. It indicates that by introducing the Sagnac-Fizeau effect, the unidirectional topological phonon transfer can always occur
whatever the direction of winding around the EP is. This demonstrates that our method can completely beat all the limitations
in the previous schemes [S12–S26], and paves a route to producing a perfect one-way topological response.

Specifically, we find from Fig. S4 that the nonreciprocal topological phonon transfer occurs in the two regions: (i) Around
∆Max/ω1 = −1.45, we find that for the LHS driving, there exists a valley (see the blue shadow region), corresponding to the
topological phonon transfer (see the blue disk); while for the RHS driving, the valley becomes the upper horizontal line (see
the red disk), corresponding to no topological transfer of energy, which indicates the emergence of an excellent nonreciprocal
topological phonon transfer [i.e., FLHS

+ → 0 (corresponding to the transfer of energy) and FRHS
+ → 1 (corresponding to the block

of energy)]. (ii) Around ∆Max/ω1 = −0.85, the other valley can be observed (see the red shadow region), and it means that
the other nonreciprocal topological transfer of energy happens [i.e., FLHS

+ → 1 (corresponding to the block) and FRHS
+ → 0

(corresponding to the transfer)]. Physically, the synergy of the topological operations and the Fizeau drag, leading to the
difference of the refractive index that light experiences [S4–S6]. Therefore, the light injected from one chosen side of the
fibre experiences a Sagnac-Fizeau shift, whereas the light entering from the other side yields an opposite shift, and this causes
an effective nonreciprocity of the topological energy transfer [S4–S6].

These findings indicate that we produce a fundamentally different topological nonreciprocity independent of the encirclement
direction of the adiabatic loops enclosing the EP. This is otherwise unattainable in conventional schemes [S12–S26], where the
dependence on the encircling direction of the EP is the essential requirements for all the standard unidirectional topological
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FIG. S4: Topological-phonon-transfer factor F+ versus the maximal driving detuning ∆Max when the light enters from the LHS (the blue curve)
or the RHS (the red curve) of the fiber for S = 200 Hz, when the encircling direction of the EP is clockwise (i.e., ⟳). The blue and red
shadow areas denote the emergence of the nonreciprocal topological phonon transfer, and the optimal topological nonreciprocity happens at
the position of the blue and red disks (see the black dashed vertical lines). Note that the valleys correspond to the topological energy transfer,
and the upper horizontal solid lines correspond to no topological transfer of energy (i.e., block).

behaviors (i.e., for the standard schemes, no topological behavior can occur once switching to the other encircling direction of
the EP). It demonstrates that by using our method, the one-way topological energy transfer can always happen no matter what the
encircling direction of the EP is, and these findings have no correspondence to the previously established demonstrations [S12–
S26].

Our work not only opens up a new route to topological control beyond the EP-encircling-direction limitation, but also enables
the exploration of other dynamical effects related to the EP, including the behavior of thermal and quantum fluctuations in their
vicinity. In a broader view, our study sheds new light on the combination of the topological operations and the Fizeau light-
dragging effect, and offers exciting opportunities of empoldering new one-way topological behavior, with both independence on
the EP-encircling direction and immunity against the suppression effect on the topological nonreciprocity. This work will enable
the exploration of the EP physics in system control and energy or state transfer schemes at the crossroads between fundamental
research and practical applications.

D. Speed-tunable topological phonon transfer

In this subsection, we reveal that in the adiabatic limit, the optimal topological energy transport can be easily speed-up, but
also speed-down. Below, we study in detail this problem by finding out the relation between the topological-energy-transport
factor F+ and the control-loop duration t.

Concretely, the topological energy-transport factors F± between the two motional normal modes are plotted as a function of
the control-loop duration τ in the LHS-driving [i.e., aL, see the blue curves in Fig. S5(a)], the standard [i.e., non-spinning, see
the green curves in Fig. S5(b)], and the-RHS driving [i.e., aR, see the red curves in Fig. S5(c)] cases. We find that with rapidly
encircling the EP, i.e., τ→ 0, no energy transfer occurs, i.e.,

F+ → 1 and F− → 0; (S55)

while with adiabatically winding around this EP, an excellent phonon transport is realized, i.e.,

F+ → 0 and F− → 1, (S56)

which strongly depends on the duration of the enclosing-EP adiabatic paths. Remarkably, we find that the threshold control-loop
duration for preserving a perfect energy transfer, in the RHS (LHS) driving, is nearly 5 (2.5) times faster (slower) than that in
the standard case. This indicates that the topological energy transfer can be speed-up but also speed-down, which paves a route
to realizing the speed-controllable topological transfer of phonons.
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To clearly demonstrate this counterintuitive behavior, we show the relationship between F+ and τThr, and define an average
speed of the energy transport:{ 0 < F+(τ) ⩽ 1, (τ < τThr) : no or partial topological energy transfer;

F+(τ) = 0, (τ ⩾ τThr) : optimal topological energy transfer; (S57)

and

V = τ−1
Thr. (S58)

Moreover, we analytically show the relationship between the topological-energy-transfer factors F±(t) and the switching-point
time τSP corresponding to the symmetrical energy transfer:

{ (i) F+(τ) > F−(τ), when τ < τSP;
(ii) F+(τ) = F−(τ), when τ = τSP;

(iii) F+(τ) < F−(τ), when τ > τSP.
(S59)

Specifically, we see from Eq. (S59) that: (i) when the duration τ of a control loop is smaller than the switch-point time τSP, the
energy of the b+ mode is larger than that of b−; (ii) when the duration τ of a control loop is equal to the switch-point time τSP,
the energy of the b+ is equal to that of b−; and (iii) when the duration τ of a control loop is lager than the switch-point time τSP,
the energy of the b+ mode is smaller than that of b−.

The dependence of the energy-transfer speed on the Sagnac effect can also be seen by plotting the topological energy-transport
performances F+ (see the solid curves) and F− (see the dashed curves) versus the control-loop duration τ of the trajectories when
the system operates in the LHS driving [see the blue curves in Fig. S5(a)], the standard [see the green curves in Fig. S5(b)],
and the RHS driving [see the red curves in Fig. S5(c)], for the spinning angular velocity S = 800 or 0 Hz of the silica sphere.
We find that in the LHS-driving (i.e., aL) regime, both switch-point time τSP and threshold duration τThr are shifted to the left,
which leads to a speedup for the topological phonon transport. Especially, the speed-up time is associated with the value of the
angular velocity S, corresponding to the emergence of a strong Sagnac effect. However, in the RHS-driving (i.e., aR) regime,
both τSP and τThr are shifted to the right, which shows an opposite phenomenon compared with the LHS-driving, and this means
that the topological phonon transfer is slowed down which is switched from being speed-up. In particular, we also show in the
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TABLE I: (a) Correspondence of the threshold duration τThr of the adiabatic closed control loops (column 2) and the average speed V of the
topological energy transfer (column 3) in the LHS-driving, standard, and RHS-driving cases (column 1). (b) Correspondence of the topological
energy-transfer factor F+ when the time t of the closed control loops is smaller than τThr (column 2, corresponding to no or partial energy
transfer), τ is equal to τThr (column 3, corresponding to an excellent transfer of energy), and τ is larger than τThr (column 4, corresponding to
a perfect energy transfer). (c) Correspondence of F+ when the time τ of the control loops is smaller than the switch-point duration τSP of the
adiabatic control loops (column 2, corresponding to an asymmetric energy transfer), τ is equal to τSP (columns 3, corresponding to a symmetric
energy transfer), and τ is larger than τSP (column 4, corresponding to an asymmetric energy transfer).

LHS-driving

RHS-driving

Standard case

Threshold duration τThr  of adiabatic control loops    Average speed V of energy transfer

Time shortened

Standard

Time prolonged

Speed-up

Constant speed

Speed-down

Topological transfer

 τ<τThr 

0< F+ ≤1

 τ =τThr 

F+ = 0

 τ >τThr 

F+ = 0

performance
No or partial Perfect Perfect 

 τ<τSP 

F+ > F- 

 τ =τSP

F+ = F- 

 τ > τSP 

Asymmetric Symmetric Asymmetric 

F+ < F- 

(a)

(b) (c)

Topological transfer

performance

transfer transfer transfer

right side of Fig. S5(a,b,c) that the threshold duration τThr for maintaining the optimal transfer performance (the average speed
V of topological energy transfer) becomes much larger (smaller) from the LHS-driving, standard, to RHS-driving cases. These
results are matched well with the following detailed analysis.

To understand this more intuitively, in Table. I(a), we show the correspondence of the threshold duration τThr of the adiabatic
control loops (see column 2) and the average speed V of topological energy transfer in the LHS-driving, standard, and RHS-
driving cases. We find that in the LHS-driving regime, the threshold duration τThr for maintaining an optimal topological transfer
of energy can be easily shortened, which leads to a speed-up of the topological phonon transport; while in the RHS-driving
regime, the threshold duration τThr is prolonged, which means a speed-down of topological energy transfer. These findings
indicate that the topological transfer of phonons can be speed-up but also speed-down, which paves a route to a speed-tunable
topological phononics. Moreover, we show in Table I(b) the topological phonon-transfer factors F+ when τ < τThr, τ = τThr, and
τ > τThr, correspond to no or partial topological energy transfer, and a perfect topological transfer of energy, respectively.

In addition, we show in Table. I(c) the correspondence of the topological phonon-transfer factor F+ when the time τ of the
closed control loops is smaller than the switch-point duration τSP of the control loops, i.e., τ < τSP, which leads to an asymmetric
energy transfer, the time of control loops τ is equal to the switching-point duration τSP of the enclosed control loops, i.e., τ = τSP,
associated with a symmetric energy transfer, and the time of control loops τ is larger than the switching-point duration τSP of
the adiabatic control loops, i.e., τ > τSP, which is related to an asymmetric transfer of energy. These findings show the threshold
duration of the adiabatic control loops for maintaining optimal energy transfer can be easily prolonged or even shortened,
yielding a speed-tunable topological transfer that has no counterpart in previously established demonstrations. Our study paves
a quite-general route to exploiting profoundly different topological chirality, both independent of the EP-encircling direction and
immune to the masses of practical devices.

E. Topological energy transfer immune to device quality factors

In this subsection, we show in detail how to realize the topological transfer of phonons with the immunity of the quality factors
of practical devices. Below, we demonstrate this step by step.

Our approach proposed here not only paves a feasible route for shelding topological resources from the quality factors of
practical devices, but also enable the construction of loss-tolerant one-way acoustic devices. In practical devices, the motional
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spinning cases. Here we assume κ0/ω1 = 0.225 and κin,0/ω1 = 0.089, and other parameters are the same as those in Fig. S1.

modes will be thermalized by their thermal baths through their mechanical-decay channels and therefore, the thermal noise can
destroy all the topological energy transfer in quantum devices. In addition, a larger cavity-field decay rate in practical quantum
devices correspond to a smaller cavity-photon number, which leads to a much worse performance of topological energy transport.
Next, we study in detail the dependence of the topological phonon transfer on the cavity-field decay rate κ, the input coupling
rate κin, and the mechanical damping rate γ2.

First, we study the effect of the dissipation rate κ and the input coupling rate κin of the cavity field on the topological energy
transfer F+, when the system operates in both standard (i.e., non-spinning) and spinning (i.e., LHS-driving, aL) cases. Concretely,
we plot in Figs. S6(a) and S6(d) the topological energy-transfer performance F+ as functions of the rescaled the total dissipation
rate κ and the input coupling rate κin of the cavity field, in both non-spinning and spinning cases. We clearly see that the
topological phonon-transfer performance in the spinning case is much better than that in the standard (i.e., nonspinning) case. In
addition, we find that with the increase of the cavity-field decay κ, the topological-energy-transport performance becomes much
worse, i.e., F+ → 1, while it will become much better for a lager value of κin, as shown in Figs. S6(b) and S6(e). Especially, we
reveal that a more than three-orders-of-magnitude improvement in the topological phonon-transfer performance can be observed
with our proposed method, without which it vanishes. In particular, we find that the topological energy transfer can be realized
when the system is only in the resolved-sideband regime, i.e., κ ≪ ωm, and that the optimal working parameter of the cavity-field
decay rate κ (corresponding to the optimal value of F+) is around κ/κ0 ≈ 1, where the topological energy-transfer performance
can be three orders of magnitude better than that in the standard (i.e., nonspinning) case.

