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Topological phonon blockade and its
transfer via dark-mode engineering

Deng-Gao Lai 1 , Adam Miranowicz 1,2 & Franco Nori 1,3

Unidirectional topological behavior, engendered by imposing topological
operations winding around an exceptional point, is sensitive to dark modes,
which allow deactivating topological operations, resulting in a complete block-
ade of both mode conversion and phonon transfer between dark and bright
modes. Here we demonstrate how to beat this challenge and achieve a versatile
yet unique nonreciprocal topological phonon transfer and blockade via
dark-mode engineering. This happens by harnessing the power of synthetic
magnetism, leading to an extraordinary transition between the dark-mode
nonbreaking and breaking regimes, in a precise and controlled manner.
Specifically, topological phonon blockade (transfer) happens in the dark-mode
nonbreaking (breaking) regime, offering an exciting opportunity of switching
between topological phonon blockade and its transfer on demand, which has
no counterpart in previous studies. Remarkably, applying dark-mode engineer-
ing to quantum optomechanical networks can enable scalable network-based
topological phonon transfer and quantum collective ground-state preparation.
The proposed mechanism has general validity and can be generalized to the
manipulation of various dark-state-related quantum effects, advancing the
development of scalable quantum information processors. This study maps a
general path towards generating a profoundly different topological quantum
resource with immunity against both dark modes and dark states.

Nontrivial topology, mainly governed by non-Hermitian
degeneracies1–19, has led to various counterintuitive and fascinating
topological types of behavior by adiabatically encircling
exceptional points (EPs) in parameter spaces, such as chiral phase
accumulation20,21, non-adiabatic jumps22,23, and topological phonon
transfer (TPT) ormode conversion24–34. These topological phenomena,
however, are generally destroyed by dark modes, which are naturally
decoupled from systems35–40, resulting in a complete malfunction of
both EPs and topological operations. For example, TPT and mode
switching can always happen when executing adiabatic closed paths
enclosing an EP24,25. Surprisingly, if a system exhibits darkmodes, both
mode conversion and TPT between dark and bright modes are
unfeasible, regardless of the adjustment of adiabatic trajectories and

system parameters, due to the dark-mode-induced destruction of
topological operations and EPs.

Previously established topological achievements in theories and
experiments are focused exclusively on conventional scenarios20–34,
where dark modes are entirely circumvented because topological
responses are usually diminished by darkmodes24,25. Nevertheless, the
practical applicability of modern topological quantum technologies
has challenged such progress by demonstrating that a universal
approach must be explored for confronting this challenge posed by
dark modes, rather than evading it41–50. In view of its significance,
exploiting a fundamentally different topology immune to darkmodes,
as well as shielding both EPs and topological operations from dark-
mode disturbances in practical devices, is highly desirable.
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Here, we show how to address this long-standing challenge and
achieve a profoundly different one-way TPT, unveiling its counter-
intuitive immunity against dark modes. This occurs because of the
synergy of topological operations24,25 and synthetic magnetism51–63,
resulting inanexceptional transitionbetweendark-mode-nonbreaking
(DMN ) and dark-mode-breaking (DMB) regimes in a well-controlled
manner. Note that a reconfigurable synthetic gauge field has recently
been demonstrated in phase-dependent loop-coupled optomechani-
cal configurations51–63.

We reveal that executing a topological operation in the DMN
regime yields topological phonon blockade (TPB) between dark and
bright modes; whereas performing it in the DMB regime allows TPT.
This enables a versatile yet unique topological physics and provides an
exciting possibility of bridging TPB and TPT at will, which is otherwise
unattainable in previously established demonstrations20–34. Unlike
previous approaches, where both EPs and topological operators are
entirely malfunctioning due to dark modes20–34, our approach is
entirely immune to this detrimental inactivation effect.

The dark-mode-engineeringmechanism is universal, and it can be
extended tobreak various dark-state effects in quantumphysics and to
beat the limitation40, where dark modes prevent conventional quan-
tum control and ground-state preparation. Our findings could advance
the control of quantum collective motion in macroscopic mechanical
systems40 and the development of scalable quantum information
processors utilizing excitations, with potential applications in state or
energy manipulation, pulse generation, and the conversion of quan-
tum information64–67. In a broader view, our study sheds light on the
combination of dark-mode engineering, topological operations, and
quantum networks, and offers an exciting prospect of revealing a
unique quantum topology immune to dark modes (states).

