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Non-Markovian quantum exceptional points

Jhen-Dong Lin 1,2,8, Po-Chen Kuo 1,2,8, Neill Lambert 3,4,
Adam Miranowicz 3,5, Franco Nori 3,4,6 & Yueh-Nan Chen 1,2,7

Exceptional points (EPs) are singularities in the spectra of non-Hermitian
operators where eigenvalues and eigenvectors coalesce. Open quantum sys-
tems have recently been explored as EP testbeds due to their non-Hermitian
nature. However, most studies focus on the Markovian limit, leaving a gap in
understanding EPs in the non-Markovian regime. This work addresses this gap
by proposing a general framework based on two numerically exact descrip-
tions of non-Markovian dynamics: the pseudomode equation of motion
(PMEOM) and the hierarchical equations of motion (HEOM). The PMEOM is
particularly useful due to its Lindblad-type structure, aligning with previous
studies in the Markovian regime while offering deeper insights into EP iden-
tification. This framework incorporates non-Markovian effects through aux-
iliary degrees of freedom, enabling the discovery of additional or higher-order
EPs that are inaccessible in the Markovian regime. We demonstrate the utility
of this approach using the spin-boson model and linear bosonic systems.

Spectral singularities for non-Hermitian systems, knownas exceptional
points (EPs), have attracted intense research attention over the past
decades1–4. These singularities are pivotal in studying open systems, as
environmental noise inherently breaks the Hermiticity. Early studies of
EPs mainly focused on non-Hermitian Hamiltonians (NHHs)5–7 that are
suitable for modeling classical and semiclassical systems. In these
settings, (semi-)classical EPs, often termedHamiltonian EPs (HEPs), are
identified by the convergence of at least two eigenvalues and their
corresponding eigenstates within NHHs. Notably, it has been shown
that environmental noises can induce exotic effects nearHEPs, e.g., EP-
induced lasing8–10, programmable mode switching11, and EP-enhanced
sensitivity12–16.

Recently, investigations of EPs have extended into the full quan-
tum regime17–30, where the temporal evolution of an open quantum
system is governed by a Lindbladmaster equation or, equivalently, by
a Liouvillian superoperator. Unlike the effective NHHs, Liouvillian
superoperators incorporate the concept of quantum jumps into the
dynamical process31. In this context, the EPs associated with Liouvillian
superoperators are termed quantum EPs or Liouvillian EPs (LEPs).

It has been demonstrated that pure quantum EPs exist17, which are
phenomena without (semi-)classical counterparts.

To date, the exploration for both HEPs and LEPs has largely been
confined to the Born-Markov-Secular (BMS) approximation, which is
only valid in cases of sufficientlyweak system-environment interaction
or environments without any structure. Recently, several works have
indicated that EP-like critical behaviors32–37 could manifest in the non-
Markovian regime. However, whether the concepts of LEPs can be
directly generalized to the non-Markovian regime remains an open
question. A primary challenge lies within the structure of the non-
Markovian equation of motion for reduced dynamics, which can be
generally expressed as:

dρSðtÞ
dt

=
Z t

0
dτKðt, τÞρSðτÞ: ð1Þ

Here, the non-Markovian effect is encoded in the memory kernel
Kðt, τÞ31, andρS(t) denotes theopen system’s reduceddensity operator.
The integral-differential nature of this time-non-local equation
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complicates the application of traditional spectral analysis techniques
for identifying EPs.

In this work, we aim to address this theoretical gap. The main
result lies in the development of a systematic framework for quantum
EPs associated with generic non-Markovian open systems. The idea is
based on applying the pseudomode equation of motion (PMEOM)38–48

and the hierarchical equations of motion (HEOM)49–58, which can be
used to describe a large class of system-environment models. In con-
trast to the memory kernel approach, as described in Eq. (1), the
dynamics are governed by what we call extended Liouvillian super-
operators, enabling us to perform conventional spectral analysis,
identifying the corresponding EPs, and revealing their impacts on the
non-Markovian open quantum systems. In other words, this approach
is highly compatible with previous studies on LEPs. Further, the pro-
posed framework can be viewed as a unified method for investigating
both Markovian and non-Markovian quantum EPs, as the PMEOM and
HEOM are exact descriptions of open quantum systems, making them
applicable across all regimes.

An intriguing implication of this framework is that additional EPs
may arise beyond theMarkovian regime. This builds upon a distinctive
feature of the PMEOM andHEOM: non-Markovian effects are captured
by auxiliary degrees of freedom, specifically pseudomodes (PMs) and
auxiliary density operators (ADOs). Consequently, the dimension of
the extended Liouvillian superoperator generally exceeds that of the
standard Liouvillian superoperator under the BMS approximation,
thereby providing a greater capacity for establishing degeneracies.