As is well-known, the thermal baths thermalize vibrational modes via their decay channels, and then the topological energy
transfer is usually easily destroyed by the thermal noise in practical quantum systems. To further study and understand these
thermalization effects, we specifically show the topological-energy-transfer factor F+ as functions of the mechanical decay rate
γ2 of quantum practical devices, when the system operates in both non-spinning (i.e., standard) and spinning (i.e., LHS-driving,
aL) cases. We find that the topological energy transfer in the spinning case is much better than that with the standard schemes.
For example, the topological-energy-transfer performance can be nearly two orders of magnitude better than that in the standard
demonstrations. Moreover, we see that the topological energy-transfer performance becomes much worse with the increase of the
mechanical decay rate γ2 of mechanical devices. Physically, the thermal-noise-exchange rates between the mechanical vibrations
and their heat baths are much slower for a smaller value of the mechanical damping rate γ2, and it is good for immuning all the
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topological phonon transfer against the environmental thermal perturbations. This indicates that a higher Q-factor mechanical
resonator can be beneficial for generating a high-performance topological transfer of phonons. We also demonstrate that a two-
orders of magnitude improvement in the energy-transfer performance can be observed by introducing the Fizeau light-dragging
effect (i.e., for S , 0), which yields an excellent topological energy transfer (i.e., corresponding to the minimum value of F+)
resulting from a smaller the mechanical decay rate γ2).

More importantly, the generating nonreciprocal topological transfer of energy, in the independence on the EP-encircling
directions, can provide a novel way to enabling practical bad-quality setups to be ideal, and it is reminiscent of that in chiral
environment and topological devices. In Figs. S7(a-f), we plot the topological phonon transfer performance F+ of the two
motional normal modes as functions of either the spinning angular speed S and the cavity-field decay rate κ or the mechanical
damping rate γ2 in practical quantum devices. We observe that with increasing the decay rates κ or γ2, the topological energy-
transfer performance F+ reaches an optimal value around the spinning angular velocity S ≈ 400, which is related to an excellent
topological phonon transfer between the two vibrational normal modes. In addition, we highlight that the topological energy
transfer can be achieved for both good- and bad-quality devices, and this means that the decay-immune topological energy
transfer can be realized by simply employing the Fizeau light-dragging effect.

To further demonstrate these counterintuitive phenomena which are above mentioned, we show in Figs. S7(c), S7(f), and S7(i)
the topological energy-transfer performance F+ versus the angular velocity S of the spinning silica sphere, in both good- and
bad-quality regimes. It demonstrates that in the bad-quality regime, the topological phonon transfer nearly does not occur almost
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at all, i.e., F+ → 1, for the standard (i.e., nonspinning) case, but it becomes feasible, i.e., F+ → 0, for the spinning case (i.e., aL).
In particular, we reveal that the topological-energy-transfer performance becomes much better for a larger value of the angular
velocity S of the silica sphere. For example, in the bad-quality regime, the topological phonon-transport performance for the
spinning case has been predicted to be 10 (5) times better than those in the nonspinning case. In the good-quality regime, with
the decrease of the decay rate κ (γ2) of quantum devices, an excellent topological energy transfer in the spinning case can be
effectively achieved and its topological transfer performance can be improved up to 2.5 (3) orders of magnitude compared with
that in the standard scheme (i.e., S = 0). These findings show that the application of the Fizeau light-dragging effect to the
topological operations can not only lead to a giant enhancement for the isolation, but also indicate the possibility of achieving
excellent topological transfer of energy, which is fully beyond the limitations of the quality factors of practical quantum devices.

F. Strength-dependent topological transfer of energy

In this subsection, we show in detail the effect of the light-motion coupling strengths on the topological energy transfer, and
demonstrate how to achieve an optimal strength-dependent topological energy transfer via the Fizeau light-dragging effect.

Specifically, we plot the topological-energy-transfer quality factor F+ as functions of the optomechanical-coupling strengths
g1 and the spinning angular velocity S of the silica microsphere, as shown in Fig. S8(a). We find that the topological energy-
transfer performance in the spinning device is much better than that in the non-spinning case. For example, the phonon-transfer
performance in the spinning regime can be three orders of magnitude better than that with the standard method. In the non-
spinning regime (i.e., S = 0), we see that the topological energy-transfer performance is significantly suppressed with decreasing
the optomechanical coupling strength g1. In contrast, an opposite phenomenon of the topological energy transfer emerges when
switching to the spinning regime from the standard (i.e., non-spinning) regime, and especially, the topological phonon-transfer
performance in the spinning regime is largely better than that in the nonspinning regime, as shown in Fig. S8(b). These results
indicate that, in the finite region a higher spinning angular velocity of the silica sphere leads to a much stronger Fizeau-drag
strength of the light, which can be useful for generating a higher-performance topological transfer of phonons. Moreover, we
find that a three orders of magnitude improvement in the energy-transfer performance can be observed by introducing the Fizeau
drag of light (i.e., S , 0).

In addition, in Fig. S8(a) exhibiting the topological energy transfer F+ versus the light-motion coupling strength g1 and the
spinning angular velocity S, we show that for the conventional (i.e., nonspinning) scheme, i.e., S = 0, no topological energy
transfer happens, i.e., F+ → 1, when the optomechanical-coupling strength satisfies g1/g0 < 1. In stark contrast to this, by
introducing the Fizeau light-dragging effect, i.e., S , 0, an excellent topological transfer of phonons can be achieved no matter
how large or small the light-vibration coupling strengths are, i.e., F+ → 0 (see the blue and orange regions in Fig. S8). These
results indicate that, in general, by simply employing the Fizeau drag of light, the topological energy transfer can be nearly
independent of the coupling strengths between the vibrational modes and the optical mode.

To further show the immunity of our approach to engendering the topological energy transfer against the worse strengths of
optomechanical couplings, we make a detailed comparison between the previous standard method (see the blue solid curves)
and our proposal (see the red curves), as shown in Fig. S8(c). We find that with decreasing the light-vibration coupling strength
g1, the topological phonon-transfer performance becomes much worse, i.e., F+ → 1; while counterintuitively, introducing the
Fizeau light-dragging effect can allow to reach the coupling-immune topological transfer of phonons, i.e., F+ → 0, which
was very challenging for the previous demonstrations. This is because the topological transfer performance is reduced due to
decreasing the light-motion coupling strength, while it can be tremendously compensated or even amplified by employing the
Fizeau-Sagnac mechanism. Our findings indicate that our study paves a route towards exploiting one-way topological phononics,
which is immune to the light-motion coupling strengths.

In order to demonstrate the underlying physical mechanism behind these counterintuitive phenomena, we derive the analytical
expressions of both the effective light-vibration coupling strength and the mean photon numbers:

GR,L
j = g j

√
NR,L/ρ j, (S60)

NR,L =
Pκin

(−i∆R,L +
κ
2 )(i∆R,L +

κ
2 )ωR,Lℏ

, (S61)

where the parameter ρ j = m j/m0 is the ratio of the masses of resonators. We see from Eqs. (S60) and (S61) that the effective
optomechanical coupling GR,L

j decreases due to increasing the mass ratio ρ j, however, the application of the Sagnac effect leads
to a significant compensation or even an enhancement in the photon numbers, which considerably compensates or even amplifies
the light-vibration coupling strengths, as shown in Figs. 2(c) and 2(d) of the main text. Note that the main idea is analogous
to the non-topological nonreciprocity induced by the Doppler effect, which has been studied extensively in various areas of
physics [S27, S28]. Here we focus on topological nonreciprocity induced by the Fizeau light-dragging effect. These findings
mean that the large-mass-induced reflection can be significantly suppressed by employing the Fizeau drag of the light, and as a
result, one can achieve a nearly ideal topological transfer of energy.
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In particular, to obtain an excellent topological energy transfer, i.e., F+ < 0.01, via the Fizeau drag of the light, we found the
analytical expressions on the relationship between the resonator mass ratio ρ and the threshold spinning angular speed SThr of
the silica sphere:

SThr =

[
−∆ ±

√
[4∆2 − (ρ − 1)κ2]/(4ρ)

]
/Λ, (S62)

It shows that keeping an optimal topological phonon transfer for a larger value of the resonator mass ratio ρ requires a higher
spinning angular speed S of the silica sphere, which is consistent with the results in Fig. S8.

Specifically, we find that for the standard (i.e., nonspinning) scheme, the optomechanical-coupling strengths decrease with
increasing the mass of the resonators; while for a rotating device, it is significantly enhanced or even amplified, compared with
that in the former case. This counterintuitive phenomenon can be understood via an enhancement in effective photon numbers
in the cavity. We show in detail that the effective photon numbers become less with the increase of the mass of the resonators
in the non-rotating case. In contrast to this, we reveal that in the spinning case, a multiple orders-of-magnitude amplification
in the photon numbers arises from the Sagnac effect, without which it vanishes. These results indicate that the mass-induced
reflection can be significantly suppressed in a spinning device and as a result, one can achieve a nearly ideal topological transfer
of phonons.

G. Eigenvalue distributions and transient behaviors around EP for different laser powers

Here, we show in detail the eigenvalues distributions around EP for different laser powers, and exhibit the transient behavior
of the investigated systems not only in time domain but also in the parameter space, as shown in Figs. S9 and S10.

Firstly, we provide a detailed depiction of the eigenvalue distributions around the EP for various laser powers. Physically,
the real and imaginary parts of the complex eigenvalues of the two motional normal modes are the resonance frequencies,
ωR,L
± (∆, P) = Re(λR,L

± ), and the linewidths, γR,L
± (∆, P) = −2Im(λR,L

± ), respectively. Note that in our model, the control of the
optomechanical system is achieved by a separate laser, and its driving power P and driving detuning ∆ are set by an acousto-
optic modulator. The vibration spectra of the mechanical motions as functions of the driving detuning ∆ and the driving power
P can be measured, so that the presence of the EP in our system can be accurately established. In addition, these spectra are
acquired by driving the vibrations and monitoring its response via a heterodyne signal. We fit each spectrum to determine the
two motional damping rates, γR,L

± (∆, P), and the two vibrational resonance frequencies, ωR,L
± (∆, P). Note that the subscripts “±”

refer to the vibrational normal modes of the resonators, when the optical field is introduced to the physical system.
Specifically, we see from Figs. S9(a) and S9(b) that, when P < PEP ≈ 185 uW, the eigenfrequencies have two different real

parts (i.e., Re[λ̃−] > Re[λ̃+]) and an identical imaginary part (i.e., Im[λ̃−] = Im[λ̃+]). This indicates that the system possesses
two different mechanical frequencies and an identical mechanical linewidth, as shown in the left-hand sides of Figs. S9(a)
and S9(b). In addition, Figs. S9(a) and S9(b) show that when P > PEP, the eigenfrequencies have two different real parts (i.e.,
Re[λ̃−] < Re[λ̃+] and two different imaginary parts (i.e., Im[λ̃−] > Im[λ̃+]). This means that both mechanical frequencies and
mechanical linewidths are different, as shown on the right-hand sides of Figs. S9(a) and S9(b). In particular, it is seen that
the phase transition of the system is clearly exhibited around the border point P = PEP ≈ 185 uW, which is an EP [see the
yellow discs in Figs. S9(a) and S9(b)]. Here we note that it is a semiclassical EP, corresponding to a spectral degeneracy of a
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FIG. S9: Complex eigenvalues of the two motional modes. (a) Mechanical resonance frequencies Re[λ̃∓] and (b) mechanical decay rates
−2Im[λ̃∓] of the two motional modes as a function of the driving laser power P, when the system is driven by a laser from the left-hand side
(LHS) of the fibre, for for the driving detuning ∆/(2π) = −1020.99 kHz and the angular velocity S = 400 Hz of the spinning silica microsphere.
By tuning the laser power P, the EP occurs which is described by the yellow discs. (c) Topological phonon transfer (TPT) quality factor as a
function of the driving laser power P for the standard method (i.e., S = 0 Hz, see the green curves) and our approach (i.e., S = 400 Hz when
light enters from the LHS of the fiber, see the blue curves). The TPT behavior in our approach shows an agreement with the standard results,
i.e., the adiabatic trajectories enclosing the EP will yield the TPT, whereas the adiabatic paths not enclosing the EP will not. In addition, the
topological energy transfer in our method (spinning) case is much better than that with the standard (non-spinning) schemes. For example, the
topological-energy-transfer performance can be nearly three orders of magnitude better than that in the standard demonstrations. Our analyses
indicate that the present scheme is experimentally accessible under current experimental conditions, and that the proposed phenomena are
relevant for the state-of-the-art experiments. Specifically, the mechanical frequencies and the mechanical linewidths are, respectively, denoted
by the real and imaginary parts of λ̃∓. Specifically, we see that when P , PEP, the eigenfrequencies have two different real parts, and that
when P < PEP (P > PEP), we obtain Re[λ̃−] > Re[λ̃+] (Re[λ̃−] < Re[λ̃+]). Moreover, it shows that for P = PEP, the eigenfrequencies have
an identical real part, i.e., Re[λ̃−] = Re[λ̃+]. In addition, we find that when P < PEP and P > PEP, the eigenfrequencies have an identical
imaginary part and two different imaginary parts, respectively. This indicates that when P < PEP and P > PEP the system possesses two
different mechanical frequencies and an identical mechanical linewidth (two different mechanical linewidths), respectively. In particular, the
EP (e.g., at P = PEP, see yellow discs), where the eigenstates coalesce, emerges due to switching the laser powers P.

non-Hermitian Hamiltonian. However, for the prediction of a quantum EP, it requires the inclusion of quantum noise by finding
degeneracies of, e.g., a Liouvillian, as proposed in Ref. [S29].