Results
System and dark-mode engineering
We focus on a three-mode optomechanical system, consisting of two
phononmodes coupled to a commonphotonmode through radiation-
pressure interaction, as shown in Fig. 1a. The described system has
already been implemented using state-of-the-art technology to
achieve topological responses fully evading dark modes24. The system
Hamiltonian reads (ℏ = 1)

H= ωca
ya+

X
j = 1, 2

ωjb
y
j bj + gja

yaðby
j +bjÞ

h i

+ i
ffiffiffiffiffiffi
κin

p
ϵinðaye�iωLt � H:c: Þ+Hξ ,

Hξ = ξðeiΘby
1b2 + e

�iΘby
2b1Þ,

ð1Þ

where a (a†) and bj (b
y
j ) are the annihilation (creation) operators of the

photon and jth phonon modes with resonance frequencies ωc and ωj,
respectively. The gj term is the light-motion interaction, and the
ϵin =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P=ðℏωLÞ

p
term denotes the laser driving with power P, frequency

ωL, and input-coupling rate κin. Synthetic gauge fields51–63, employed
for manipulating the dark mode, can be induced using a phase-
dependent loop-coupling setup formed by the gj and Hξ terms (with
phonon-hopping coupling strength ξ and modulation phase Θ)
(see Supplementary Information).Note that in the absenceof synthetic
magnetism (ξ = 0), our system naturally reverts to the conventional
case24, associated with the DMN regime.

Toexplorehowthedarkmode is engineeredby the synthetic gauge
field, we derivate the linearized Hamiltonian, Hlin = � Δδayδa+P

j = 1, 2½ωjδb
y
j δbj +Gjðδaδby

j +H:c:Þ�+ ξðeiΘδby
1δb2 +H:c:Þ, with Δ and Gj

being the driving detuning and linearized photon-phonon coupling
strength, respectively (see Supplementary Information for detailed
derivations). This is achieved by applying a linearization procedure and
expanding all operators o ∈ {a, bj, a†, by

j } as sums of their classical
averages and quantum fluctuations, i.e., o= �o + δo. Without synthetic
magnetism (i.e., ξ = 0), the bright (B + ) and dark (B�) modes emerge
when ωj = ωm:

B + = ðG1δb1 +G2δb2Þ=G0, bright, ð2aÞ

B� = ðG2δb1 � G1δb2Þ=G0, dark, ð2bÞ

with G0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
1 +G

2
2

q
. The dark mode is completely decoupled from the

system, resulting in a complete blockade of bothmode conversion and
phonon transfer between the dark and bright modes24,25.

Surprisingly, this dark mode can be controlled at will by simply
employing synthetic magnetism (i.e., ξ ≠ 0 and Θ ≠ 0). To elucidate
the underlying physics behind this counterintuitive phenomenon,
two normal modes associated with synthetic magnetism are intro-

duced as: ~B ± =Fδb1ð2Þ∓e
± iΘKδb2ð1Þ, where F = jδ~ω�j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδ~ω�Þ2 + ξ2

q
and K= ξF=δ~ω�, with δ~ω� = ~ω� � ω1 and ~ω± =

ðω1 +ω2 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω1 � ω2Þ2 + 4ξ2

q
Þ=2. Subsequently, the linearized Hamil-

tonian becomes Hlin = � Δδayδa+
P

l = ± ½~ωl
~By
l
~Bl + ð~Gl

~Blδa
y +H:c:Þ�,

with the effective coupling strengths:

~G ± =FG1ð2Þ∓e
∓iΘKG2ð1Þ: ð3Þ
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Fig. 1 | Physical model and dark-mode control. a Schematic of synthetic-
magnetism-engineered quantum devices, consisting of a photon mode a (with
damping rate κ) optomechanically coupled to two phonon modes bj (with decay
rates γj and coupling strengths gj), both of which are coupled to each other via a
phase-dependent phonon-hopping interaction (ξ and Θ). b Effective coupling
strengths ~G± versus Θ, when introducing synthetic magnetism. Simply tuning
Θ = nπ and ≠ nπ for an integer n leads to a darkmode (~G± =0,DMN regime) and

its breaking (~G± ≠0,DMB regime), respectively.We setωj/ωm= 1 andGj(ξ)/ωm=0.1.
c, d Mechanical linewidths and resonance frequencies versus the driving power P
and detuning Δ ∈ [ − 1800kHz, 0], when the system operates in (c) the DMN
regime (without synthetic magnetism, i.e., ξ = 024) and (d) the DMB regime (with
synthetic magnetism, i.e., ξ/ωm = 5 × 10−4 and Θ/π = 1/9). The arrows describe the
eigenvalue variation with increasing Δ for a fixed P.
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We find from Eq. (3) that dark-mode engineering can be realized
through two distinct mechanisms: (i) synthetic magnetism and (ii)
asymmetric coupling. In the following, we provide a detailed
elucidation of these two mechanisms.

(i) Synthetic magnetism enables dark-mode engineering. When
G1 = G2, we plot ~G± versusΘ [see Fig. 1b and Supplementary Fig. S1 for
more details], which reveals that forΘ = nπ, the darkmode decoupled
from the system emerges, corresponding to the DMN regime.
Counterintuitively, an effective coupling of the dark mode to the sys-
tem can be flexibly achieved just by tuning Θ ≠ nπ, resulting in the
DMB regime. The fundamental physics driving these counterintuitive
phenomena lies in the fact that a reconfigurable synthetic gaugefield is
built on demand just by steering Θ in the loop-coupled configuration,
enabling an exceptional transition between the DMN and DMB
regimes.