Moreover, this dimension extension through the PMs or ADOs
suggests a potential for generating higher-order EPs, which is a crucial
topic due to their ability to induce ultra-sensitivity. Implementations of
such higher-order EPs typically require scaling up the physical size of
the open system13,59–63. However, the PMs and ADOs are introduced to
effectively emulate the environmental influence on the system that
may not directly correspond to the physical degrees of freedom of the
environment. This presents an alternative route to achieving higher-
order EPs by engineering non-Markovian reservoirs without the need
to enlarge the open system.

Although the PMEOM and HEOM are equivalent in describing the
exact dynamics, we will focus more on the former approach. This is
because the PMEOM offers more physical intuition for identifying EP
criteria by balancing the system-PM coupling and PM damping.

To demonstrate the aforementioned utility, we consider two ana-
lytically tractable examples. The first one is the spin-bosonmodelwith a

Lorentzian environment. We identify an emergent EP that cannot be
observed in theMarkovian wide-band limit, where the dynamics can be
reduced to a BMS master equation. Intriguingly, the EP precisely aligns
with the Markovian-to-non-Markovian transition, suggesting a possible
relationship between the onset of non-Markovian information backflow
and thenon-Hermitianphase transition. In addition,we show that the EP
criterion is tunableby reservoir engineering. Specifically,we introduce a
band gap to the Lorentzian environment, demonstrating that the cor-
responding EP condition requires a smaller system-environment cou-
pling strength compared to the gap-less scenario.

For the second example, we examine linear bosonic systems by
using the adjoint PMEOM within the Heisenberg picture. We show that
the dynamics of the modes’ amplitudes can be determined by effective
NHHs, enabling us to explore potential non-Markovian HEPs. As an
example, we consider a two-coupled-modes system, where a second-
order HEP emerges in the wide-band limit. We showcase that by redu-
cing the spectral width, the HEP can be transformed to a third-order
HEP. Consequently, the system becomes more sensitive to external
perturbations with the help of the quantum memory effect. These
findings reveal the intricate interplay between EPs and the memory
effect, laying a theoretical foundation for exploring non-Hermitian
physics toward non-Markovian and non-perturbative regimes.

Results
General framework for non-Markovian exceptional points
In this section, we present a general approach to characterize EPs for
open systems subject to non-Markovian noise, as illustrated in Fig. 1.
To begin with, we consider an open quantum system (S) coupled to a
bosonic environment (E), where the total Hamiltonian is expressed by

Htot =HS +HE +HSE with HE =
X
k

ωkb
y
kbk ,

HSE =QX , andX =
X
k

gk by
k +bk

� �
:

ð2Þ

Here, HS and HE represent the free Hamiltonians of the system and its
environment, while HSE describes their interactions. Also, ωk and gk
correspond to the frequency and the coupling strength for the envir-
onmental mode bk, respectively, and Q represents an arbitrary
operator acting on the system that characterizes the system-
environment coupling. We consider that the environment is initialized
in a Gibbs state at temperature T: ρE = expð�βHEÞ=tr½expð�βHEÞ�,

J(ω)

ω

(HEOM)
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Fig. 1 | Schematic illustrationdepictingEPs for agenericnon-Markovianopen-systemmodel. aGeneric system-environmentmodelwhere the structuredenvironment
is captured by the spectral density function J(ω). For a given spectral density function and the corresponding environmental correlation function, the exact non-Markovian
dynamics can either be described by b the PMEOM or c the HEOMwith the corresponding extended Liouvillian superoperators: LS +PM and LS +ADO. d The non-Markovian
EPs can then be identified by observing the complex spectrum {λi} of these extended Liouvillian superoperators.
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where β= ðkBTÞ�1 with kB denoting the Boltzmann constant. In this
case, the exact dynamics of the open system’s reduced density matrix
(within the interaction picture) can be written as

ρSðtÞ= T̂ exp F̂ Q,CðtÞ½ �� �
ρSð0Þ: ð3Þ

Here, T̂ denotes the time-ordering operator and F̂ represents the
Feynman-Vernon influence functional31, which can be expressed by

F̂ = �
Z t

0
dt1

Z t1

0
dt2 Qðt1Þ× CRðt1 � t2ÞQðt2Þ × + iCIðt1 � t2ÞQðt2Þ°

h i
,

ð4Þ

whereQðtÞ= expðiHStÞQ expð�iHStÞ, and the superoperator notations
Q(t)× = [Q(t), �] and Q(t)° = {Q(t), �} denote the commutator and anti-
commutator, respectively. In addition, CRðIÞ denotes the real (ima-
ginary) part of the environmental correlation function

CðtÞ= tr X ðtÞX ð0ÞρE

� �
, ð5Þ

with X ðtÞ= expðiHEtÞX expð�iHEtÞ. An essential feature of F̂ is its
exclusive dependence on the system-environment coupling operator
Q and the environmental correlation function C(t). The latter can be
expressed by

CðtÞ=
Z 1

0
dω

JðωÞ
π

coth
βω
2

� 	
cosðωtÞ � i sinðωtÞ


 �
, ð6Þ

where J(ω) =∑k∣gk∣2δ(ω −ωk) represents the coupling spectral density.
This property enables the reproduction of the exact open system
dynamics through an auxiliary model involving a small set of fictitious
damping modes, i.e., the PMs, provided that the correlation function
for the artificial model aligns with Eq. (6).