Now, we detailedly show the transient behavior of our investigated systems not only (i) in the time domain but also (ii) in
the parameter space. In principle, to demonstrate the transient behavior of the studied systems, it is indeed appropriate to plot
the TPT performance versus time. However, in our case, the TPT is resulted from the dynamical encirclement of the EP in the
parameter space (e.g., the detuning ∆ and power P of the driving laser). Therefore, we here study the dynamic behavior not only
(i) in the time domain but also (ii) in the parameter (∆ and P) space, because it encapsulates the transient characteristics of the
TPT when the EP is encircled by closed trajectories in this parameter space (∆ and P). We believe that this approach offers a
comprehensive understanding of the system’s dynamics and evolution, as it provides insights into the interplay between the TPT
performance and the parameter space dynamics.

(i) In the time domain, the TPT dynamics can be seen in Fig. S10. We reveal that by rapidly encircling the EP (τ → 0),
no TPT happens (F+ → 1, F− → 0); while with adiabatically winding around this EP (τ ≫ 1 ms [S12]), an excellent TPT
is observed (F+ → 0, F− → 1). Remarkably, in the LHS-injecting case, the threshold duration τThr of the adiabatic control
loops for preserving a perfect TPT, is nearly 5 times less than that in the standard schemes. Note that the threshold duration
corresponds to a top speed of the perfect TPT. These findings pave a route to a top-speed tunable TPT.

(ii) In the parameter space, the transient behavior can be illustrated in Figs. S9(c). Specifically, we plot the TPT quality factor
F+ as a function of the driving laser power P with the standard method (i.e., S = 0 Hz, see the green curves) and our approach
(i.e., S = 400 Hz, when injecting light from the LHS of the fiber, see the blue curves), as shown in Fig. S9(c). We reveal that
the TPT behavior with our method agrees with that in the standard situation, where the adiabatic trajectories enclosing the EP
will yield the TPT, whereas the adiabatic paths not enclosing the EP will not. Moreover, we find from in Fig. S9(c) that with our
method, the TPT performance can be improved up to 3 orders of magnitude compared with that in the standard scheme. This
demonstrates that a giant improvement in the TPT performance can be observed by introducing the Fizeau light-dragging effect,
which yields an excellent TPT (i.e., F+ → 0). Note that the TPT quality factor F+ versus the driving detuning ∆ has been studied
in detail, as shown in Fig. (1c) of the main text. These results show that the application of the Fizeau light-dragging effect to the
topological operations can lead not only to a giant enhancement for the isolation, but also indicate the possibility of achieving
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an excellent topological transfer of energy, which is fully beyond the limitations of the present practical quantum devices.

H. Temperature effect on the nonreciprocal topological phonon transfer

In cavity optomechanics, a high temperature can dramatically suppress the TPT performance. Based on the previous well-
known experimental demonstrations focusing on the semi-classical EP [S12, S30–S33], the cryogenic optomechanical platforms
can be employed in practical experiments to minimize the impact of temperature. In these mature experimental studies [S12,
S30–S33], even though considering the semi-classical EP, the experimental results are in complete agreement with theoretical
predictions. Note that our method dealing with the temperature effect on the nonreciprocal TPT are entirely based on these
well-established experimental works [S12, S30–S33]. In addition, in practical experimental setups, it is essential to monitor
and control the temperature of the system accurately [S12, S30–S33]. This is because the changes in temperature can alter the
dynamics of the optomechanical system and influence the observed nonreciprocal TPT. In our scheme, building upon widely
recognized experimental works [S12, S30–S33], we conduct a comprehensive and detailed analysis of how to suppress the
impact of the temperature effects on the TPT performance. In particular, we have briefly shown how to consider the temperature
effect on the nonreciprocal TPT by studying the quantum EPs of non-Hermitian Hamiltonians and Liouvillians [S29].

Firstly, we show not only in detail how the nonreciprocal TPT is affected by the environment temperature, based on the
following four aspects, and but also exhibit how to minimize the impact from the temperature effect by using widely recognized
experimental methods [S12, S30–S33].

(i) Thermal vibrations and expansion: At finite temperatures, the mechanical resonators will experience thermal vibrations.
The temperature of the system affects the phonon occupation numbers and, consequently, the mechanical noise in the system. In
particular, the environmental vibrations add unwanted noise to the measurement of the mechanical motion, as well as introduce
cavity frequency noise which can be difficult for the laser feedback to track. As the temperature increases, the population of
thermal phonons in the mechanical resonator also increases. This can affect the overall dynamics of the system, including
the nonreciprocal TPT. In addition, changes in temperature can lead to thermal expansion or contraction of the materials
in the optomechanical system. This can alter the mechanical properties of the resonators, affecting the phonon frequencies
and topological characteristics of the system. Thermal expansion and contraction of the material can induce strain variations,
affecting the optomechanical coupling and the overall phonon transfer properties.

(ii) Thermalization and equilibrium: At higher temperatures, achieving and maintaining thermal equilibrium becomes
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important. The system’s behavior, including nonreciprocal topological phonon transfer, needs to be analyzed in the context
of thermalization processes. In this case, the mechanical modes of the system are thermalized by the high environmental
temperature, which affects the nonreciprocal transfer of phonons in the system.

(iii) Dissipation and decoherence: Temperature can influence the damping mechanisms in the system. Higher temperatures
typically lead to increased dissipation, affecting the lifetime and coherence of mechanical excitations. This, in turn, can impact
the nonreciprocal behavior of the phonon transfer. Moreover, higher temperatures generally lead to increased thermal noise and
dissipation in the mechanical resonator. This can affect the coherence and nonreciprocal behavior of the phonon transfer.

Based on the above facts that the environmental temperature made a destructive impact on the nonreciprocal TPT, during
practical experiments, we can utilize the cryogenic optomechanical platforms to minimize the impact from the temperature
effect as much as possible [S12, S30–S33]. Furthermore, in practical experimental devices, precise monitoring and controlling
system’s temperature are crucial. This is due to the fact that the temperature can impact the dynamics of the optomechanical
system, thereby influencing the nonreciprocal TPT. Below, drawing on well-established experimental studies, we conduct a
thorough and detailed analysis of methods to mitigate the impact of environmental temperature on the performance of TPT.
In a well-known experiment [S12] on the standard TPT using two-vibration cavity optomechanics, the practical experimental
setup includes the cryogenic optomechanical device (the optical cavity, vibrational modes, and associated support hardware),
as well as the optical and electrical systems used to interrogate the optomechanical system. In this cryogenic optomechanical
platform, to reduce the thermal occupation of the resonators, the system is housed in a ‘wet’ 3He cryostat. The operation of this
cryostat relies on a multi-stage system involving evaporative cooling of separate reservoirs of 3He and 4He. The outermost layer
of the cryostat is a vacuum-jacketed 4He bath, into which is submersed an inner vacuum chamber containing the refrigeration
and experimental device. By pumping/cooling the 1K pot, one triggers condensation of the gaseous He-3, forming a volume of
liquid 3He in the coldest section of the cryostat. A high-surface-area material in the 3He space (charcoal) results in adsorptive
pumping of the 3He, further reducing its temperature to a ‘base’ temperature of ∼300 mK. Considering these facts, cryogenic
optomechanical platforms are employed in practical experiments to minimize the impact of temperature effects as far as possible.

Secondly, we now briefly outline the approach to account for temperature effects on the nonreciprocal TPT. This is
accomplished through the examination of quantum EPs in non-Hermitian Hamiltonians and Liouvillians [S29]. As is well
known, Hamiltonian EPs, in classical and semi-classical methodologies, are typically characterized as degeneracies of non-
Hermitian Hamiltonians. This occurs when at least two eigenfrequencies coincide, leading to the simultaneous coalescence
of their corresponding eigenstates. The resulting Hamiltonian EPs arise from continuous, predominantly gradual, nonunitary
evolution, characterized by the absence of quantum jumps. Certainly, for a fully quantum approach to achieve equivalence
with, for instance, the Lindblad master equation approach, it is imperative to incorporate quantum jumps into the framework.
Consequently, the EPs can be defined by identifying degeneracies within a Liouvillian superoperator, which encompasses the
complete Lindbladian term, thereby introducing the concept of Liouvillian EPs [S29]. This approach can allows for a clearer
elucidation of the connections between Hamiltonian EPs and Liouvillian EPs.

In our discussion, we focus on the delineation of EPs within the fully quantum regime, encompassing the incorporation
of quantum jumps. Conventional EPs align with the spectra of non-Hermitian Hamiltonians, rendering quantum jumps
inconsequential to their manifestation. While Hamiltonian EPs can be formally extended to systems far beyond the semiclassical
limit, the pertinent query arises regarding their aptitude in capturing the genuine quantum characteristics of nonconservative
systems. Our approach for defining EPs within the quantum regime hinges on scrutinizing the degeneracies in eigenfrequency
and eigenstates within the spectra of Liouvillians. Consequently, these EPs are denoted as Liouvillian EPs [S29]. Our
methodology draws inspiration from the conventional Lindblad master equation and its quantum trajectory interpretation,
encompassing both the continuous and nonunitary dissipation terms [Γ†µΓµρ(t) + ρ(t)Γ

†
µΓµ], as well as the quantum jump terms

[Γµρ(t)Γ
†
µ]. It is noteworthy that the computation of an EP using non-hermitian Hamiltonians incorporates the continuous

nonunitary dissipation term but omits the quantum jump term. The pivotal findings of this project revolve around the
juxtaposition of the Liouvillian and Hamiltonian EPs.

Specifically, the temporal evolution of an open quantum system, that weakly interacts with a Markovian (memoryless)
environment, can be articulated through the Lindblad master equation (ℏ = 1):

∂ρ(t)
∂t
= Lρ(t) = −i

[
H, ρ(t)

]
+

∑
µ

D[Γµ]ρ(t), (S63)

where ρ(t) represents the density matrix of the system at time t, andD[Γµ] denotes the dissipators linked to the jump operators Γµ.
Meanwhile, L refers to the Liouvillian superoperator (for a comprehensive discussion on superoperators). The density matrix
ρ(t) has the capacity to represent both pure states |φ⟩⟨φ| and probabilistic mixtures

∑
i pi|φi⟩⟨φi|. Each dissipator is characterized

by the Lindbladian:

D[Γµ]ρ(t) = Γµρ(t)Γ†µ −
Γ
†
µΓµ

2
ρ(t) − ρ(t)

Γ
†
µΓµ

2
. (S64)

The Lindblad master equation offers an intriguing interpretation as the time evolution of a system continuously monitored by
an environment. In this context, the impact of D[Γµ] on the density matrix ρ(t) can be divided into two components within the
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quantum-trajectory or quantum-jump approaches: the continuous nonunitary dissipation terms, i.e.,

Γ†µΓµρ(t) + ρ(t)Γ
†
µΓµ, (S65)

and the quantum jump terms, i.e.,

J[Γµ]ρ(t) = Γµρ(t)Γ†µ. (S66)

Dissipation accounts for the ongoing losses of energy, information, and coherence from the system into the environment.
Meanwhile, the quantum jumps depict the impact of measurements on the state of the system. The term J[Γµ] is termed a
quantum jump, as in a quantum trajectory approach (such as a wave-function Monte Carlo method Ref. []), these terms play
a pivotal role in inducing sudden stochastic changes in the wave function. In this context, when provided with a Lindblad
master equation elucidating the microscopic physics of a specific system, obtaining the corresponding “semiclassical limit”
is straightforward. This involves neglecting the influence of quantum jumps and introducing an effective non-Hermitian
Hamiltonian of the form:

Heff = H − i
∑
µ

Γ
†
µΓµ

2
. (S67)

Below, it is noteworthy that the master equation can be reformulated in terms of Heff as depicted below Ref. [S29]:

∂ρ(t)
∂t
= Lρ(t) = −i

[
Heffρ(t) − ρ(t)H

†

eff

]
+

∑
µ

Γµρ(t)Γ†µ. (S68)

Consequently, with a non-Hermitian Hamiltonian Heff and the quantum jump terms Γµρ(t)Γ
†
µ, a comprehensive depiction of the

quantum dynamics of a dissipative system can be achieved within the Lindblad formalism.
In summary, the temperature effect on nonreciprocal TPT will open avenues for further exploration in combining quantum

EPs with the temperature effect on non-reciprocal topology, contributing novel insights to the unique one-way topology. We are
optimistic about the potential of integrating this concept, foreseeing its substantial promise for future applications in topological
physics. Nevertheless, it is apparent that addressing this thoroughly would necessitate a substantial and time-intensive revision
of the current paper. While we acknowledge the importance of the proposed idea, we propose deferring its exploration to
our subsequent paper, allowing for a more in-depth investigation and discussion beyond the scope of the current manuscript.
Consequently, the project is currently underway by us.