(ii) Asymmetric coupling provides an alternative pathway for
dark-mode engineering. Specifically, we find that for Θ = 0, the sym-
metric coupling G1 = G2 creates a dark mode ~B�, entering the DMN
regime;whereas broken symmetry (i.e., asymmetrical couplingG1≠G2)
fully quenches this dark mode, establishing the DMB regime.

Rise and fall of an EP
An adiabatic elimination of the photon mode yields an effective
Hamiltonian for two phonon modes (see Supplementary Information
for detailed derivations):

Heff =
ω1 � iγ1

2 � ig2
1σ ξeiΘ � ig1g2σ

ξe�iΘ � ig1g2σ ω2 � iγ2
2 � ig2

2σ

 !
, ð4Þ

where the laser driving induces a complex motional susceptibility σ,
defined as

σ =
Pκin½ χðω0Þ � χ*ð�ω0Þ�

ℏωL½ðκ=2Þ2 +Δ2�
, ð5Þ

with the driving detuning Δ = ωL − ωc and an optical susceptibility
χðω0Þ= ½κ=2� iðω0 +ΔÞ��1, for ω0 = (ω1 + ω2)/2. By tuning σ, an EP is
easily reached, needing to control over both Im(σ) andRe(σ). Physically,
the imaginary and real parts of the corresponding complex eigenvalues
correspond to mechanical spectral linewidths and resonance fre-
quencies, respectively. It is enough to tune P and Δ for reaching and
encircling this EP, because these parameters are easily manipulated in
situ with high precision, timing accuracy, and dynamic range24.

For elucidating the effect of the dark mode on the EP, the
mechanical spectra are plotted as functions of Δ and P in both DMN
andDMB regimes, as depicted in Fig. 1c, d and Supplementary Fig. S2.
In theDMN regime, we show that despite the continuous evolution of
the mechanical spectra with system parameters, the EP vanishes at
both low and high laser powers, owing to the emergence of the dark

mode [see Fig. 1c]. Counterintuitively, in theDMB regime, for a lower
laser power, each eigenvalue follows an enclosed path, beginning and
ending at a same point; while for a higher laser power, both eigenva-
lues follow open trajectories, each of which ends at the starting point
of the other, indicating the emergence of the EP because of breaking
the darkmode [see Fig. 1d]. By adjustingΔ and P, the EP [markedby the
yellow star in Fig. 1d], where the eigenstates coalesce, appears when
the system operates in theDMB regime, but not in theDMN regime.

Efficiency of topological phonon transfer
The TPT efficiency F+, which quantifies the phonon transfer from the
dark (B�) to bright (B + ) modes, is defined by24

F + = jB + ðτÞj2= jB + ðτÞj2 + jB�ðτÞj2
� �

, ð6Þ

indicating the fraction of the remaining energy in the bright mode after
executing the adiabatic closed control loops, with jB ± ðτÞj denoting the
amplitudes of the bright and dark modes at the end of the control loops
(see Supplementary Information for detailed derivations). This definition
of F+ must satisfy the property that before performing the control loops,
all energy is preserved in the dark mode. Equation (6) clearly shows that
(i) a perfect TPT from the dark to brightmodes happenswhen F+ = 1, and
(ii) a TPB from the dark to bright modes is observed when F+ = 0. For
ensuring the system stability, the following experimentally feasible
parameters are chosen in our simulations24: g1(2)/2π = 1.03 (2.84) Hz,
κ(κin)/2π = 177 (70) kHz, ωj/2π = 788.024 kHz, and γ1(2)/2π = 0.6 (1.4) Hz.

Inactivation and activation of topological operations
When the systemoperates in theDMN andDMB regimes, we display
the resonance frequencies and decay rates of mechanical normal
modes versus a narrow range of the laser power P (see Fig. 2 and
Supplementary Fig. S3). In the DMN regime, only the bright mode
evolves with P, while the dark mode remains invariant, irrespective of
the adjustment of system parameters, resulting in a completely deac-
tivation of both the EP and topological operations [Fig. 2a]. This effect
enables a complete blockade of the mode conversion and phonon
transfer between the dark and bright modes. However, in the DMB
regime, both modes evolve simultaneously with P, which leads to the
emergence of characteristic features of the EP, enabling the activation
of the EP and topological operations [Fig. 2b]. This offers an exciting
opportunity for the revival of the mode conversion and phonon
transfer between the dark and bright modes.