For a broad range of cases, the correlation function can be
efficiently expressed as a finite weighted summation of exponential
terms, i.e.,

CðtÞ=
X
i

α2
i expð�iΩit � γijtj=2Þ: ð7Þ

This expression can be obtained by several approaches. For com-
monly used spectral densities, such as the Drude-Lorentz and
Brownian motion types, analytical expressions for C(t) are available
as an infinite sum of decaying exponentials (i.e., the Matsubara
modes)54. In practice, this sum is truncated to balance accuracy with
computational cost. More recently, the adaptive Antoulas-Anderson
(AAA) algorithm64, a numerical subroutine, has been employed to
optimize the underlying pole structure for the integration in Eq. (6),
allowing for an efficient approximation of C(t) with a finite sum of
exponentials65.

With this expression, one can construct the PMEOM:

d
dt

ρS+PMðtÞ=LS+PM½ρS+PMðtÞ�
= � i½HS+ PM,ρS+PMðtÞ�+

X
i

γiLai
½ρS+PMðtÞ�,

with HS+PM =HS +
X
i

Ωia
y
i ai +αiQ ay

i +ai

� �
,

ð8Þ

where, {ai} represent the PMs, and we introduce the dissipator
Lai

½��=ai �ay
i � fay

i ai, �g=2. Notably, the environmental influences on
the open system are now captured by the PMs’ frequencies Ωi,
damping rates γi, and the system-PM coupling strengths αi. The exact
dynamics of S can be obtained by tracing out the PMs, i.e.,
ρSðtÞ= trPM½ρS+PMðtÞ�, after solving the PMEOM with these PMs
initialized in the thermal states.

One notable benefit of employing the PM model lies in its facil-
itation of establishing physical intuitions regarding the EP criteria. For
instance, recent works have suggested that EPs are closely related to
critical damping points for both classical and quantum systems22. As
we demonstrate below, it is feasible to pinpoint EPs by balancing the
system-PM coupling strength and the PMdamping, leading the system
to a critical damping point.

Furthermore, a systematic procedure for characterizing non-
Markovian EPs based on a standard spectral analysis can be estab-
lished. The main idea is grounded in the observation that both the
temporal evolution of ρS+PM(t) and ρS(t) are governed by the spectral
properties of the extended Liouvillian superoperator LS+PM. Specifi-
cally, assuming that LS+PM is diagonalizable, we consider its eigenva-
lues and the corresponding eigenmatrices: fλi, ρ̂S+PM, igi. The dynamics
of ρS+PM(t) can then be expressed by

ρS+PMðtÞ=
X
i

ci expðλitÞρ̂S+PM, i: ð9Þ

By tracing out these PMs, one can observe that the exact dynamics
of the system’s reduced state follows a similar expression, replacing
these eigenmatrices ρ̂S+PM, i with the reduced eigenmatrices
ρ̂S, i = trPMðρ̂S+PM, iÞ, namely,

ρSðtÞ=
X
i

ci expðλitÞρ̂S, i: ð10Þ

To describe EPs, one considers a family of parametrized extended
Liouvillian superoperators LS+PMðξ Þ, bearing in mind that ξ includes
the parameters related to both the system and the structured envir-
onments. Since LS+PMðξ Þ is generally non-Hermitian, EPs could
potentially exist in the parameter space. For instance, let ξEPn represent
an nth-order EP in the parameter space, where n different eigenvalues
and the corresponding eigenmatrices fλi, ρ̂S+PM, igi2A coalesce into
fλEP, ρ̂S+PM, λEP

g. Here,Adenotes a set of indices. Due to the coalescence
of the eigenmatrices, the corresponding n-dimensional eigensubspace
for LS+PMðξEPÞ cannot be diagonalized. Nevertheless, a Jordan block
for the subspace can be constructed by introducing generalized
eigenmatrices fρ̂ð jÞ

S+PM, λEP
g
j =0, ���,n�1

, such that the system dynamics can
be expressed by

ρSðtÞ=
X
i=2A

cie
λi t ρ̂S, i + e

λEPt
Xn�1

j =0

Xj

m=0

tm~cm
m!

ρ̂ð jÞ
S, λEP

, ð11Þ

where the reduced generalized eigenmatrices are introduced as

ρ̂ð jÞ
S, λEP

= trPM ρ̂ð jÞ
S+PM, λEP

� �
: ð12Þ

Equation (11) suggests that the polynomial time dependence, a com-
mon dynamical signature of EPs, could be observed in the reduced
dynamics of the open system. In essence, the PMEOM provides an
intuitive and direct route to investigate EPs beyond the BMS approx-
imation, and this approach is compatible with the conventional spec-
tral analysis by introducing the (generalized) reduced eigenmatrices.