I. Clarifying the relationship between energy bands and topological phonon transfer

We here need to emphasize that in our few-mode (e.g., three-mode) cavity optomechanical systems consisting of two
vibrational modes coupled to a common optical mode, the traditional concept of “energy bands” as seen in band structures
is not directly applicable. This is because our model is a three-mode optomechanical system not a solid lattice, which refers to
the ordered arrangement of atoms, molecules, or ions within the structure of a solid material. Moreover, our few-mode (three-
mode) optomechanical system studied here is not the optomechanical lattices and/or optomechanical crystals, which enable the
synthesis of non-trivial band structures and have been actively studied in the field of topological phononics [S14, S34]. Note
that yet nearly all previous schemes have used optomechanical lattices and/or crystals for studying the TPT. By contrast, new
dynamics and applications in the TPT are expected when using few-mode (e.g, three-mode) optomechanics, that is, systems
that use a small number of optomechanical degrees of freedom. Our work on the TPT differs from what is known in the
optomechanical lattices/crystals (with energy bands), mainly because we are not focused on a one-dimensional (1D) chain with
a topological band structure exhibiting topologically protected edge states [S34], a two-dimensional (2D) honeycomb lattice
realizing the strained graphene model with edge states [S34], or multiscale optomechanical crystals comprising over 800 cavity-
optomechanical elements fabricated on the surface of a silicon microchip [S14], but on the few-mode cavity optomechanical
system (without energy bands) consisting of the two vibrational modes coupled to a common optical mode [S12].

So far, in cavity optomechanics, the TPT has been realized by either (i) using optomechanical lattices, through a mechanically
mediated coupling, similar to studies of mechanical metamaterials, or (ii) using few-mode optomechanics as studied here through
the topological operations encircling an EP:

(i) Specifically, in optomechanical lattices [S14, S34], some theoretical works have predicted a significantly richer and new
dynamics, including: topological phases of light and sound, collective and quench dynamics, quantum many-body dynamics
and entanglement, and standard TPT. For example, the produced optomechanical lattices demonstrate topological microwave
modes in one-dimensional circuit optomechanical chains realizing the Su-Schrieffer-Heeger model, and realize the strained
graphene model in a two-dimensional optomechanical honeycomb lattice [S34]. To realize optomechanical lattices that include
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the excitation transport, it is imperative that the disorder in the optical (or microwave) cavity is sufficiently small to enable the
building of lattice models. This enables one to reconstruct the full underlying lattice Hamiltonian and to directly measure the
existing residual disorder. Such optomechanical lattices, accompanied by measurement techniques, offer an avenue to explore
collective, quantum many-body and quench dynamics, topological properties and, more broadly, emergent nonlinear dynamics
in complex optomechanical systems with a large number of degrees of freedom.

(ii) In few-mode cryogenic optomechanical systems [S12], imposing topological operations encircling an EP on this few-mode
system can lead to the nonreciprocal phonon transfer between two vibrational modes. These results open up new directions in
system control and the possibility of exploring other dynamical effects related to exceptional points, including the behavior of
thermal and quantum fluctuations in their vicinity. Despite achieving significant accomplishments, the previous proposals of
one-way TPT strictly depend on the direction of EP-inclusive control loops and is inherently confined to the small-mass regime
of practical resonators [S12–S26]. In terms of these long-standing limitations, where the unidirectional topological physics is
not only dependent on the EP-encirclement direction but also can be easily destroyed in the large-mass regime, the exploitation
of a new nonreciprocal topology independent of the winding direction of the EP, as well as shielding the topological behavior
from the mass disturbances in practical setups, is highly desirable. Our work shows how to beat these limitations and predicts
a mass-tolerant unidirectional topological phonon transfer by combining topological operations with the Fizeau light-dragging
effect, which splits countercirculating optical modes. Our study paves a new and general route to exploiting profoundly different
chiral topological effects, independent of both the EP-encircling direction and the device mass.

III. INNOVATIVENESS, IMPORTANCE AND TIMELINESS OF OUR PROPOSAL

Now, we highlight the innovativeness, importance, and timeliness of our work:
(i) Innovativeness of our results: Our study is the first to shed new light on the pioneering synergy of the burgeoning multi-

vibration optomechanics, the emerging topological operations encircling an EP, and the leading-edge light-Fizeau-drag effect.
It can pave a quite-general route to exploiting profoundly different nonreciprocal topological effects, being both independent of
the EP-encircling direction and immune to the device mass. We believe in the efficacy of our theory of encircling-orientation-
independent and mass-free one-way topological physics as based on the synergy of these three hot-research fields. Our study
can help to exploit new and general unidirectional topology.

(ii) Importance of our work: We have overcome the long-standing limitations, where the unidirectional TPT is not only
dependent on the EP-encirclement direction but also can be easily destroyed in the large-mass regime of the practical setups. This
means that we have predicted a fundamentally different topological nonreciprocity independent of the encirclement direction of
the adiabatic loops enclosing the EP, and shield the topological behavior from the mass disturbances in practical devices. These
results are otherwise unattainable in conventional schemes [S12–S26], where the dependence on the encircling direction of an
EP is the essential requirement for all the standard schemes of the unidirectional TPT.

(iii) Timeliness of our study: The previous one-way topological effects [S12–S26] are naturally limited by the dependence
on the encirclement direction of an EP in the parameter space, and this leads to a strong suppression effect on both topological
responses and their nonreciprocities. Specifically, in the previous schemes, switching to the other encircling direction of the EP-
enclosing control loop results in no TPT [S12, S13], and the standard topological nonreciprocity relying on the EP-encircling
direction is generally suppressed or even fully destroyed in a very wide parameter region [S12, S13]. Here, we overcome these
long-standing limitations and suppression effects, and propose a method for an excellent TPT and its nonreciprocity, independent
of the EP-encircling direction, by just employing the Fizeau light-dragging effect [S4–S6].

IV. PHYSICAL MECHANISM OF OUR APPROACH

In this section, we elaborate on the physics of how exactly the light induces vibrational modes, and show the underlying
physics of our findings.

A. Mechanism of light-induced vibrations

Cavity optomechanical systems enable controlling and inducing the motional mode through the radiation-pressure
interaction, and have contributed to the quantum control of engineered mechanical systems ranging from kilogram-scale
Laser Interferometer Gravitational-wave Observatory (LIGO) mirrors to nanomechanical systems, enabling the ground-state
preparation, entanglement, squeezing of mechanical objects, and position measurements at the standard quantum limit and
quantum transduction [S2, S12, S35–S45]. Below, we illustrate in detail on the physical mechanism of how exactly the light
induces vibrational modes.
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Currently, vibrational modes can be induced or controlled by the radiation-pressure interactions between the cavity-field mode
and vibrational modes, and it has been experimentally implemented in both optical [S2, S12, S35–S40] and microwave [S2, S39–
S45]:

(i) In the optical domain, vibrational modes can be induced by the light-motion interactions, which has been experimentally
implemented using a Fabry-Pérot-type optomechanical configuration, where a silicon-nitride (SiN) membrane (or a movable
mirror) is positioned inside a high-finesse Fabry-Pérot optical cavity [S2, S12, S37–S40]. The vibrational eigenmodes of the
SiN membrane include near-degenerate pairs that are well-separated in frequency from all the other eigenmodes. The vibration
of the SiN membrane (or movable mirror) can tune the resonance frequency of the cavity-field mode; and then, the radiation-
pressure interactions (i.e., optomechanical couplings) are induced between the vibrational modes and a common cavity-field
mode.

(ii) In the optical domain, it has also been experimentally achieved using a microresonator [whispering-gallery-mode (WGM)
resonator], consisting of an optical mode and the breath (vibrational) modes, which are exploited to form an optomechnaical
system [S2, S35, S36, S39, S40]. Therefore, the light-vibration couplings of an optical mode to the vibrational breath modes
are produced by the modulation of the resonant frequency of the cavity field, and this modulation is owing to the vibration of
the breath mechanical modes. Specifically, via the geometry effect and the photoelastic effect, the motion of the breath mode of
the microresonator changes the optical-mode resonance frequency, which leads to the optomechanical interaction between the
breath vibration and the cavity-field mode.

(iii) In the microwave domain, the vibrational modes can be induced by the optomechanical interaction, which has
be experimentally realized using electromechanical circuit systems, involving micromechanical drum oscillators and a
superconducting on-chip circuit acting as an electromagnetic cavity [S2, S39–S45]. The positions of the micromechanical
resonators affect the total capacitance and thus, modulate the resonant frequency of the electromagnetic cavity. This creates the
effective radiation-pressure couplings similar to those between the movable mirror/resonator (breath mechanical mode) and an
optical mode in an optomechanical system.

B. Underlying physics behind our results

In earlier investigations [S13], the distinct visualization of asymmetric mode transfer concerning the encircling direction of
the EP was demonstrated on the Riemann surfaces. In principle, our approach to create a versatile yet unique one-way TPT,
independent of the EP encircling direction, can be characterized through the Riemann surfaces. To this end, we have diligently
attempted to utilize the Riemann surfaces to elucidate our counterintuitive findings. However, our endeavors have revealed that
because of the spinning of our silica microsphere, this approach remains challenging for readers to grasp effectively. Recognizing
the importance of ensuring comprehension among a broader audience regarding the physical mechanisms behind our findings,
we engaged in extensive and profound discussions with some experts in this field. Consistently, they have highlighted that
due to mechanical rotating our microsphere cavity, explaining through the Riemann surfaces posed difficulties and lacked
intuitiveness. Consequently, they have advised us unanimously to embrace the Fizeau light-dragging effect [S4] as a more
accessible and coherent framework for interpretation. We are committed to ensuring that the underlying physics behind our
results are comprehensible to a broader audience. Thus, based on this collective advice, we are inclined to adopt the Fizeau
light-dragging effect [S4] for our explanation.

We here need to emphasize that our unparalleled unidirectional TPT occurs because of combining the topological operations
with the Fizeau light-dragging effect [S4], splitting countercirculating light modes and leading to the difference of the refractive
indices that light experiences. Physically, the light entering from one chosen side of the fibre experiences a Sagnac-Fizeau shift
and however, the light entering from the other side leads to an opposite shift. For example, the laser injected from the LHS of
the fibre undergoes a Sagnac-Fizeau shift, which engenders the phonon transfer; in stark contrast to this, the light entering from
the RHS of the fibre leads to an opposite shift, which yields no transfer of phonons. As a result, this leads to the following
advantages:

(i) Introducing light from a selected side of the fiber yields a TPT, whereas doing so from the opposite side does not. This
gives rise to a fundamentally distinct topological nonreciprocity, regardless of the direction of the encirclement of the adiabatic
loop surrounding the EP, which was unachievable using conventional methods [S12, S13].

(ii) Within a broad parameter range, the nonreciprocity of TPT is significantly attenuated by the conventional methods,
whereas it is amplified by our approach, resulting in an impeccable TPT nonreciprocity.