Specifically, the eigenstates coalesce at a particular value of the
control parameters, and in the vicinity of this EP, they display a structure
analogous to the Riemann surfaces of a complex square-root function.
When executing a closed-loop path by adiabatically varying P and Δ, the
generating smooth evolution on the eigenvalue manifold can return to
its starting point only if the EP is not enclosed by the loop. In contrast,
adiabatically encircling the EP in a closed-loop trajectory induces a
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counterintuitive path starting on one sheet but ending on the other,
giving rise to TPT. Our study sheds light on the synergy of dark-mode
engineering and topological operations, offers an unconventional tool
for tasks that cannot be executed by conventional topological mechan-
isms, and benefits for implementing dark-mode-free topological physics.

TPB and TPT enabled by dark-mode engineering
The TPT efficiency F+ is plotted versus ΔMax and PMax in both DMN
( g2 = g1, ξ/ωm= 5× 10−4, andΘ=0) andDMB ( g2 = 2.76g1, ξ/ωm= 5× 10−4,
andΘ/π= 1/9) regimes, as shown inFigs. 3a, b andSupplementary Fig. S4.
We reveal that in the DMN regime, TPB occurs (F+ = 0, blue dashed
horizontal lines); while in the DMB regime, an excellent TPT emerges
(F+ = 1, red solid curves). Specifically, in the DMN regime, thermal
phonons concealed in the darkmode that is decoupled from the system
cannot be transferred to the bright mode regardless of the tuning of the
systemparameters, giving rise toTPB [Fig. 3c]. In stark contrast to this, in
theDMB regime, an efficient extractionof thermal phonons is achieved,
yielding TPT [Fig. 3d]. These findings demonstrate that leveraging the
dark-mode control enabled by syntheticmagnetism not only establishes
a flexible switch between TPB and TPT, but also provides the possibility
of immunizing all topological quantum resources against various dark-
mode disturbances in practical devices.

Physically, in conventional schemes (i.e., without synthetic mag-
netism), topological behavior is inherently fragile to dark modes
decoupled from the system, leading to a completemalfunction of both
EPs and topological operations24,25. However, by employing synthetic
magnetism, all topological responses are immune to these dark
modes, resulting in the function of topological operations. Our
approach offers a way of enabling practical dark-mode-sensitive
quantum setups to be effectively ideal, beneficial for achieving dark-
mode-immune topological resources.

Dark-mode-engineered nonreciprocal topology
To study the dependence of one-way topological dynamics on dark-
mode engineering, we display the TPT efficiency versus the duration τ
of the closed control loops, when the system operates in both DMN
( g2 = g1, ξ/ωm= 5× 10−4, andΘ=0) andDMB (g2 = 2.76g1, ξ/ωm= 5× 10−4,
andΘ/π = 1/9) regimes, as shown in Fig. 4 and Supplementary Fig. S5. In
the DMN regime, TPB always happens (i.e., F+ = 0) no matter how to
execute the control loops in parameter spaces (see lower blue and red
solid horizontal lines). In the DMB regime, by rapidly winding around
the EP (i.e., τ → 0), TPB (i.e., F+ → 0) is observed; while with adiabatically
encircling this EP (i.e., τ≫ 1ms), an excellent TPT is achieved (i.e.,F+→ 1).
These findings demonstrate that the vanishing TPT, corresponding to
the emergence of TPB, results from either the dark mode in the DMN
regime or a rapid encirclement of the EP in the DMB regime.

By adiabatically winding around the EP, the TPT limiting behavior is
contingent upon both the direction of the control loop and the mode
initially excited. For example, by executing a clockwise (counter-
clockwise) loop, the blue (red) curves represent conventional adiaba-
ticity (i.e., the efficiency becomes 1 with τ); while the red (blue) curves
show theoppositebehavior (i.e., the efficiencybecomes0with τ). These
results prove that, in general, the dark-mode engineering can achieve
the nonreciprocity of each topological operation for an anti-clockwise
or clockwise control loop enclosing an EP.

For example, when the dark mode is initially excited and the
system operates in the DMB regime, we reveal that adiabatically
encircling an EP in the counterclockwise direction gives rise to an
excellent TPT [F+ → 1, see the red dashed curve in Fig. 4b], but not in
the clockwise sense [F+ → 0, see the red solid curve and symbols
in Fig. 4a]. Physically, adiabatic behavior occurs when the system
operates only in the less-damped eigenmode. This is because when
working in themore-dampedmode, the fierce competition between
the differential-loss effect (that is exponentially large in τ) and the
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nonadiabatic transfer (which is exponentially small in τ) results in a
breakdown of adiabaticity, which causes the system to eventually
relax to the less-damped mode. Such a process can also be
interpreted as a manifestation of the Stokes phenomenon of
asymptotics.