It is worth noting that an alternative approach is to consider the
framework of theHEOM. In this context, a set of ADOs is introduced to
capture the non-Markovian and non-perturbative effects54,56,58,66–68.
Similarly, we can define the extended quantum state ρS+ADO that con-
tains both the system-reduced state and the ADOs. The dynamics of
the extended state are governed by the extended Liouvillian super-
operator LS+ADO. The system’s reduced state can be obtained through
a linear operation, specifically ρSðtÞ=P½ρS+ADOðtÞ�, where P is a
superoperator for discarding all the ADOs (see Methods). Therefore,
the EPs for non-Markovian open quantum systems can also be
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equivalently characterized under the framework of the HEOM by
introducing the corresponding (generalized) reduced eigenmatrices,
which are expressed as ~ρS, i =Pð ~ρS+ADO, iÞ and ~ρð jÞ

S, λEP
=Pð ~ρð jÞ

S+ADO, λEP
Þ.

Spin-boson model
To gain a more intuitive understanding, we apply the PMEOM to the
prototype spin-boson model, showing that additional EPs without
Markovian analog can be observed by adjusting the structural char-
acteristics of the environment’s spectral density. To simplify our ana-
lysis, we consider a zero-temperature environment and adopt the
rotating-wave approximation (RWA), where the system-environment
interaction in Eq. (2) and the system-PM coupling in Eq. (8) can be
expressed by

P
kgkð~Qby

k +
~Q
y
bkÞ and

P
iαið~Qay

i +
~Q
y
aiÞ, respectively.

Furthermore, we consider a scenario where the spectral density
function J(ω) is well localized in the vicinity of a high-frequencyω0 ≫0,
enabling us to effectively approximate the correlation in Eq. (6) by
extending the lower limit of the integral to negative infinity. Note that
the assumptions mentioned above are also considered in the original
proposals of PMEOM38–40.

The model involves a qubit representing the open system, where
the system Hamiltonian and system-environment coupling operator
areHS =ω0∣ei eh ∣ and ~Q= σ�, respectively. Such an interaction can lead
to an energy exchange between the qubit and the environment, therby
inducing non-Hermiticity for the system. Here, ω0 denotes the qubit
transition frequency between the ground state ∣g

�
and the

excited state ∣ei, and σ + = ∣ei g


∣ (σ� = ∣g
�
eh ∣) represents the raising

(lowering) operator. We consider a Lorentzian spectral density that is
expressed by

JLðωÞ=
1
2

ΓΛ2

ðω� ω0Þ2 +Λ2 , ð13Þ

where Γ and Λ denote the coupling strength and the spectral width,
respectively. In the interaction picture and under the earlier specified
assumption of extending the spectral density function to negative

frequencies, the environmental correlation function can be expressed
by a single exponential term, i.e., CðtÞ= ðΓΛ=2Þ expð�ΛjtjÞ. Therefore,
the PMEOM can be constructed by introducing a single PM with the
damping rate γ = 2Λ and the qubit-PM coupling strengthα =

ffiffiffiffiffiffiffiffiffiffiffi
ΓΛ=2

p
. As

aforementioned, the PM representation provides a physical intuition
that the EP could be located by balancing γ and α (or Γ and Λ) so that
the system reaches a critical damping point.

The corresponding extended Liouvillian superpoerator
LS+PMðΓ ,ΛÞ can be described by a 9 × 9 non-Hermitian matrix in the
single-excitation subspace (Supplementary Information). The spec-
trum is illustrated in Fig. 2, revealing that Γ = Λ/2 corresponds to a
second-order EP (EP2) and a third-order EP (EP3). Notably, these EPs
are unobservable in the Markovian wide-band limit. Specifically, in
such a limit, the spectral width (and thus the damping rate of the PM)
becomes infinite, Λ→∞. Therefore, the PM can be adiabatically elimi-
nated, and the dynamics are governed by a qubit-only Markovian
master equation, i.e., _ρSðtÞ= Γ ½2σ�ρSðtÞσ + � fσ + σ�,ρSðtÞg�=2. Intui-
tively, there is only one qubit decay channel without internal tunneling
between the qubit energy levels, thereby EP does not emerge in this
scenario17.

Let us proceed with a deeper analysis of the EP dynamical sig-
natures. According to Fig. 2b, c, the EP condition pinpoints a real-to-
complex transition in the spectrum. In other words, the EP condition
corresponds to a critical damping point, separating the overdamped
(pure decay) and underdamped (oscillatory) regimes. By investigating
the generalized eigenmatrices for the extended superoperator at the
EP condition, i.e., LS+PMðΓ =Λ=2Þ, we conclude that the qubit coher-
ence and population dynamics are respectively determined by the EP2
and EP3, resulting in observing first-order and second-order poly-
nomial time dependencies:

eh ∣ρSðtÞ∣g
�
=
1
2
ðΛt +2Þe�1

2Λt eh ∣ρSð0Þ∣g
�
,

eh ∣ρSðtÞ∣ei =
1
4

Λ2t2 + 4Λt +4
� �

e�Λt eh ∣ρSð0Þ∣ei:
ð14Þ

Fig. 2 | EPs for the spin-bosonmodel. a Lorentzian JL(ω) and band gap Jq(ω) spectral
densities centered at the qubit transition frequencyω0. d The effects of these spectral
densities can be represented by two PMs: The Lorentzian spectral density can be
described by the upper PM with qubit-PM coupling strength α1 =

ffiffiffiffiffiffiffiffiffiffiffi
ΓΛ=2

p
and PM’s

damping rate γ1 = 2Λ, while thebandgap is characterizedby the lower PMwith thenon-
Hermitian coupling α2 = i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qΓΛ=2

p
and damping rate γ2 = 2qΛ, where the red dashed

line signifies the unphysical nature of this PM. b, c The real and imaginary parts of the
spectrumof the extended Liouvillian for the gapless scenario (q=0). Two EPs, EP2 and
an EP3 emerge at the coupling strength Γ=Λ/2. e, f The real and imaginary parts of
the spectrum of the extended Liouvillian with q= 1/4. The EP criterion becomes
Γ= (1−q)Λ/2. The dotted curves in b, c, e, f represent the spectrum of the extended
superoperators for HEOM (see Supplementary Information for detailed derivations).
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Furthermore, the transition from the overdamped to under-
damped regimes opens up the possibility of observing enhanced
sensitivity to external perturbations in the vicinity of the EP. For
instance, consider a small perturbation in the coupling strength,
represented as Γ→ Λ(1 + ϵ)/2, with ϵ > 0. This perturbation induces
splittings in the imaginary parts of the eigenvalues, resulting in oscil-
latory dynamics. Notably, these splittings scale as

ffiffiffi
ϵ

p
, indicating the

sensitivity enhancement in the characteristic frequency of the oscil-
latory behavior. For this model, both the qubit excited state popula-
tion and coherence vanish periodically. We choose, for simplicity, the
first vanishing time tvanish of the qubit coherence to capture the sys-
tem’s oscillations. One can find t�1

vanish � Λ
ffiffiffi
ϵ

p
=2 +O ϵð Þ, which implies

that tvanish is sensitive to external perturbation when the system is
prepared at the EP.

Up to this point, we only tune the environmental parameters
without changing the shape of the Lorentzian profile, and we have
shown that such an adjustment does not modify the structure of the
PMEOM. Let us further consider a more complex scenario, where an
additional parameter can drasticallymodify the spectral shape. To this
end, we introduce a band-gap structure to the Lorentzian
background31, which is modeled as

JqðωÞ= JLðωÞ �
1
2

Γ ðqΛÞ2
ðω� ω0Þ2 + ðqΛÞ2

, ð15Þ

where the band gap is located at the frequencyω0, such that Jq(ω0) = 0
31

[see also Fig. 2a], and the parameter q∈ (0, 1] is used to control the
relativewidth for the band gap. The environmental correlation function
is now expressed by two exponential terms:

CðtÞ= ΛΓ
2

expð�ΛjtjÞ � qΛΓ
2

expð�qΛjtjÞ: ð16Þ

Accordingly, the PMEOM for the exact dynamics involves two
PMs (a1 and a2), each characterized by the qubit-PM coupling
strengths and PM damping rates [see also Fig. 2d]:
α1 =

ffiffiffiffiffiffiffiffiffiffiffi
ΓΛ=2

p
,α2 = i

ffiffiffi
q

p
α1, γ1 = 2Λ, γ2 =qγ1

n o
: The spectrum of the cor-

responding extended Liouvillian superoperator is presented in Fig. 2e,
f, suggesting that the EP criterion becomes

Γ = ð1� qÞΛ=2: ð17Þ

Consequently, including a band gap into the environmental spectral
profile leads to a displacement of the EP in the parameter space. In this
case, the system requires a smaller coupling strength to reach the EP
criterion compared to the case of the previous gapless Lorentzian
environment.

We remark that α2 is purely imaginary, so it does not
directly correspond to a physical mode. This characteristic causes
the HS+PM to become non-Hermitian43. Nevertheless, the reduced
dynamics of the qubit is still exact and well-behaved as long as the
PMEOM is consistent with the given C(t)43. Furthermore, in
Fig. 2 and Supplementary Information, we demonstrate that the
spectrum of the extended Liouvillian operators for the HEOM is con-
sistent with that of PMEOM.