(iii) In contrast to previous studies [S12–S26], where the topological responses generally degrade or even completely disappear
with the increase in either mass or decay of practical setups, our proposal is nearly immune to these drawbacks. This immunity
is achieved without the necessity of employing high-cost, low-loss materials, or noise filters, albeit at the expense of increased
system complexity. Its underlying physics is analogous to the Doppler effect extensively demonstrated in various non-topological
areas [S27, S28], and this mechanism leads to a complete compensation for the mass-induced and damping-induced detrimental
reflections, owing to a drastic enhancement in the intracavity relative photon number.
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FIG. S11: (a) Fizeau light-dragging δs [see Eqs. (S70-S73)] versus the angular velocity S of the silica microsphere for the LHS driving (δs > 0,
red curves) and the RHS driving (δs < 0, blue curves) of the fibre. (b) Changes of the refractive index [see Eq. (S74)] of the material versus
S when the spinning microsphere is driven by a laser from the LHS and RHS of the fibre. (c) Effective photon numbers N [see Eq. (S75a)]
versus S for the LHS- and RHS-driving cases. (d) Effective light-vibration coupling rate G [see Eq. (S75b)] versus S in both the LHS- and
RHS-driving cases. We can see that with the increase of the angular velocity, an opposite frequency shift for the counter-propagating modes
happens, and that for the same input laser, owing to this opposite light-frequency shift, the TPT emerges nonreciprocally.

(iv) Notably, an adjustability in the threshold control-loop time required to maintain an excellent TPT is observed, leading to
the achievement of a top-velocity-controllable perfect TPT.

(v) In a broader perspective, our study illuminates the connection between topological operations and the Fizeau light-dragging
effect, opening up exciting opportunities to uncover novel one-way topological behaviors. These findings are characterized by
their independence from the direction of EP encirclement and their immunity against both mass and decay of the practical
devices.

In following, we present a comprehensive examination of the physical mechanism underlying our approach, and detailedly
exhibit the differences of our scheme compared to previous proposals:

An effective light frequency can experience a Sagnac-Fizeau shift [S4] in our spinning microsphere system. Specifically,
owing to the spinning of the silica microsphere with an angular velocity S, the Sagnac-Fizeau shift is experienced by the light,
i.e.,

ωc → ωc + δs, (S69)
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where ωc is the non-spinning (i.e., standard) system and

δs = ±SΛ (S70)

denotes the Sagnac-Fizeau shift of the driving detuning, with

Λ = ζrωc[1 − 1/ζ2 − (λ/ζ)dζ/dλ]/c, (S71)

where the parameters r, ζ, c, and λ are the silica-sphere radius, the refractive index, the speed of light in vacuum, and the
wavelength of light, respectively. In fact, the relativistic origin of the Sagnac effect is characterized by the dispersion term (i.e.,
dζ/dλ), which is small in typical materials (up to ∼ 1%). By mechanically rotating the silica microsphere along only in the
clockwise direction,

δs > 0 (δs < 0) (S72)

corresponds to the case, where the driving laser is injected from its left-hand side (LHS) or right-hand side (RHS) of the fibre,
leading to an optical mode aL or aR, respectively. Therefore, the clockwise (aR) and anticlockwise (aL) optical frequencies are,
respectively, defined as

ωR,L
c = ωc ± |δs|. (S73)

Note that δs = 0 (i.e., S = 0) denotes the nonspinning (i.e., standard) case, where we obtain aR,L = a and ωR,L
c = ωc). This

means that when the microsphere cavity does not spin, the Fizeau drag is equal to zero, owing to the same resonance frequency
of the light injected from the LHS or RHS of the fibre, and that when increasing the angular velocity S results in an opposing
frequency shift for the light, which comes from an opposite orientation.

Specifically, it is shown in Eq. (S73) that with increasing the angular velocity S, the frequency of light is enhanced or
suppressed when the silica microsphere is driven from the RHS or LHS of the fibre, respectively. This is due to the fact that the
Fizeau light-drag effect caused by the spinning of the microsphere leads to the shift of the light frequency. In order to reveal
the underlying physical mechanisms, we plot in Fig. S11(a) the Fizeau light dragging δs as a function of the spinning angular
velocity S of the silica microsphere when the microsphere is driven by a laser from the LHS (δs > 0, red curves) and RHS
(δs < 0, blue curves) of the fibre. It is shown that with increasing the angular velocity of the spinning microsphere, an opposite
frequency shift for the counterpropagating light modes occurs, and that for the same input laser, the TPT appears unidirectionally
because of the opposite light-frequency shift for the counterpropagating modes.

To further explore how the Fizeau drag of light causes nonreciprocity fundamentally, the relativistic addition of velocities
is taken into account when the periphery of the spinning sphere is moving away/towards from the output/input ports. In light
of these considerations, optical paths of counterpropagating light beams are different attributed to the rotation, leading to the
irreversible refractive indices for aR,L,

ζR,L = ζ
[
1 ± Sζr(ζ−2 − 1)/c

]
. (S74)

We find from Eq. (S74) that the refractive index of the material is increased or decreased when light is injected from the RHS
or LHS of the fibre, respectively. This is because the Fizeau light-drag effect induced by spinning results in the change of the
refractive index of the material. Specifically, in Fig. S11(b), we plot the changes of the refractive index of the material as a
function of the angular velocity S, when the laser enters from the LHS and RHS of the fibre. We observe that the change of the
refractive index of the material is induced by the Fizeau light-dragging effect resulted from spinning the silica microsphere.

In addition, the Fizeau drag of light can lead to a significant amplification in both intracavity relative photon numbers
and effective light-motion couplings. In view of elucidating and verifying the underlying physical mechanism behind these
counterintuitive phenomena, the effective mean photon numbers NR,L and the effective light-motion couplings GR,L

j are,
respectively, defined by:

NR,L =
Pκin/(ωlℏ)(
∆

R,L
eff

)2
+ (κ/2)2

, (S75a)

GR,L
j = g j

√
NR,L

ρ j
. (S75b)

where

∆
R,L
eff = ∆ ∓ |δs|. (S76)
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FIG. S12: Threshold angular velocity SThr [see Eq. (S77)] of the spinning silica microsphere versus the resonator-mass ratio ρ. It shows
that a mass-tolerant unidirectional TPT can be achieved by combining topological operations with the Fizeau light-dragging effect splitting
countercirculating optical modes. Note that through analytical analysis of Eqs. (S75), (S76), and (S77), we have discovered that theoretically,
there is no anomaly region because, at this point, we have not taken into account the experimental anomalies on “Self-adjustment” effect
present in actual experiments. However, if we consider the actual experimental conditions, the anomalous region still emerges.

It is obviously shown in Eqs. (S75) and (S76) that increasing either the mass ratio ρ j or the optical decay rate κ of the practical
devices leads to the suppression of the effective light-vibration coupling rates GR,L

j ; while by using a spinning device, both mass-
and damping-induced detrimental disturbances can be fully neutralized. Specifically, increasing optical dissipation κ reduces the
effective light-motion coupling strength GR,L

j , with the underlying physics being the reduction in the effective photon numbers
NR,L inside the cavity due to the increased optical dissipation. Similarly, the increase of the mass ratio ρ j also decreases the
effective optomechanical coupling strength GR,L

j , because larger oscillator masses are less prone to resonances. Furthermore, we
clearly see from Eqs. (S75) and (S76) that by enhancing the Fizeau light-dragging effect, the effective mean photon numbers
NR,L can be significantly decreased (increased), which leads to a diminishment (an enhancement) of the effective light-motion
couplings GR,L

j , when the system is driven by a laser injected from the RHS (LHS). Physically, applying the Fizeau drag effect
to topological operations can result in a significant improvement in the effective mean photon numbers of the cavity, and it
corresponds to a giant amplification in the effective light-vibration interactions. To further demonstrate this point, we plot in
Figs. S11(c) and S11(d) the effective photon numbers and the effective light-motion couplings versus the angular velocity S
when the light is injected from the LHS or RHS of the fibre, respectively. Figures S11(c) and S11(d) show that in the LHS-
and RHS-driving cases, the effective photon numbers in the cavity can be significantly increased (decreased) with increasing the
angular velocity S of the spinning silica microsphere. Our main concept is akin to the Doppler effect, extensively showcased
across various nontopological domains [S27, S28], and this mechanism results in a significant augmentation of the intracavity
relative photon number. These results mean that the application of the Fizeau light-dragging effect to the topological operations
establishes not only a giant enhancement in the phononic isolation, but also offers the possibility of immunizing the topological
behavior against detrimental disturbances from both mass and decay in practical devices. These findings are entirely matched
with the analytical results shown in Eqs. (S75) and (S76).

In particular, to achieve an optimal topological energy transfer through the Fizeau drag of light, we derived analytical
expressions that establish the relationship between the threshold angular velocity SThr of the silica microsphere and the resonator-



29

Standard methods Our approach

Phonon transfer Yes No Yes Yes

Mechanism

Nonreciprocity

 Topological operations

No No Yes Yes

Fizeau light-dragging effect

 Topological operations

+

EP-encircling
orientation

EP-encircling-direction

dependence
Dependent Independent

Suppressed region Enhanced region

Dependence on mass Dependent Independent

Dependent Independentoptical/mechanical decay

Dependence on

TABLE II: Correspondence of the EP-encircling orientations (row 2), the ability of topological phonon transfer (row 3), the nonreciprocity
(row 4), the underlying physical mechanism (row 5), the EP-encircling-direction dependence (row 6), and the mass dependence (row 7), for
the standard method (row 1 and column 2) and our approach (row 1 and column 3). Rows 2, 3, and 6 are evident that in the standard (i.e.,
non-spinning) method, the TPT inherently relies on the EP-encircling orientation. However, in our approach (i.e., the spinning case), this
constraint is overcome, signifying its independence of the encircling directions of the EP. These findings suggest that the TPT is consistently
achievable regardless of the EP-encircling directions, opening avenues for exploring new related topologies. Row 4 reveals that in the previous
representations, achieving TPT nonreciprocity is attainable in neither the counterclockwise nor clockwise direction, and that in contrast, our
approach can make it feasible in both directions. Furthermore, our observations highlight that within a significantly broad parameter range, the
TPT nonreciprocity is suppressed with the standard method, whereas it is enhanced through the adoption of our proposed approach, resulting
in a notable improvement in the TPT nonreciprocity. Row 5 shows that in the previous representations, the unconventional one-way TPT arises
through the imposition of topological operations encircling an EP, and that in contrast to the prior depictions, our study marks the first instance
of shedding new light on the groundbreaking synergy between the emerging topological operations encircling an EP and the cutting-edge
light-Fizeau-drag effect. Rows 7 and 8 reveal that in the standard schemes, the TPT is inherently susceptible to disruption with an increase
in either resonator mass or decay rate; while our method exhibits immunity against both mass and decay of the practical device, ensuring the
preservation of TPT.

mass ratio ρ:

SThr =

[
−∆ ±

√
[4∆2 − (ρ − 1)κ2]/(4ρ)

]
/Λ. (S77)

It shows that keeping an optimal topological phonon transfer for a larger value of the resonator mass ratio ρ requires a higher
angular velocity S of the silica microsphere, as shown in Fig. S12. Through analytical analysis of Eqs. (S75), (S76), and (S77),
we have found that theoretically there is no anomalous range. This is because, at this stage, we have not taken into account
the experimental anomalies on “Self-adjustment” effect that exists in actual experiments. However, if we consider the actual
experimental conditions, anomalous ranges will emerge. Specifically, we find that for the standard (i.e., non-spinning) scheme,
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the optomechanical-coupling strengths decrease with increasing either the mass or the damping rate of the practical devices;
while for a spinning quantum device, it is significantly enhanced or even amplified, compared with that in the nonspinning case.
This counterintuitive phenomenon can be understood via an enhancement in the effective photon numbers in the cavity. We
show in detail that in the non-rotating case, the effective optomechanical-coupling strengths become smaller with the increase
of either the mass or the decay rate. In stark contrast to this, for the spinning case, a multiple-order-of-magnitude amplification
in the photon numbers arises from the Sagnac effect, without which it vanishes. These results indicate that both mass- and
decay-induced reflections can be significantly suppressed in a spinning device and, as a result, one can achieve nearly an ideal
topological transfer of phonons.

Now, we show the differences of our method compared to previous representations. We first highlight that the EP-encircling-
direction-independent outcomes using our approach are unattainable in conventional schemes, as the dependence on the
encircling direction of the EP is an essential requirement for all standard unidirectional TPT occurrences. We also emphasize
that the nonreciprocity of TPT is diminished in the standard method, whereas it is amplified through our proposed approach.
In a broader view, our study sheds new light on the synergy of the topological operations and the Fizeau light-dragging effect,
and lays the foundation for a broadly applicable approach to harnessing profoundly different topological nonreciprocity, which
is characterized by its independence of EP-encircling directions and by its immunity to both mass and damping of practical
devices.