Scalable network-based TPT and quantum collective ground-
state preparation
The proposed dark-mode-engineering mechanism is very general,
and can be generalized to quantum optomechanical networks,
where N≥3 phonon modes are coupled to a shared photon

mode through optomechanical coupling, Homc =
PN

j = 1gja
yaðbj + b

y
j Þ,

and the nearest-neighbor phonon modes are coupled to
each other via phase-dependent phonon-hopping interactions,

Hphi =
PN�1

j = 1 ξ jðeiΘj by
j bj + 1 +H:c:Þ (see Supplementary Information). It

has been demonstrated that these modulation phases are governed

by the term
Pj�1

ν = 1Θν (j ∈ [2, N]) (see Supplementary Information for
detailed derivations), and hence we can safely assume Θ1 = π and
Θj∈[2, N−1] = 0.

In the absence of synthetic magnetism (i.e., ξj = 0), only a single
bright mode coupled to the system is induced,

B =
XN
j = 1

δbj=
ffiffiffiffi
N

p
, brightmode, ð7Þ

andN− 1 darkmodesdecoupled from the systememerge. Surprisingly,
synthetic gauge fields (i.e., ξj ≠ 0 and Θ1 ≠ 2nπ), induced by the phase-
dependent loop-coupling quantum networks, can lead to a simulta-
neous breaking of all N − 1 dark modes (see Supplementary
Information for detailed derivations), offering an exciting opportunity
of switching quantum networks between the DMN and DMB
regimes. Therefore, thermal phonons from the dark to bright modes
are blockaded in the DMN regime, but transferred in the DMB
regime, making TPT feasible in quantum networks. These findings
demonstrate that the scalable network-based TPT, with immunity
against dark modes, can be achieved just by applying dark-mode
engineering to quantum networks.

The framework developed here introduces a versatile strategy
with wide-ranging implications in quantum physics. Specifically, it can
be broadly applied to steer quantum collectivemotion inmacroscopic
mechanical systems. Quantum control of collective phonon modes in
large-scale mechanical resonators represents an emerging research

frontier40. The proposed dark-mode engineering can contribute a
powerful and widely applicable tool for this growing field. For exam-
ple, the recent breakthrough experiment40 highlights a key limitation
in observing quantum collective motion in macroscopic mechanical
resonators: Only a single bright mode can be cooled to its quantum
ground state, while allN − 1 darkmodes remain entirely uncooled. This
inherent decoupling of all dark modes from the system renders the
dark modes inaccessible to conventional quantum control and
ground-state preparation. Building on this pioneering work40, our
study fundamentally overcomes this constraint by introducing a dark-
mode engineeringmechanism that enables simultaneous ground-state
preparation of both bright and dark modes. By simply activating syn-
thetic magnetism, our scheme unlocks the full quantum potential of
collective phononic dynamics. It establishes a paradigm in quantum
optomechanics that is no longer bound by the limitations imposed by
dark modes.

In the DMN regime, all dark modes remain uncooled
(nD = 103); whereas in the DMB regime, they are simultaneously
cooled to their quantum ground states (nD < 1), as shown in Fig. 5a.
Note that for clarity and brevity, detailed analytical derivations of
the final phonon occupations of all dark and bright modes are
presented in Section V of Supplementary Information. Physically,
thermal phonons trapped in dark modes that are naturally decou-
pled from the system cannot be extracted through optomechanical
sideband cooling68–71, making ground-state preparation of all dark
modes unattainable40. In stark contrast, upon transitioning into the
DMB regime, simultaneous ground-state preparation of all dark
and bright modes becomes achievable near the red-sideband
resonance (Δ/ωm = − 1). These results suggest that dark-mode
engineering offers flexible control and effective protection of fra-
gile quantum collective ground states.

General dark-state control in quantum optics
Our dark-mode engineering mechanism is highly versatile, offering a
robust framework for controlling a wide range of physical phenomena
associated with dark states. To clarify this, we reveal the physical
mechanism responsible for breaking the dark-state effect in Λ-type
three-level systems, by introducing a phase-dependent transition (i.e.,
the phase in a loop-coupling configuration leads to synthetic mag-
netism) between the two lower levels [see Fig. 5(b)]. It is well estab-
lished that in aΛ-type three-level systemunder two-photon resonance,
a dark state emerges, characterized by the zero value of the super-
position coefficient associated with the excited state.
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Fig. 5 | Quantum collective ground-state preparation and general dark-state
control. a Effective mean phonon number nD of all N − 1 dark modes versus the
driving detuning Δ in the DMN (ξj = 0)40 and DMB (ξj/ωm = 0.05, Θ = Θ1 = π/2,
Θj∈[2, N−1] = 0) regimes. Here we consider the case of N = 4 and set ωj/ωm = 1, Gj/
ωm =0.1, κ/ωm =0.2, γj/ωm = 10−6, and �nth = 10