Another notable aspect is that the EP condition also aligns with
the onset of non-Markovianity by utilizing the Breuer–Laine–Piilo
(BLP)69 and the Rivas–Huelga–Plenio (RHP)70 non-Markovianity mea-
sures. Specifically, for the spin-bosonmodel, the analytical solution for
the qubit-reduced state is expressed as31

eh ∣ρSðtÞ∣ei= eh ∣ρSð0Þ∣eijGðtÞj2,
g


∣ρSðtÞ∣ei= g


∣ρSð0Þ∣eiGðtÞ:

ð18Þ

Here, G(t) is commonly referred to as the decoherence function71,
which is given by

GðtÞ= Γe�Λδ + t=2

2qΛ� Γδ�

δ +

ffiffiffiffiffiffiffiffiffi
Λδ�

p
sinh ηtð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Γ +Λδ�
p � δ� cosh ηtð Þ

" #
+

2qΛ
2qΛ� Γδ�

:

ð19Þ
with δ± = q ± 1 and η=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λδ�ð2Γ +Λδ�Þ

p
=2. It is well-established that for

both the BLP and the RHP measures, the transition fromMarkovian to
non-Markovian dynamics occurs when ∣G(t)∣ shifts from pure decay to
oscillatory behavior71. Consequently, the transition point can be
identified from Eq. (18) as δ−Λ = −2Γ, or equivalently Γ = (1 − q)Λ/2,
precisely aligning with the EP condition in Eq. (17). In Fig. 3, we present
the dynamics of the decoherence function ∣G(t)∣ for different values of
Γ, where ΓEP = (1− q)Λ/2 corresponds to the EP criterion. One can
observe that the dynamics changes from monotonic decay (over-
damped) to oscillatory behavior (underdamped), as Γ increases and
crosses the EP at Γ = ΓEP.

Linear bosonic systems with adjoint pseudomode-equation
of motion
The PMEOM in Eq. (8) offers significant flexibility by allowing both the
system Hamiltonian HS and the coupling operator Q to be arbitrary.
This utility facilitates the extension of our analysis to a variety of open
quantum systems. As an illustrative application, we now explore linear
bosonic systems, which have garnered significant interest in the study
of both LEPs and HEPs11,18,20,21,24. Specifically, we examine a general
Hamiltonian with M coupled modes, expressed as

HS =
XM
k = 1

Ωkc
y
kck +

X
j<k

χ j, k cyj ck + c
y
kcj

� �
, ð20Þ

where Ωk denotes the frequency associated with the mode ck, and χj,k
represents the coherent coupling between the modes j and k.

In the Heisenberg picture, the dynamics are governed by the
following adjoint PMEOM:

d
dt

OS+PMðtÞ= i½HS+PM,OS+ PMðtÞ�

+
X
i

γi
2

2ay
i OS+PMðtÞai � ay

i ai,OS+PMðtÞ
n o� �

,
ð21Þ

where OS+PM(t) denotes an arbitrary operator acting on the joint sys-
tem, S + PM. To facilitate the analysis,we define a vector containing the
annihilation operators for both the system modes and the PMs:

v= c1, � � � , cM ,a1, � � � ,ai, � � �
� �T

: ð22Þ

Fig. 3 | Dynamics of the decoherence function ∣G(t)∣ for different values of the
coupling strength Γ. Here, ΓEP = (1− q)Λ/2, and we set Λ = 1 and q = 1/4.
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Focusing on the amplitudes of these modes, we denote

vðtÞ �
= ð c1ðtÞ

 �
, � � � , cM ðtÞ

 �
, a1ðtÞ
 �

, � � � , aiðtÞ
 �

, � � �ÞT ,
with aðtÞ �

= tr½aðtÞρS+PMð0Þ�:
ð23Þ

Through the adjoint PMEOM, the dynamics for the amplitudes are
determined by the effective NHH

Heff, S + PM =HS+PM � i
X
i

γia
y
i ai=2 =v

yHeff, S + PMv, ð24Þ

whereHeff,S+PM is a matrix representation of the NHH. Specifically, one
obtains

_vðtÞ �
= iHeff, S + PM vðtÞ �

, ð25Þ

indicating that potential EPs can now be encoded in Heff,S+PM.
For a concrete example, we examine a two-mode system with

χ1, 2 = χ and Ω1 =Ω2 =ω0: ð26Þ

Also, we consider one of the modes (c2) is further coupled to a Lor-
entzian environment in zero temperature, as described in Eq. (13). In
the wide-band limit (Λ → ∞), the resulting system-only effective non-
Hermitian Hamiltonian within the rotating frame is given by:

Heff, S =
0 χ

χ i Γ2

� 	
: ð27Þ

The corresponding eigenvalues are ðiΓ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16χ2 � Γ2

q
Þ=4, indicating the

presence of an EP2 if ∣χ∣ = Γ/4, with the degenerate eigenvalue iΓ/4. The
dynamics at the EP2 can be derived as:

c1ðtÞ
 �

= e�Γt=4 c1ð0Þ
 �

+
Γ t
4

c1ð0Þ
 �

+ i c2ð0Þ
 �� �
 �

c2ðtÞ
 �

=
1
4
e�Γt=4 i c1ð0Þ

 �
Γ t + c2ð0Þ

 �ð4� Γ tÞ� �
:

ð28Þ

Asexpected, thefirst-order timedependence is observeddue to the EP2.
With a finite width Λ, the effective Hamiltonian takes the form:

Heff, S + PM =

0 χ 0

χ 0
ffiffiffiffiffi
ΓΛ
2

q
0

ffiffiffiffiffi
ΓΛ
2

q
iΛ

0
BBB@

1
CCCA: ð29Þ

Bymatching the coefficients of the characteristic polynomial, an EP3 is
identified with the following criteria:

jχj= Λ

3
ffiffiffi
3

p , Γ =
16Λ
27

� �
, ð30Þ

and the degenerate eigenvalue is iΛ/3. In this case, the dynamics is
written as:

c1ðtÞ
 �

=
e�Λt=3

27



c1ð0Þ
 �

Λ2t2 + 9Λt +27
� �

+ c2ð0Þ
 �

i
ffiffiffi
3

p
ΛtðΛt +3Þ

�
,

c2ðtÞ
 �

=
e�Λt=3

9
ffiffiffi
3

p


c1ð0Þ
 �

iΛtðΛt +3Þ

� c2ð0Þ
 � ffiffiffi

3
p

Λ2t2 � 3Λt � 9
� ��

,

ð31Þ

where the second-order time dependence can be observed due to
the EP3.

In Fig. 4, we present the real part of the eigenvalues for different
values of χ and Λ. The EP2 (yellow dashed curve) originates from the
prediction in thewide-band limit [i.e., Eq. (27)]. AsΛdecreases, one can
observe that the EP2 is transformed into the EP3 (white dashed curve)
whenΛbecomes sufficiently small. This demonstrates that the order of
the EP can be upgraded by adjusting the characteristics of the struc-
tured environment.

This upgrade can lead to a further enhancement in the system’s
sensitivity. For instance, we introduce a perturbation ϵ >0 to the
coupling strength χ→ χ(1 + ϵ). In the vicinity of the EP3, the eigenvalues
take the form

i
Λ
3
+ x1Λϵ

1
3 +O ϵ

2
3

� �
, i
Λ
3
+ x2Λϵ

1
3 +O ϵ

2
3

� �
,

�
i
Λ
3
+ x3Λϵ

1
3 +O ϵ

2
3

� ��
, ð32Þ

where x1, x2, and x3 are constants. We can observe a cubic-root
bifurcation for the EP3 in response to the external perturbation,
signifying sensitivity enhancement.

Intuitively, one may anticipate that higher-order EPs may emerge
when considering an environment with a more complicated spectral
structure, which requires more PMs to capture the non-Markovian
dynamics and increases the dimension of the non-Markovian NHHs

Discussion
We have presented a general theory on characterizing non-Markovian
EP based on the PMEOM and HOEM. The proposed theory can be
viewed as a unified framework for investigating quantum EPs in both
the Markovian and non-Markovian regimes, as the PMEOM and HEOM
provide exact descriptions of open system dynamics. Moreover,
according to the PMEOM and HEOM formalisms, non-Markovian
effects can effectively increase the dimensionality of the associated
non-Hermitian (super)operator. This suggests that additional or
higher-order EPs could emerge by adjusting the characteristics of
structured environments. We demonstrate this with the spin-boson
and two-coupled-mode models.

A direct extension involves exploringmore realistic examples that
do not rely on the RWA and restoring the detailed-balance condition43.
In addition, although this work focuses exclusively on a bosonic
environment, the proposed framework can be directly generalized to
scenarios with arbitrary combinations of bosonic and fermionic

χ
Λ

Re
(λ
i)EP2

EP3

Fig. 4 | EP2 and EP3 curves for the two-coupled-modes model. Real part of the
eigenvalues λi (i = 1, 2, 3), corresponding to the effective Hamiltonian described in
Eq. (29), as a function of the spectral width Λ and coupling strength χ. Here, we set
Γ = 1. The yellow and white dashed curves represent the EP2 and EP3 curves,
respectively.
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baths54,56–58. Moreover, beyond the PMEOM and HEOM, our method of
describing non-Markovian EPs via extended Liouvillian superoperators
can also be applied to other pertinent methodologies, such as the
dissipation-embedded master equation72,73 and reaction-coordinate
mapping74–77.

Future work involves further generalizing the theory of non-
Markovian EPs. An intriguing possibility involves extending the hybrid-
Liouvillian formalism19 to the non-Markovian domain by incorporating
the postselection of quantum trajectories. Additionally, it is worth-
while to delve into the potential applications emerging from the
intricate interplay between the (non-)Markovian exceptional and dia-
bolic points11,24 or the exotic topology and geometry of the parameter
space78–82. Such investigations could uncover new aspects of non-
Markovian EPs, enhancing our understanding of open quantum sys-
tems embedded in environments with memory effects.

