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Poland
∗ Author to whom any correspondence should be addressed.

E-mail: javid.naikoo@amu.edu.pl

Keywords: hybrid exceptional-diabolic (HED) singularities, quantum metrology and sensing, quantum Fisher information

Abstract
We report an enhanced sensitivity for detecting linear perturbations near hybrid (doubly
degenerated) exceptional-diabolic (HED) singular points in a four mode bosonic system. The
sensitivity enhancement is attributed to a singular response function, with the pole order
determining the scaling of estimation error. At HED singular points, the error scaling exhibits a
twofold improvement over non-HED singular points. The ultimate bound on estimation error is
derived via quantum Fisher information, with heterodyne detection identified as the measurement
achieving this optimal scaling.

1. Introduction

The study of non-Hermitian systems, which feature complex eigenvalues, has gained significant attention
due to their intriguing and unconventional properties. A key phenomenon in such systems is the presence of
exceptional points (EPs)—singularities in the complex energy plane where both eigenvalues and eigenvectors
coalesce. First studied in physical context in [1], EPs arise in parameter-dependent eigenvalue problems and
are encountered in a wide range of physical systems, such as optics, mechanics, quantum phase transitions,
and quantum chaos [2–5]. In contrast, diabolic points (DPs), introduced in [6], arise in Hermitian systems as
instances of eigenvalue degeneracies where eigenvectors remain orthogonal. These points are closely
associated with geometric phases and Berry’s curvature. Remarkably, certain non-Hermitian systems can
exhibit both EPs and DPs, with their intersections giving rise to hybrid exceptional-diabolic (HED) points.
These HED points blend the distinct features of both singularities and offers valuable insights into the
interplay between Hermitian and non-Hermitian physics unlocking potential applications across diverse
physical domains [7–10].

Recent advances in quantum sensing have highlighted the transformative potential of non-Hermitian
systems in achieving ultra-sensitive measurements, especially through the use of exceptional point
singularities, where small perturbations lead to disproportionately large responses. This property can
dramatically amplify sensitivity, offering a pathway to high-precision measurements that would be infeasible
in Hermitian frameworks [11–14]. A system near an EP, when perturbed, displays eigenvalue splitting that
scales as the nth root of the perturbation size (∼ n

√
ϵ), yielding a steep sensitivity that can surpass what is

achievable in Hermitian settings where perturbations result in linear or quadratic responses [15].
Experimental work with optical resonators has validated this principle, demonstrating that under carefully
controlled conditions, non-Hermitian systems can achieve extremely sensitive measurements [16, 17].
However, under real-world noise conditions, this sensitivity is typically limited by quantum noise, which can
diminish the response and limit the achievable gains [18–26].

In particular, [18, 23] argue convincingly that EP sensors do not provide any fundamental improvement
in signal-to-noise ratio (SNR), challenging the notion that EPs inherently enhance sensor performance.
Building on this, [19] highlights that enhanced sensitivity is primarily driven by nonreciprocity rather than
the proximity to an exceptional point. This study establishes fundamental bounds on signal power and SNR
for two-mode sensors, demonstrating that while gain is necessary for enhanced signal power, it does not rely
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on being near an EP. Furthermore, it shows that when fluctuation effects are considered, the SNR of any
reciprocal system is fundamentally constrained, regardless of its use of EPs. These insights critically address
the limitations of EP-based sensing, shifting the focus from EP proximity to more significant factors such as
nonreciprocal interactions and gain in the system dynamics.

Instead of relying on eigenmode coalescence at EPs, singularity-tuned systems take advantage of internal
parameter tuning that amplifies response to perturbations—a sensitivity boost that differs fundamentally
from that of EP-based systems [22, 24]. This divergence is related to proximity to a dynamical phase
transition, which has recently been recognized as a valuable resource in quantum sensing. Unlike the more
conventional amplification methods, this approach benefits from the unique properties of singularities in the
non-Hermitian space, creating a form of criticality-enhanced sensitivity that is robust under a wider range of
noise conditions than EP-based systems [27–31].