3.b Schematic diagramof a three-level
systemwith states ∣g

�
, ∣ f

�
, and ∣ei, corresponding to their energies Eg, Ef, and Ee.Λ-

type coupling configuration involving the transition processes ∣g
�! ∣ei and

∣ f
�! ∣ei, with detunings Δj=1,2 and coupling strengths Ωj=1,2. A phase-dependent

resonance interactionwith strengthΩbeiΘ between two lower states (∣g
�
and ∣ f

�
) is

utilized to induce synthetic magnetism, which engineers the dark-state effect,
exhibited by the Λ-type three-level system in the two-photon resonance regime
(Δ1 = Δ2 = Δ). c Probability P½s�

e of the excited state ∣ei in the eigenstates ∣λs
�
versus

the modulation phaseΘ when ξ = 0.5. Clearly, the excited-state probability of one
of the three eigenstates is zero (P½s�

e =0) at Θ = nπ, indicating the emergence of a
dark state, and this dark-state effect can be flexibly broken (P½s�

e ≠0) by tun-
ing Θ ≠ nπ.
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In a typical natural atom, direct transitions between the two lower
states in a Λ-type three-level system are forbidden by selection rules.
However, such transitions become feasible in artificial cyclic three-
level systems or through indirect coupling mechanisms. Accordingly,
the Hamiltonian of the system is expressed as

H= Ee∣ei eh ∣+ Ef ∣ f
�

f
�

∣+ Eg ∣g
�

g
�

∣+Ω1 ∣ei g
�

∣e�iω1t
�

+ ∣g
�
eh ∣eiω1t

�
+Ω2ð∣ei f

�
∣e�iω2t + ∣ f

�
eh ∣eiω2tÞ

+Ωbð ∣ f
�

g
�

∣eiΘe�iωbt + ∣g
�

f
�

∣e�iΘeiωbtÞ,
ð8Þ

where Eg, Ef, and Ee are the energy of the three energy levels, i.e., ∣g
�
,

∣ f
�
, and ∣ei, respectively. The two monochromatic fields with the

driving frequencies ω1 and ω2 are, respectively, coupled to the atomic
transitions ∣g

�! ∣ei and ∣ f
�! ∣ei, with Ω1 and Ω2 being the corre-

sponding real transition amplitudes. In such a system, we introduce
the transition detunings as Δ1 = Ee − Eg − ω1 and Δ2 = Ee − Ef − ω2, which
are related to the two transitions ∣g

�! ∣ei and ∣ f
�! ∣ei, respectively.

Clearly, we see that a dark state is possessed by the Λ-type cou-
pling system, when the two-photon resonance (Δ1 = Δ2 = Δ) is fulfilled
for the transitions. To illustrate the dark-state breaking, we introduce a
resonance field that couples the two lower states, i.e., ∣ f

�
and ∣g

�
.

Notably, this coupling features a phase-dependent strength, which
induces syntheticmagnetism, serving as the critical factor that enables
the breaking of the dark state. In a rotating frame with respect to
H0 = ðEg +ω1Þ∣ei eh ∣+ Ef ∣ f

�
f
�

∣+ Eg ∣g
�

g
�

∣, the the system Hamiltonian
becomes

V I =Δ∣ei eh ∣+Ω1ð∣ei g
�

∣+ ∣g
�
eh ∣Þ+Ω2 ∣ei f

�
∣

�
+ ∣ f

�
eh ∣
�
+Ωbð ∣ f

�
g
�

∣eiΘ + ∣g
�

f
�

∣e�iΘÞ: ð9Þ

By defining three basis states via the following vectors:

∣ei= ð1, 0, 0ÞT , ∣ f �= ð0, 1, 0ÞT , ∣g� = ð0, 0, 1ÞT , ð10Þ

the interaction Hamiltonian in Eq. (9) becomes

VI =Ω

0 1 1

1 0 ξeiΘ

1 ξe�iΘ 0

0
B@

1
CA, ð11Þ

where ξ = Ωb/Ω. Without loss of generality, we have considered the
symmetric coupling case (Ω1 = Ω2 = Ω) as well as the conditions of
single-photon and two-photon resonance (Δ1 = Δ2 = Δ = 0). Then we
obtain the eigenequation 1

ΩVI ∣λs
�
= λs ∣λs

�
, where λs are the eigenvalues,

determined by the secular (cubic) equation

λ3 � ð2+ ξ2Þλ� 2ξ cosΘ=0: ð12Þ

The solutions to Eq. (12) are then obtained using the Cardano formula,
and the eigenstates can be expressed as:

∣λs
�
= c½s�g ∣g

�
+ c½s�f ∣ f

�
+ c½s�e ∣ei, s = 1, 2, 3: ð13Þ

The dark state can be verified by calculating the probability amplitude
P½s�
e of the excited state ∣ei within these eigenstates:

P½s�
e = ∣hejλsi∣2 = ∣c½s�e ∣2

=0, Dark state,

≠0, Bright state,

	
ð14Þ

where P½s�
e =0 and P½s�

e ≠0 correspond to the emergence of the dark and
bright states, respectively. Specifically, we present the probability P½s�

e
of the excited state ∣ei in the three eigenstates ∣λs

�
versus the mod-

ulation phaseΘ, for afixed value of ξ, as depicted in Fig. 5c.Weobserve
that one of the eigenstates becomes a dark state (P ½s�

e =0) whenΘ = nπ,

while no dark states emerge in other cases (P½s�
e ≠0). It demonstrates

that by tuning Θ ≠ nπ, the dark-state effect can be broken on demand.
Therefore, the phase-dependent resonant transition ∣g

�$ ∣ f
�
, yield-

ing synthetic magnetism, can be utilized to break the dark-state effect
in the Λ-type three-level system. Our findings could advance the
development of scalable quantum information processors utilizing
photons and phonons, with potential applications in state or energy
manipulation, photon or phonon pulse generation, quantum repea-
ters, and the conversion of information between excitations64–67.

Proposed experimental implementations
The proposed physical model is general and, in principle, can be
implemented using standard optomechanical platforms. Realizing the
TPT while maintaining immunity against dark modes requires two key
ingredients: in-parallel optomechanical couplings between multiple
phonon modes and a shared photon mode, and phase-dependent
phonon-hopping interactions between the nearest-neighbor phonon
modes. Both types of interactions must be accessible within viable
experimental platforms. While each type of coupling has been
demonstrated independently in previous experiments, their simulta-
neous implementation within the same experimental setup has not yet
been reported. Nevertheless, under current state-of-the-art experi-
mental conditions, integrating both kinds of interactions into a unified
system appears fully feasible.

Recent advances have enabled the experimental realization of in-
parallel optomechanical couplings between multiple phonon modes
and a shared photon mode in both optical24,72,73 and microwave74–78

domains. In the optical regime, these in-parallel optomechanical cou-
plings are implemented via “membrane-in-the-middle" optomechani-
cal architectures24,72,73; whereas in the microwave domain, they are
realized using circuit electromechanical platforms74–78. Simulta-
neously, the phase-dependent phonon-hopping interaction between
the nearest-neighbor phonon modes can be implemented using
photonic-crystal optomechanical platforms54 or circuit electro-
mechanical systems74–79. In photonic-crystal-based implementations,
this phase-dependent coupling arises from the mediation of two aux-
iliary cavity fields54; whereas in circuit electromechanical systems, it
emerges indirectly through the coupling of twomechanical resonators
to a charge qubit.

(i) Building on these state-of-the-art experimental advances in
both parallel optomechanical couplings and phase-dependent pho-
non-hopping interactions, the proposed model can be easily realized
using photonic-crystal optomechanical architectures featuring optical
and mechanical couplings between two optomechanical cavities54. In
this scheme, each cavity is driven by a distinct phase-correlated laser
field, and the effective implementation of our model emerges through
the adiabatic elimination of any one cavity-field mode under the large-
detuning regime39. Specifically, we consider a multimode physical
system featuring both optical and mechanical interactions between
the two optomechanical cavities. In the large-detuning regime of the
cavity mode, this mode can be adiabatically eliminated, yielding an
effective three-mode phase-dependent loop-coupled Hamiltonian39,
where both the proposed model and the resulting synthetic magnet-
ism can be easily realized under state-of-the-art experimental condi-
tions using photonic-crystal optomechanical-cavity systems54.

(ii) Moreover, the proposed model can be readily implemented
using circuit electromechanical platforms74–79, which comprise N
micromechanical resonators (MRs) (i.e., bj=1⋯N) coupled to a micro-
wave cavity characterized by an equivalent inductance L and capaci-
tance C. In this quantum setup, the displacement xj=1⋯N of each MR
independently modulates the total capacitance via Cj=1⋯N(xj), thereby
tuning the cavity resonance frequencyωc. This modulation interaction
gives rise to an electromechanical coupling described by gj=1⋯N = (ωc/
2C)∂Cj(xj)/∂xj, enabling the precise quantum control over the system’s
dynamics. Meanwhile, an effective phase-dependent phonon-hopping
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interaction between the two nearest-neighbor MRs is induced by the
coupling of the twoMRs to a superconducting chargequbit39. It reveals
that an effective phase-dependent phonon-hopping interaction
emerges between the two nearest-neighbor MRs and then, the mod-
ulation phase in the loop-coupling configuration induces synthetic
magnetism. These findings highlight the direct relevance of the pro-
posed phenomena to state-of-the-art experiments in circuit electro-
mechanical systems, suggesting that current experimental capabilities
are sufficient to realize the proposed scheme and that the predicted
effects are observable with cutting-edge implementations.