Methods
Extended Liouvillian superoperators for the HEOM
Here, we introduce the extended Liouvillian superoperators within the
HEOM formalism, considering both scenarios with and without the
RWA. For the case without the RWA, we decompose the correlation
function into exponential terms [as in Eq. (7)]:

CðtÞ=
X

u=R, I

δu,R + iδu, I

� �
CuðtÞ ð33Þ

withR and I representing real and imaginary parts. Here, δu,v denotes
the Kronecker-delta symbol with δR,R = δI, I = 1 and δR, I = δI,R =0,
and

CuðtÞ=
Xlmax

l

ξul exp �χul t
� �

: ð34Þ

Through iterative time differentiation of the exact dynamics in Eq. (3),
the HEOMcanbe expressed as a time-local differential equationwithin
an expanded space formed by the ADOs56,58,66,83,84:

d
dt

ρS+ADOðtÞ=LS+ADO ρS+ADOðtÞ
� �

: ð35Þ

Here, we label the ADOs with a vector j = [jm,⋯ , j1], linking each ADO
to a specific exponential term in the correlation function. The system’s
reduced density operator and these associated ADOs can then be
expressed as ρðmÞ

j ðtÞ, such that

ρS+ADO =

ρð0Þ
j ðtÞ
ρð1Þ
j ðtÞ
..
.

ρðmÞ
j ðtÞ

2
6666664

3
7777775
, ð36Þ

wherem indicates the hierarchical level of the ADOs, with ρð0Þ
j ðtÞ=ρSðtÞ

representing the system-reduced density matrix. Consequently, the
system-reduced state can be obtained by performing a projector P on
the ρS+ADO:

ρSðtÞ
0

..

.

0

2
66664

3
77775=P½ρS+ADOðtÞ�=

1 0 . . . 0

0 0 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . 0

2
66664

3
77775

ρð0Þ
j ðtÞ
ρð1Þ
j ðtÞ
..
.

ρðmÞ
j ðtÞ

2
6666664

3
7777775
, ð37Þ

where 1 is the identity matrix with the same dimension as the system-
reduced density operator, and all other elements of P are zero. Under
this expression of the ADOs, the corresponding extended Liouvillian
superoperator of the HEOM can be written as56,58

LS+ADO ρðmÞ
j ðtÞ

h i
=L0 ρðmÞ

j ðtÞ
h i

�
Xm
r = 1

χ jrρ
ðmÞ
j ðtÞ

�i
X
j0

Aj0 ρðm+ 1Þ
j+

ðtÞ
h i

� i
Xm
r = 1

Bjr
ρðm�1Þ
j�r

ðtÞ
h i

,

ð38Þ

where a multi-index notation is used: j+ = ½ j0, jm, � � � , j1�, and
j�r = ½ jm, � � � , jr + 1, jr�1, � � � , j1�, and L0½��= � iH ×

S . The system-
environment interaction is encoded in the superoperators Âj and B̂j

that couple themth-level bosonic ADOs to the (m + 1)th- and (m − 1)th-
levels, respectively. Their explicit expressions are given by

Aj½��=Q × andBj½��= δu,R ξRl Q× + iδu, I ξ
I
l Q

°: ð39Þ

Let us now consider the case with the RWA, where the system-
environment interaction is written as HSE =

P
k gkð~Qby

k +
~Q
y
bkÞ:

In this case, we separate the correlation function into the absorption
(ν = +) and emission (ν = −) components, namely C(t) =∑ν=±Cν(t), where

C + ðtÞ= 1
π

Z 1

0
dω JðωÞneqðωÞ eiωt

=
Xlmax

l

ξν = +
l expð�χν = +

l tÞ,

and C�ðtÞ= 1
π

Z 1

0
dω JðωÞ ½neqðωÞ+ 1� e�iωt

=
Xlmax

l

ξν =�l expð�χν =�l tÞ:

ð40Þ

Here neqðωÞ= fexp½ω=kBT � � 1g�1 represents the Bose-Einstein distri-
bution with a temperature T.

The Feynman-Vernon influence functional can be derived56,58:

F̂ ½��= �
X
ν = ±

Z t

0
dt1

Z t1

0
dt2 ~Q

�νðt1Þ×

Cνðt1 � t2Þ~Q
νðt2Þ½�� +C�ν*ðt1 � t2Þ½��~Q

νðt2Þ
n o

,

ð41Þ

where ~Q
ν = + ðtÞ= ~Q

yðtÞ and ~Q
ν =�ðtÞ= ~QðtÞ. Also, �ν represents

the opposite sign of ν: If ν = + , then �ν =�, and vice versa. The
corresponding extended Liouvillian superoperator can then be
expressed as

LRWA
S+ADO ρðmÞ

k ðtÞ
h i

=L0 ρðmÞ
k ðtÞ

h i
�Pm

r = 1 χkr
ρðmÞ
k ðtÞ

�i
P

k0 Ak0 ρðm+ 1Þ
k + ðtÞ

h i
� i

Pm
r = 1 Bkr

ρðm�1Þ
k�
r

ðtÞ
h i

,
ð42Þ

where the superoperators Ak0 and Bkr
are modified as follows

Ak ½��= ~Q
�ν ×

andBk ½��= ξνl ~Q
ν ½�� � ξ �ν*

l ½�� ~Qν
: ð43Þ
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