In [24], it was demonstrated that in a two-mode bosonic system, the error δθ in estimating a parameter θ
scales as δθ ∝ θs, where s corresponds to the order of the pole in the singular response function. Notably,
when the parameter affects the common frequency and the singularity arises from satisfying the EP
condition, the error exhibits quadratic scaling. This work extends the previous analysis by generalizing it to a
four-mode cavity system featuring both a second-order EP and a second-order DP. We demonstrate that
quadratic scaling persists at the second-order EP, even when an orthogonal subspace emerges due to the
second-order DP. In the system under consideration, satisfying both the EP condition and the singularity
condition of the dynamical generator necessitates meeting the diabolic condition. As a result, enhanced
precision is observed specifically at HED points.

The structure of this paper is as follows: section 2 provides a concise overview of the classical Fisher
information and its quantum counterpart, the quantum Fisher information (QFI), emphasizing their critical
roles in estimation theory. Section 3 presents a comprehensive description of a sensor model, including the
mathematical framework for Gaussian estimation of linear perturbations within this context. The primary
results of this study are discussed in section 4, where we analyze the sensing advantages at HEP singularities.
Finally, the conclusions are summarized in section 5.

2. Fundamental bounds on parameter estimation: the role of Fisher information

The Fisher information and the Cramér–Rao bound are foundational concepts in estimation theory,
quantifying the limits of precision in parameter estimation. These concepts are pivotal in both classical and
quantum domains, offering insight into the optimal accuracy achievable under the constraints of
measurement and inherent noise.

2.1. Classical Fisher information and the Cramér–Rao bound
In classical statistics, Fisher information provides a measure of the sensitivity of a probability distribution to
the changes in a parameter. For a probability distribution p(x|θ) that depends on an unknown parameter θ,
the Fisher information Fθ is defined as

Fθ = E

[(
∂

∂θ
logp(x|θ)

)2
]
, (1)

where E denotes the expectation over the variable x sampled from p(x|θ). Intuitively, a higher Fisher
information value indicates that small changes in θ lead to larger variations in the probability distribution,
suggesting that θ can be estimated with higher precision.

The Cramér–Rao bound establishes a lower bound on the variance of any unbiased estimator θ̂ of the
parameter θ, providing a measure of the best possible accuracy achievable in estimating θ under unbiased
conditions. For an unbiased estimator, the classical Cramér–Rao bound is given by:

δ2
(
θ̂
)
⩾ 1

Fθ
, (2)

where δ2(θ̂) denotes the variance of θ̂. This inequality implies that the inverse of the Fisher information is the
lowest achievable variance for any unbiased estimator, setting a theoretical limit on estimation precision.

2.2. QFI and the quantum Cramér–Rao bound
In quantum mechanics, the Fisher information concept extends to account for the intrinsic probabilistic
nature of quantum measurements. QFI characterizes how sensitively the state of a quantum system changes
with respect to a parameter θ, taking into account both the probabilistic nature of measurement outcomes
and the underlying quantum state dynamics.
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Consider a quantum state ρ(θ) that depends on the parameter θ. The QFI Fθ for this state is defined as

Fθ = Tr
[
ρ(θ)L2θ

]
, (3)

where Lθ is the symmetric logarithmic derivative (SLD) operator, implicitly defined by the equation:

∂ρ(θ)

∂θ
=

1

2
[Lθρ(θ)+ ρ(θ)Lθ] . (4)

The SLD, Lθ, serves as a quantum analog to the derivative of the log-likelihood function in the classical case,
capturing how changes in θ affect the quantum state. The QFI is crucial in fields such as quantum metrology,
where it enables the design of measurement protocols that maximize parameter estimation precision under
quantum mechanical constraints.