Specifically, to understand this more intuitively, we show in Table II the correspondence of the EP-encircling orientations (see
row 2), the ability of TPT (row 3), the nonreciprocity (row 4), the underlying physical mechanism (row 5), the EP-encircling-
direction dependence (row 6), and the mass dependence (row 7), when the system operates in the standard method (S = 0, row
1 and column 2) and our approach (S = 400, row 1 and column 3). Now, we delve into the following four aspects in detail:

(i) We show in Table II that in the non-spinning case, the TPT naturally depends on the EP-encircling directions; while in our
spinning approach, it breaks this limitation, i.e., it is independent of the encircling directions of the EP, as shown in Table II.
These findings indicate that the TPT can always occur no matter which direction the encircling takes, which paves a route
to exploring new topology independent of the EP-encircling directions. Specifically, in the standard method, the TPT can be
achieved only in the counterclockwise direction of encircling the EP but not in the clockwise direction. In stark contrast to
this, by introducing the Sagnac-Fizeau effect, the phonon transfer can always happen in both counterclockwise and clockwise
directions. This means that by using our method, the phonon transfer can always occur no matter whatever the direction of
winding around the EP is applied.

(ii) We reveal in Table II that in the previous representations, the TPT nonreciprocity is unachievable in either
counterclockwise or clockwise direction; while in our spinning approach, it becomes feasible in both directions. Moreover,
we find from Table II that in a very wide parameter region, the TPT nonreciprocity is suppressed with the standard method
but enhanced using our proposal, yielding a perfect TPT nonreciprocity. Specifically, the previous one-way topological
behaviors [S12–S26] are naturally limited by the strict dependence on the encirclement direction of the EP in the parameter
space, and this leads to a strong suppression effect on both topological responses and their nonreciprocities. For the previous
schemes, switching to the other encircling direction of the EP-enclosing control loop results in no TPT [S12, S13]; thus the
standard topological nonreciprocity relying on the EP-encircling direction is generally suppressed or even fully destroyed in a
very wide parameter region [S12, S13]. Here, we break these long-standing limitations and suppression effects, and build an
excellent TPT and its nonreciprocity, independent of the EP-encircling directions, by just employing the Fizeau light-dragging
effect [S4–S6].

(iii) Physically, we show in Table II that in the previous representations, the unconventional one-way TPT is induced by
imposing topological operations encircling an EP. Compared to previous representations, our study is the first to shed new light
on the pioneering synergy of the emerging topological operations encircling an EP and the leading-edge light-Fizeau-drag effect.
It can pave a quite-general route to exploiting profoundly different nonreciprocal topological effects, with both independence of
the EP-encircling directions and the immunity against the device mass. We believe that there is a need of guiding theory toward
encircling-orientation-independent and mass/decay-free one-way topological physics using our proposed pioneering synergy of
these three hot-research fields, and here it comes. Our study can help to exploit a new and general unidirectional topology.

(iv) We demonstrate in Table II that in the standard schemes, the TPT inherently can be easily destroyed with increasing the
resonator mass; while in our method, it is immune to the mass of the practical device. Note that by utilizing our method, we fully
overcome the long-standing limitations maintaining in the previous schemes, where the unidirectional TPT is not only strictly
dependent on the EP-encirclement direction, but also can be easily destroyed in the large-mass regime of the practical setups.
By employing our method, we induce a fundamentally different topological nonreciprocity independent of the encirclement
direction of the adiabatic loops enclosing the EP, and shield the topological behavior from the mass disturbances in practical
devices. These results are otherwise unattainable in conventional schemes [S12–S26], where the dependence on the encircling
direction of the EP is the essential requirements for all the standard unidirectional TPT. Our study paves a quite-general route to
exploiting profoundly different topological chirality, both independent of the EP-encircling direction and immune to the masses
and decays of practical devices.
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V. DETAILED DISCUSSIONS ON EXPERIMENTAL FEASIBILITY USING REALISTIC STATE-OF-THE-ART
EXPERIMENTS

In this section, we detailedly show some discussions on (i) the experimental feasibility using realistic state-of-the-art
experimental conditions, (ii) detailed derivation of the “self-adjustment” effect, and (iii) detailed analysis of the microscopic-
level forces

A. Experimental feasibility analysis using realistic state-of-the-art experimental conditions

Although what we have proposed a purely theoretical scheme, our approach is completely experimentally feasible, based on
the state-of-the-art experimental conditions (see Table III, Figs. S13 and S14).

Here, we have engaged in in-depth discussions on the feasibility analysis of experiments, and we believe that our proposed
theoretical scheme is entirely feasible for experimentations under the realistic given state-of-the-art experimental conditions. In
order to further demonstrate this point, we have extensively enlarged the discussions on possible experimental implementations
of the physical effects that we have predicted using the realistic given state-of-the-art experimental systems. Specifically, we
have presented detailed analyses on both the simulation parameters and experimental parameters, based on the proposed state-
of-the-art experiments, as shown in Table. III. Our analyses indicate that the present scheme is fully experimentally accessible
under current experimental conditions, and that the proposed phenomena are relevant for the state-of-the-art experiments based
on multi-mode cavity optomechanics, as shown in Figs. S13 and S14. We believe that our proposed TPT scheme, being
independent the EP-encircling orientations, is clear and experimentally achievable using the present realistic given state-of-
the-art experimental conditions.

In addition, we have extensively enlarged the discussions on the experimental feasibility of the physical effects that we
have predicted, based on the realistic state-of-the-art experimental parameters [S4, S12]. By adding experimental analyses and
numerical estimations with experimental accessible parameters, the relevance of our proposed phenomena, under the realistic
state-of-the-art experimental conditions, can be confirmed. In addition, an excellent agreement between the proposed and
simulated results indicates that the proposed phenomena are relevant for the realistic state-of-the-art experiments. Specifically,
we have added detailed analyses of experimental realizations, based on the realistic state-of-the-art experimental components
consisting of: (i) the two-vibration optomechanical platform of Ref. [S12] and (ii) the spinning optical cavity of Ref. [S4].

Actually, the proposed physical model is general and hence, in principle, our scheme can be realized in standard
optomechanical systems. To implement the nonreciprocal TPT independent of both EP-encircling direction and device mass,
two elements are needed: (i) the in-parallel light-motion couplings of the two vibrations to a common optical cavity, and (ii)
the tunable spinning of the optical cavity. Therefore, these two kinds of elements should be implementable in our candidate
experimental systems. It should be pointed out that, though until now the two kinds of elements have been realized in separate
experiments, the implementation of them in the same experimental setup has not been reported. Nevertheless, the two kinds of
interactions can be implemented in our system, under the current realistic state-of-the-art experimental conditions. Note that
experimental capabilities in this field have improved enormously over the past decade and will surely continue to improve in the
next decade, enabling a vastly improved experimental feasibility.

(i) Currently, the in-parallel optomechanical couplings between multiple vibrational modes and a common optical mode have
been experimentally implemented using either optical [S2, S12, S35–S40] or microwave [S2, S39–S45] domains:

(1) In the optical domain, the in-parallel light-motion interactions have been experimentally achieved using microresonators
or whispering-gallery-mode (WGM) resonators consisting of an optical mode and two vibrational modes, which are exploited
to form a multi-mode optomechanical system. Therefore, the in-parallel light-vibration couplings of an optical mode to the two
vibrational modes are produced by the modulation of the resonance frequency of the cavity field, and this modulation is owing
to the vibration of the mechanical breath modes [S2, S35, S36, S39, S40]. We here need to emphasize that using the ultrahigh-Q
crystalline microresonators, more than 20 mechanical modes with the vibrational frequencies ranging from approximately 500
kHz to 2 MHz were experimentally observed [S2, S35, S39, S40].

(2) In the optical domain, the in-parallel optomechanical couplings have also been experimentally implemented using multi-
vibrational-mode optomechanical configurations, consisting of a high-finesse optical mode and the multi-motion modes [S2,
S12, S37, S39, S40]. Physically, the vibration of the mechanical resonators can tune the resonance frequency of the cavity-field
mode; and then, the in-parallel radiation-pressure couplings are simultaneously induced between these vibrational modes and a
common optical mode.

(3) In addition, an alternative approach to the mechanical resonators is to exploit near-field effects close to the surface of optical
microresonators, where the optical field allows dispersive coupling to other mechanical structures. In essence, the mechanical
motions modulate the distance between the interfaces. Because of the near-field character, the optomechanical coupling
strengths scale exponentially with the distance, and hence it allows one to generate large values for optomechanical coupling
strengths [S1, S46–S50]. This has been used to demonstrate the optomechanical coupling between a toroidal microcavity and the
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Symbol Physical quantity

Experimental parameters of Nature
537, 80 (2016); 558, 569 (2018) [S4,
S12]

Our simulation parameters Experimental fea-
sibility

c Vacuum light speed 3 × 108 m/s 3 × 108 m/s Yes

λ Laser wavelength 1064 nm 1064 nm Yes

κ/2π Total dissipation rate 177 kHz 177 kHz Yes

κin/2π Input coupling rate 70 kHz 70 kHz Yes

P Laser power 2 uW to 750 uW 2 uW to 750 uW Yes

g1(2)/2π Single-photon coupling rate 1.03 (1.14) Hz 1.03 (1.14) Hz Yes

∆ Driving detuning -1200 kHz to -400 kHz -1800 kHz to 0 kHz Yes

T Bath temperature 300 mK 300 mK Yes

Q1(2) Phononic quality factors 1.3(0.56) × 106 1.3(0.56) × 106 Yes

Qc Optical quality factor 1.6 × 109 1.6 × 109 Yes

ω1(2)/2π Mechanical frequencies 788.024 (788.487) kHz 788.024 (788.487) kHz [S36] Yes

γ1(2)/2π Mechanical linewidths 0.6 (1.4) Hz 0.6 (1.4) Hz Yes

m0( j=1,2) Effective masses 10 ng 100 ng Yes

ε0( j=1,2) Dielectric constants of air (taper,
silica sphere)

1 (3.9) 1 (3.9) Yes

ζ0( j=1,2) Refractive indexes of air (taper,
silica sphere)

1 (1.48) 1 (1.48) Yes

r(r0) Sphere (fiber) radii 1.1 mm (544 nm) 1.1 mm (544 nm) Yes

S Spinning angular velocity 0 to 10 kHz 0 to 10 kHz Yes

E Young modulus of silica 75 GPa 75 GPa Yes

Υ Elastic limit of silica 9 GPa 9 GPa Yes

TABLE III: Parameters of the two-vibrational-mode optomechanical devices reported in the literature [S12], the spinning-cavity setup reported
in the literature [S4], and used in our simulations. The columns 1 and 2 present the notation and physical meaning of the used parameters,
respectively. The parameters in columns 3 and 4 are, respectively, used in the experimental works [S4, S12] and our numerical simulations.
The column 5 shows a full experimental feasibility between the realistic parameters reported in the experiments and the parameters used in our
numerical simulations, indicating that the proposed phenomena are relevant for the current state-of-the-art experiments. Note that in ultrahigh-
Q crystalline microresonators [S2, S35, S39, S40], more than 20 vibrational modes were experimentally observed, exhibiting mechanical
resonance frequencies ranging from approximately 500 kHz to 2 MHz.

nearby SiN nanomechanical resonators [S1, S3]. Another related possibility is to couple two mechanically vibrating microdisk
resonators [S46–S48] or two photonic crystal cavities [S49, S50] via their optical near field.