Building on the insightful observation that synthetic magnetic
fields provide a powerful route to engineering gauge potentials for
photons, we highlight the growing interest in photonic synthetic
dimension platforms60. These platforms not only enable strong
photon-photon interactions but also naturally facilitate the realization
of synthetic magnetic fields60–63. Specifically, the synthetic magnetic
field significantly aids the generation of gauge potentials for photons.
Recent advances have generated intense interest in photonic plat-
forms with synthetic dimensions60, which enable strong photon-
photon interactions and synthetic magnetic fields60–63. These devel-
opments highlight the significant potential for realizing our theoretical
proposal within synthetic-dimensional photonic systems. Importantly,
the proposed dark-mode-engineering mechanism could be easily
transferred to chip-based platforms, marking a significant step toward
scalable quantum information processing. This prospect is particularly
exciting, as it offers a practical pathway to integrate topological pho-
tonic or phononic functionalities into compact, chip-scale
architectures.

Discussion
Optomechanical dark modes, analogous to the coherent-population
trapped state or dark state in atomic physics80,81, can be broadly clas-
sified into two categories: optical dark modes and mechanical dark
modes. Specifically, optical darkmodes arise from the coupling of two
optical modes to a shared mechanical mode65–67, while mechanical
dark modes emerge from the coupling of two mechanical modes to a
common optical mode35–40. Notably, prior demonstrations65–67 focus
on optical dark modes that enable optical mode conversion, whereas
our work focuses onmechanical darkmodes that suppressmechanical
mode conversion.

The phonon-mediated and photon-mediated processes, which
respectively correspond to the optical and mechanical mode conver-
sions, can be pursued using multimode optomechanical systems.
However, the influence of optomechanical dark modes on these two
conversions differs fundamentally. In the previous studies65–67, an
optical dark (bright) mode, formed by a special coherent super-
position of two optical modes, is decoupled from (coupled to) the
mechanical mode. Consequently, the formation of the optical dark
mode serves as a shield, protecting the system from mechanical dis-
sipation. Despite being decoupled, the optical dark mode can still
mediate an effective interaction between the two optical modes,
thereby facilitating the optical-field conversion between them. More-
over, the presence of the optical dark mode enables a phonon-
mediated coupling (which is immune to thermal mechanical motion)
for various quantum applications, thereby eliminating the need for
quantum ground-state cooling of the mechanical resonator. In our
work, the mechanical dark mode emerges as a distinct coherent
superposition of two mechanical modes coupled to a common cavity
mode. The interference-induced cancellation in coupling effectively
decouples the mechanical dark mode from the system. While this
decoupling still permits an effective interaction between the two
mechanicalmodes, bothmechanicalmode conversion and topological
phonon transfer between mechanical dark and bright modes become
fundamentally suppressed, regardless of adiabatic trajectory design or
system parameter tuning. The underlying physical mechanism of this

counterintuitive phenomenon isdue todark-mode-induceddisruption
of both topological operations and EPs. Here, we address this long-
standing challenge posed bymechanical darkmodes and demonstrate
a fundamentally distinct one-way topological phonon transfer,
revealing anunexpected immunity todark-mode-inducedobstruction.
This robustness arises from the interplay between topological opera-
tions and synthetic magnetism, enabling a controlled transition
between the DMN and DMB regimes.

In a general topological system, the emergence of an EP signals a
transition in the system’s topological phase as a function of the para-
meter space. This transition is often accompanied by a change in the
system’s topological invariants, such as the conversion from a topo-
logically trivial to a topologically nontrivial state82. However, these
behaviors always occur in the traditional energy-band topology,
involving non-Hermitian gap structures82. In this work, we focus on a
three-mode optomechanical system consisting of two mechanical
modes coupled to a shared cavity-field mode. By adiabatically elim-
inating the cavity-field mode, we obtain an effective non-Hermitian
Hamiltonian for the twomechanical modes. In this system, topological
operations encircling an EP enable nonreciprocal phonon transfer
between two mechanical normal modes. Note that our system is a
unique non-Hermitian gapless structure, and the traditional concept of
energy-band topology is not directly applicable to our studied system.
This indicates that the system is fundamentally different from the one
investigated in our work, as our focus is exclusively on the non-
Hermitian gapless structure rather than on the gap structure. There-
fore, the transition from a topologically trivial to a nontrivial state,
which happens in the traditional energy-band topology, lies beyond
the scope of our system.

In conclusion, we demonstrated a versatile switch between TPB
and TPT arising from a general dark-mode engineering, without which
it vanishes. Our study differs from what is known in previously estab-
lished demonstrations, mainly because we are focused on overcoming
the challenge from dark-mode contamination in topological respon-
ses, but not on deliberately circumventing it. The proposed physical
mechanism is highly universal, thereby enabling the control of a wide
range of physical effects associated with dark states. Our work pre-
sents a comprehensive approach to engineering and protecting
topological resources from both dark modes and dark states, provid-
ing a perspective on the construction of an unconventionally non-
reciprocal topology with immunity to dark modes.
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