(4) In the microwave domain, the in-parallel optomechanical interaction can be experimentally realized using
electromechanical circuit systems, which involve multiple micromechanical drum oscillators and a superconducting on-chip
circuit acting as an electromagnetic cavity [S41–S45]. The positions of the mechanical resonators affect the total capacitance
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FIG. S13: Complex eigenvalues of the two motional modes. Vibrational decay rate (mechanical linewidth) and the vibrational resonance
frequency of the two motional modes as functions of the driving detuning ∆ and the driving laser power P, when the system is driven by a laser
from the left-hand side (LHS) or right-hand side (RHS) of the fibre, for the angular velocity S = 400 Hz of the spinning silica microsphere.
The green, blue, and orange curves (disks) denote the complex eigenvalues for P = 130 uW, 185 uW, and 220 uW, respectively. That is for
the spinning case, we consider the situations where the rotating silica sphere is driven from the LHS or RHS of the fibre. Here the complex
eigenvalues of the quantum system are varied with the driving detuning ∆ ∈ [−1800 kHz, 0 kHz]. Note that for lower values of the laser power
P, each eigenvalue follows a closed trajectory, which ends and begins at the same point. In stark contrast to the case of the low powers, for
higher values of the driving power P, the eigenvalues follow open trajectories, each of which ends at the starting point of the other. By tuning
the laser power P and the driving detuning ∆, the EP which is described by the yellow star occurs. Our analyses indicate that the present
scheme is experimentally accessible under current experimental conditions, and that the proposed phenomena are relevant for the state-of-the-
art experiments.

and thus, modulate the resonance frequency of the cavity. This creates effective in-parallel optomechanical interactions similar
to those between multiple movable mirrors and a common optical mode in an optomechanical cavity.

(ii) Recently, the tunable mechanical spinning of an optical cavity has been experimentally implemented using a spinning
silica-microsphere cavity, which was positioned close to a tapered region of a single-mode telecommunication fibre. The
evanescent coupling of the light into this spinning setup is caused by the tapered region of the fibre, and via the same coupler, the
light can be coupled out through the other side of the fibre [S4]. Consequently, both input and output ports can be simultaneously
served by each side of the fibre, and relying on the input port, the light circulates in the silica sphere in either clockwise or counter-
clockwise direction, resulting in an optical mode aR or aL (with resonance frequencies ωR,L

c ), respectively. Experimentally, the
aerodynamic process plays a vital role in fiber-resonator interactions in a rotating setup, which drags air into the region between
the sphere and tapered fiber, yielding an air-lubrication layer in this region. The thin air film then enables the fiber to fly at a
few nanometres above the sphere. Owing to the “self-adjustment” process, the taper floats back to its initial position, once it is
caused to rise higher than the stable-equilibrium height by any perturbation. The critical coupling of light into the silica sphere
is enabled via the “self-adjustment” behavior, whereby an optical drag, identical in size but opposite in sign, is experienced by
the countercirculating light.

In the above, we have added the detailed discussions on the experimental implementation of our physical model based on
the realistic state-of-the-art experimental conditions. To provide further supporting experimental arguments demonstrating the
feasibility of the main conclusions and potential applications, we now present detailed analyses on both experimental and
simulation parameters based on the proposed state-of-the-art experimental systems, and especially, we also added Table III
to compare the parameters used and the parameters reported. We see from Tab. III that the parameters used and those reported
show the experimental feasibility, and the numerical data indicates that the proposed phenomena are relevant for state-of-the-art
experiments.

(i) Specifically, by employing realistic state-of-the-art experimental parameters (see Tab. III), we show in Fig. S13 that
the complex eigenvalues of the two vibrational normal modes. This demonstrates that our present scheme is experimentally
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FIG. S14: By using realistic state-of-the-art experimental parameters, we show (a) the encircling-direction-independent unidirectional TPT
and (b) the mass-free nonreciprocal TPT. (a) Topological energy-transfer quality factor F+ versus the maximal driving detuning ∆Max, when
the light enters from the LHS (blue symbols) or RHS (blue curves) of the fiber, for the angular velocity S = 400 Hz of the spinning silica
microsphere. We see that by using realistic state-of-the-art experimental parameters, the TPT occurs when the silica sphere is driven in one
chosen side but not in the other, and this leads to a unique topological energy-transfer nonreciprocity, without depending on the direction of
winding around the EP. (b) TPT quality factor F+ versus the mass m of the mechanical resonator for both standard (S = 0) and our approaches
(S = 3 kHz), in the LHS-driving case. By adding experimental analyses and numerical estimations with experimental accessible parameters,
the relevance of our proposed phenomena under the state-of-the-art or near-future experimental conditions can be confirmed.

accessible under current state-of-the-art experimental conditions, and that our main conclusions and potential applications are
relevant for the state-of-the-art experiments.

(ii) Based on these state-of-the-art experimental parameters shown in Tab. III, Fig. S14 exhibits in detail how to achieve the
one-way TPT independent of the encircling orientation of the EP. Our simulations using experimental parameters of Refs. [S4,
S12] demonstrate that our main conclusions and potential applications of the predicted effect are relevant for the state-of-the-art
experiments.

(iii) By utilizing these state-of-the-art experimental parameters (see Tab. III), we show in Fig. S14(b) that our approach
paves a feasible route to protecting or even immunizing topological resources against the mass disturbances in practical setups,
and enables the construction of mass-free phononic devices. By adding experimental analyses and numerical estimations
with experimental accessible parameters, the relevance of our proposed phenomena under the state-of-the-art or near-future
experimental conditions can be confirmed.

In a summary, by adding these detailed parameter analyses and numerical estimations, we have demonstrated that our proposed
scheme, main results, and potential applications are experimentally accessible under the realistic state-of-the-art experimental
conditions. Through these efforts, we believe that our work is now more experimentally grounded.

B. Detailed analysis of the “self-adjustment” effect

Based on the experimental work [S4], a silica microsphere, mounted on a turbine and spins along its axis with
an experimentally feasible value of an angular velocity, is considered. In practical experiments, by utilizing levitated
nanomechanical rotors [S51, S52], a faster or slower spinning device has been demonstrated. Subsequently, the driving laser is
coupled into/out of the silica sphere evanescently, when a single-mode telecommunication fiber is positioned near this rotating
silica sphere.

The aerodynamic process in this rotating silica sphere plays a crucial part in the stable fiber-vibration interacting. Concretely,
the air can be dragged into the region between the vibration and the tapered fiber by fast rotating silica microsphere and therefore,
it produces an air lubrication layer in this region. Whereafter, the fiber can be made to fly above the silica sphere with the
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separation of a few nanometres, by the thin film of air, which applies the pressure on the surface of the tapered fiber facing
the silica sphere. Consequently, the taper can be caused by any perturbation to rise higher than the stable-equilibrium height
float back to its original position, on condition that the taper is caused to rise higher than the stable-equilibrium height by any
perturbation, and this floats back to its initial position, called as “self-adjustment process”. The fiber, therefore, does not stick or
touch to the silica sphere, even though it is pushed towards the rotating setup [S4]. To further clearly demonstrate this point, the
air pressure can be written as

∆Tair = (ρ∆θ)Tair/L, (S78)

where the parameters θ and ρ are, respectively, the angle and radius of the winding shape in the deformation region. We then
obtain an analytical expression of the total air pressure Tair on the taper as:

Tair = 6.19µr5/2S
∫ r0

0

(
h −

√
r2

0 − x2 + r0

)−3/2
dx, (S79)

in which the parameters r0 and r are, respectively, the radiuses of the taper and silica sphere. In addition, the parameters h = h0+d
and µ, respectively, denote the taper-resonator separation and the air viscosity, with the parameter h0 representing the stationary
gap between the silica sphere and the fiber. Then, a tension on the infinitesimal cylinder of the fiber is resulted from the local
deformation and, therefore, it is derived as:

∆Tela = 2F sin (∆θ/2) ≈ F ∆θ, (S80)

in which the parameter F denotes the elastic force applied on the taper, and it satisfies σ = F /(πr2
0) = ϵE, with the used

parameters E depicting the Young modulus of the silica, σ being the uniaxial stress, δL = L′ − L representing the variation of the
original length L of the deformation region, and ϵ = δL/L denoting the strain. In addition, we can straightforwardly derive the
analytical expression of the parameter δL based on the following analytical relations:

(L/2)2 + (ρ − d)2 = ρ2, L′ = ρθ, sin(θ/2) = L/(2ρ). (S81)

Therefore, the parameter Tair in the case of equilibrium, i.e.,

∆Tair = ∆Tela (S82)

can be obtained with another form:

Tair = 2πr2
0E

[
arcsin (ϕ) − ϕ

]
≈ πr2

0ϕ
3E/3, (S83)

where the parameter ϕ can be defined as:

ϕ = 4Ld
/

(L2 + 4d2 ) . (S84)

Thus, the elastic force (i.e., the strain), positively associated with the taper-resonator separation, is shown as:

∂F

∂h
= πr2

0E
∂ϵ

∂d
= 16πr2

0EL2d
(
L2 − 4d2

)
/[3

(
L2 + 4d2

)3
] > 0, (S85)

where the reduced the strain of the taper ϵ = arcsin (ϕ) /ϕ − 1 ≈ ϕ2/6, and the analytical expression of the displacement

d = L
(
β −

√
β2 − 1

)
/2, with the parameter β being β =

[
πr2

0E
/
(3Tair)

] 1/3
. Considering the limit of the parameter |ϕ| ≪ 1, we

can safely make an approximation, arcsin(ϕ) = ϕ + ϕ3/6 + · · · , physically indicating that we require a comparatively small
distortion.

We can clearly see from Eq. (S85) that when the stable-equilibrium distance is much smaller than the air gap, a much stronger
strength of the elastic force can be achieved and as a result, we can largely suppress the air pressure acted on the taper. Therefore,
a self-adjustment behavior emerges, because the taper is dragged back to its initial position once any perturbation induces it away
from the spinning device. the critical coupling of light into or out of the resonator can be enabled by the self-adjustment of the
tapered fiber and then, using this mechanism, the counter-propagating light experiences an optical drag identical in size, but
opposite in sign.

Concerning a practical experiment, we consider the case where the spinning silica sphere is not touching the taper, even though
the rotating device is pushed towards the taper. Here we show the exhibitions that the rotating sphere is veered away from the
taper as it is pushed towards the taper. For practical experiments, we assume that there is no wear of both silica sphere and taper,
even after undergoing a long period of operation, and that the taper is not been sticked to the spinning silica sphere, even when
the rotating configuration is pushed towards the taper. By contrast to this, the taper does stick to a stationary silica sphere via
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van der Waals forces, in a control experiment where the silica sphere is non-spinning, and this taper requires to be pulled back
to break the connection. Then the micrometre-scale craters on the surfaces of the silica sphere and the taper are observed under
a microscope. This indicates that no any adhesion or abrasion occours in the spinning-resonator case.

It should be pointed out that fluid air-film lubrication [S53] between surfaces offers a feasible way for realizing a desired
motion of a machine element with no wear and minimal friction. Such bearings have been revealed to be enough robust, based
on the fact that they have been studied for almost a century. In more detail, it has been demonstrated that the gas-film and liquid-
film lubrications [S54] have been used for the sand-proof bearings in marine vessels dating back to 1932 [S55], and especially,
these lubrications [S54] have enabled flying heights of less than 10 nm in recently, demonstrated helium-filled hard drives.

Note that though it is generally stable for such fliers, the effects (e.g., lubricant compressibility and intermolecular forces)
should be considered by modelling these fliers. Employing the boundary conditions of a foil wrapping a rotating cylinder can
easily solve the Reynolds equation [S56]. That means that we can use similar methods, but with some modifications [S53], to
derive the analytical expression on the gap between the foil and the surface of the spinning cylinder:

h = 0.643r5/3 (
6µS/t′

)2/3 , (S86)

where S and r are, respectively, the angular velocity and the radius of the cylinder, t′ is the tension of the foil per unit width, and
µ is the viscosity of the fluid. In our case, the curvature of the sphere along the polar direction is so small compared with the
width of the film-lubricated region of interest that it thins by only 1Å by the end of this region. For this reason, we can estimate
our rotating sphere using equation (S86), even though it was originally developed for a rotating cylinder. Because Eq. (S86)
deals with flat foil, whereas our flyer is a wire, we break the circular cross-section of our wire into a set of infinitesimal flat stairs.
We integrate the tension over these stairs to obtain the total tension T as a function of the minimum taper–sphere separation h.

In addition, we find that there exists a sharp variation around S ≈ 1600 Hz, corresponding to an anomalous region of the
“self-adjustment” process. Physically, in this anomalous region, the critical evanescent coupling of the spinning microsphere
to a single-mode-telecommunication tapered fiber is dramatically disturbed by the radial breathing of the resonator, because
the effect of the mechanical displacement is non-negligible. To demonstrate this point, we here consider the influence of the
radial breathing of the resonator on the stable fiber-resonator coupling. Specifically, we detailedly compare the mean mechanical
displacement xs with the air-induced displacement d, i.e.,

η = xs

/
d = qsxzp

/
d, (S87)

where xzp =
√
ℏ/(mωm) denotes the standard deviation of the zero-point motion of the mechanical mode. We see from Eq. (S87)

that:
(i) if the effect of the mechanical displacement is negligible (i.e., η → 0, xs ≪ d), the radial breathing of the resonator does

not disturb the critical evanescent coupling;
(ii) if the effect of the mechanical displacement is non-negligible (i.e., η→ 1, xs → d), the critical evanescent coupling of the

spinning microsphere to a single-mode-telecommunication tapered fiber is dramatically disturbed by the radial breathing of the
resonator, which indicates the breaking of the “self-adjustment” effect.

Note that the “self-adjustment” behavior describes that the taper can be dragged back to its original position when any
perturbation causes it away from the spinning resonator. The “self-adjustment” of the tapered fiber enables the critical coupling
of light into or out of the resonator, by which the counter-propagating beams can experience an optical drag identical in size, but
opposite in sign.

C. Detailed analysis of the microscopic-level forces

Now we discuss whether the stable fiber-resonator couplings could be affected by other microscopic-level forces (e.g., the
Casimir and van der Waals forces). To this end, we can describe this kinds of microscopic-level forces in our system as [S4]:

Tint = r0r
[
−A/(6πh3) + B/(45πh9) − π2cℏ/(240h4)

]
, (S88)

where we can calculate the Hamaker constant A as [S57]:

A = 3ε(1)
− ε

(2)
− kBT/

[
4ε(1)
+ ε

(2)
+

]
+ ν

[
ζ(1)
− ζ

(2)
−

]2
/

{
ζ(1)
+ ζ

(2)
+

[
ζ(1)
+ + ζ

(2)
+

] }
, (S89)

with the parameters ε(u)
± , ν, and ζ(u)

± being, respectively, defined as

ε(u)
± = εu ± ε0, ν = 3

√
2ℏνe

/
16 , ζ(u)

± =

√
ζ2

u ± ζ
2
0 , (S90)
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for u = 1, 2, where the parameters ζ0, ζ1, and ζ2 are, respectively, used to denote the refractive index of the air, taper, and
spinning silica microsphere. Moreover, the parameters ε0, ε1, and ε2 are the dielectric constants of the air, taper, and spinning
silica sphere, respectively. In addition, the parameter T is the temperature of the mechanical bath, and the parameter kB is the
Boltzmann constant. We should point out that for the convenience, the parameter ζ2 is replaced with the parameter ζ in the main
text. In addition, the constant parameter B is typically of the order of 10−76 Jm6 for couplings between condensed matter phases
across the air or vacuum [S58]. Here other microscopic-level forces (e.g., the Casimir and van der Waals forces) are taken into
account and then, we obtain the total force between the silica microsphere and the taper as:

Ttotal =Tair + Tinte

=6.19µr5/2S
∫ r0

0
(h −

√
r2

0 − x2 + r0)−3/2dx + r0r
[
−
A

6πh3 +
B

45πh9 −
π2cℏ

240h4

]
, (S91)

where the first (second) term denotes the air pressure (microscopic-level forces, e.g., the Casimir and van der Waals forces). The
critical coupling of light into the silica sphere is enabled via the self-adjustment behavior, whereby an optical drag identical in
size but opposite in sign is experienced by the countercirculating light.

In our work, experimentally accessible parameters have been chosen [S59]. As a result, we can neglect other microscopic-
level forces (e.g., the Casimir and van der Waals forces) owing to its negligibility, and it is still repulsive for the taper-resonator
couplings. Therefore, we can safely omit the effects of the Casimir and van der Waals forces on the critical interactions.
Moreover, the critical couplings may be also affected by other factors, e.g., the tapered-fiber stiffness, lubricant compressibility,
and the wrap angle of a fiber, and while, we have confirmed that these factors can be negligible in practical experiments. Thus,
in our all discussions, we can safely ignore these factors too [S4].

We here need to further emphasize that in the above, we detailedly study how the stable fiber-resonator couplings could be
affected by other microscopic-level forces, in which we only consider the most representative forces: the Casimir and van der
Waals forces [S60–S62]. In physics, the Casimir and van der Waals forces are two types of interactions at the microscopic level.
Actually, the Casimir and van der Waals forces are commonly associated with the interactions between molecules, but they are
not limited exclusively to molecules [S60–S62]. These forces can also act between atoms, non-conductive materials, and even
larger structures. While molecular interactions are a typical context for the Casimir and van der Waals forces, it is important to
note that they can extend beyond specific molecules [S60–S62].

In particular, we have emphasized that in our work, the effects of other microscopic-level forces (e.g., the Casimir and van der
Waals forces) can be safely omitted for the critical coupling because they are negligible compared to the air-pressure force.
To further demonstrate and elucidate its underlying physical mechanisms, we have conducted both numerical simulations
and analytical analysis by choosing experimentally accessible parameters [S4, S59]. Based on these realistic state-of-the-art
experimental conditions, we can see that other microscopic-level forces (e.g., the Casimir and van der Waals forces) can be safely
ignored as they are negligible compared with the air-pressure force. Therefore, we can safely omit the effects of the Casimir
and van der Waals forces on the critical interactions. Moreover, the critical couplings may also be affected by other factors,
e.g., the tapered-fiber stiffness, lubricant compressibility, and the wrap angle of a fiber, and while, we have confirmed that these
factors can be negligible in practical experiments. Thus, in our all discussions, we can safely ignore these factors too [S4].
In a word, the enhancement of the experimental analyses provide a better insight to experimentalists. By adding experimental
analyses and numerical estimations with experimental accessible parameters, the relevance of our proposed phenomena under
the state-of-the-art or near-future experimental conditions can be well confirmed.

In conclusion, we showed that the mass-immune and velocity-tunable topological one-way energy transfer arises from the
Sagnac effect, without which it vanishes. We revealed that our approach is completely independent of the encircling directions
of the EP, and this is usually impossible with all the conventional protocols. In particular, our simulations indicated that the
threshold duration of the control loop for preserving the optimal one-way transfer of phonons can be easily prolonged but also
shortened, which has no counterpart in previously reported demonstrations [S12–S26]. The study enables constructing novel
topological chiral acoustics, with both device-mass tolerance and energy-transfer-velocity tunablility.

VI. APPLICATION OF OUR APPROACH TO NON-HERMITIAN N-STATE SYSTEMS AND ITS COMBINATION WITH
NON-ABELIAN NATURE

Here, we show how to implement the application of EP encircling-independent TPT, implemented through the Fizeau effect,
to non-Hermitian three-state (or even N-state) systems, and to study the potential unique effects or phenomena arising from its
combination with the non-Abelian nature inherent in such systems. In fact, our approach can be extended to a more general
N-state system beyond the three-state case. Specifically, we here focus on an N-vibration optomechanical device, where N
motional modes are coupled to a spinning optical-microsphere cavity [S1–S3], which is positioned close to a tapered region of a
single-mode telecommunication fibre, as shown in Fig. S15. The evanescent coupling of light into this rotating configuration is
induced by the tapered region of the fiber. Similarly, using the same coupler, light can be coupled out through the opposite side
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FIG. S15: Application of our method to non-Hermitian N-state systems. Schematic of the device consisting of a clockwise spinning silica-
microsphere cavity aR,L (with angular velocity S and dissipation rate κ) coupled to N vibrations b j=1,··· ,N (with decay rates γ j) through light-
motion interactions g j. The spinning microsphere is driven by a laser from the LHS or RHS of the fibre, yielding an anti-clockwise (aL) or a
clockwise (aR) optical mode, respectively. (a,b) Simplified model diagrams for the case of the (a) LHS and (b) RHS drivings of the spinning
microsphere.

of the fiber [S4]. As a result, each side of the fiber can simultaneously access both input and output ports. Depending on the
input port, light circulates in the microsphere either clockwise or counterclockwise, leading to an optical mode aR or aL (with
resonance frequencies ωR,L

c ), respectively. The Hamiltonian of the spinning system is expressed as follows (ℏ = 1)

H l = ωl
ca†l al +

N∑
j=1

[ω jb
†

jb j + g ja
†

l al(b
†

j + b j)] + i
√
κinϵin(a†l e−iωlt − H.c.), for l = R, L, (S92)

where b j (b†j ) is the annihilation (creation) operator of the jth vibrational mode, with the resonance frequencies ω j, for j =
1, · · · ,N. The optomechanical interactions are denoted by the g j terms, and the system driving is depicted by the ϵin =

√
P/(ℏωl)

term, with κin (κ) denoting the input-coupling rate (linewidth) of the optical field and P (ωl) being the power (frequency) of
the laser. In the experimental setup, the aerodynamic process plays a crucial role in the interactions between the fiber and
the resonator during rotation. This process draws air into the region between the sphere and tapered fiber, forming an air-
lubrication layer in this region. The thin air film then allows the fiber to levitate a few nanometers above the sphere. Due
to the “self-adjustment” process, the taper returns to its initial position when lifted higher than the stable equilibrium height
by any perturbation. The critical coupling of light into the microsphere is facilitated by the “self-adjustment” effect, where
countercirculating light experiences an optical drag of an identical size but an opposite sign. By adiabatically eliminating the
optical mode, we can obtain an effective Hamiltonian for the non-Hermitian N-state systems.

Below, we analyze them in detail by illustrating the following two aspects:
(i) Applicability to non-Hermitian N-state systems: We expect to thoroughly study the application of EP encircling-

independent TPT, facilitated by the Fizeau effect, to non-Hermitian N-state systems. We expect that in the non-Hermitian
N-state systems, higher-order EPs can appear. In this N-state systems, symmetry and topology play a major role in classifying
and protecting EPs, with the topological invariant associated to an EP being the eigenvalue braiding on an encircling loop in the
space of Hamiltonian parameters, corresponding to an element of the non-Abelian braid group [S63–S65]. Our findings expect
that this approach is indeed applicable in such systems, revealing a range of intriguing effects.

(ii) Integration with non-Abelian nature: We expect to study the non-Abelian braidings characterizing EPs in our non-
Hermitian N-state systems, i.e., exceptional degeneracies can be distinguished from normal degeneracies through the braiding of
eigenvalues on a loop enclosing the EP in parameter space [S63–S65]. In addition, we expect to study that the generalization is
the braiding of N eigenvalues on a loop enclosing the Nth order exceptional points, and that the non-Abelian braiding properties
of exceptional lines in parameter space. Our results will demonstrate that the combination of EP encircling-independent TPT
with the non-Abelian property leads to the emergence of additional unique effects, due to the combination of the Fizeau light-
dragging effect and the non-Abelian braiding properties of exceptional lines in parameter space.

In summery, this study can open avenues for further exploration in the intersection of the Fizeau effect, non-Hermitian N-state
systems, and non-Abelian nature, and contribute novel insights to the unique one-way topology. We believe the integration of
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EP encircling-independent TPT with non-Hermitian N-state systems, particularly when combined with their non-Abelian nature,
holds significant promise for future applications in topological physics. However, it seems that adequately addressing it would
require a major and time-consuming revision of the paper. This can be the topic of our next paper, but not in this manuscript.
Thus, this project is being done by us.
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[S22] I. I. Arkhipov, A. Miranowicz, F. Minganti, Ş. K. Özdemir, and F. Nori, Dynamically crossing diabolic points while encircling

exceptional curves: A programmable symmetric-asymmetric multimode switch, Nat. Commun. 14, 2076 (2023).
[S23] R. Uzdin, A. Mailybaev, and N. Moiseyev, On the observability and asymmetry of adiabatic state flips generated by exceptional points.

J. Phys. A 44, 435302 (2011).
[S24] E.-M. Graefe, A. A. Mailybaev, and N. Moiseyev, Breakdown of adiabatic transfer of light in waveguides in the presence of absorption.

Phys. Rev. A 88, 033842 (2013).
[S25] Y. Choi, C. Hahn, J. W. Yoon, S. H. Song, and P. Berini, Extremely broadband, on-chip optical nonreciprocity enabled by mimicking

nonlinear anti-adiabatic quantum jumps near exceptional points. Nat. Commun. 8, 14154 (2017).
[S26] J. W. Yoon et al., Time-asymmetric loop around an exceptional point over the full optical communications band. Nature (London) 562,

86 (2018).
[S27] H. Ramezani, P. K. Jha, Y. Wang, and X. Zhang, Nonreciprocal Localization of Photons, Phys. Rev. Lett. 120, 043901 (2018).
[S28] Spin Wave Confinement: Propagating Waves, ed. S. O. Demokritov (CRC Press, Singapore, 2017).
[S29] F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori, Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians:

The effects of quantum jumps, Phys. Rev. A 100, 062131 (2019).
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