The precision limits imposed by the QFI are formalized by the quantum Cramér–Rao bound, which sets a
fundamental limit on the variance of any unbiased estimator θ̂ for the parameter θ. The quantum
Cramér–Rao bound states that δ2(θ̂)⩾ 1

Fθ
and satisfies

δ2
(
θ̂
)
⩾ 1

Fθ
⩾ 1

Fθ
. (5)

This bound indicates that the inverse of the QFI is the minimum achievable variance, setting an ultimate
limit on precision that is attainable by optimizing both measurement and quantum state preparation.

In practical terms, the quantum Cramér–Rao bound plays a central role in quantum sensing and
metrology, guiding the development of quantum-enhanced measurement strategies that leverage
entanglement, coherence, and other uniquely quantum properties to surpass classical precision limits. By
carefully engineering quantum states and measurements to maximize Fθ, it is possible to achieve higher
sensitivity in estimating parameters such as phase, frequency, and other physical quantities of interest in
quantum systems.

3. Sensor model: a bosonic system with hybrid exceptonal and diabolic points

Let us consider a system of four bosonic modes âℓ ℓ=1, . . . ,4, described by the following Hamiltonian

ĤS =
4∑

ℓ=1

ωkâ
†
k âk + g

(
â†1 â2 + â†3 â4 + h.c.

)
+ J
(
â†1 â3 + â†2 â4 + h.c.

)
. (6)

We assume that the odd-numbered modes, â1, â3 and the even-numbered modes, â2, â4 experience loss and
gain, respectively. This loss-gain dynamics can be modeled through the following interactions:

Hint,odd =
∑
ℓ=odd

ˆ ∞

−∞
dω ′

√
ηℓ (ω ′)

2π

[
âℓB̂

†
ℓ (ω

′)+ h.c.
]
, (7)

Hint,even =
∑

ℓ=even

ˆ ∞

−∞
dω ′

√
ηℓ (ω ′)

2π

[
â†ℓB̂

†
ℓ (ω

′)+ h.c.
]
. (8)

Here, the bath mode operators B̂1(3) and B̂2(4) are responsible for the intrinsic loss and gain in the cavity
modes â1(3) and the mode â2(4), respectively. Further, we allow each cavity mode âℓ to be probed by a

controllable field Âℓ and such probing introduces further loss to each cavity mode âℓ modeled by the
following interaction

Hint,probe =
4∑

ℓ=1

ˆ ∞

−∞
dω ′

√
κ(ω ′)

2π

[
âℓÂ

†
ℓ (ω

′)+ h.c.
]
. (9)

The auxiliary field modes Âℓ and B̂ℓ with ℓ=1, . . . ,4 individually satisfy the usual bosonic commutation
relations

[
Aℓ(ω

′),A†
ℓ(ω

′ ′)
]
=
[
Bℓ(ω

′),B†
ℓ(ω

′ ′)
]
=δ(ω ′ −ω ′ ′). For each optical mode,

Ôℓ,ω ′ ∈ {Âℓ,ω ′ , B̂ℓ.ω ′}, we define its effective input and output field as

Ôℓ,in (t) :=− i√
2π

ˆ ∞

−∞
dω ′ Ôℓ,ω ′ (ti) e

−iω ′(t−ti),

Ôℓ,out (t) :=− i√
2π

ˆ ∞

−∞
dω ′ Ôℓ,ω ′

(
tf
)
e−iω ′(t−tf), (10)

3
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which satisfy
[
Ôℓ,in/out(t),Ôℓ,in/out(t

′)†
]
= δ(t− t ′) and lead to the following input-output relation [32]

Ôℓ,out (t) = Ôℓ,in (t)−
√
κâℓ (t) . (11)

Assuming all the cavity modes to be of same frequency ωℓ=:ω0∀ℓ=1, . . . ,4, the cavity mode vector
â:=(â1, â2, â3, â4)T obeys the following Langevin equation [7, 9, 10, 24, 33, 34]:

∂t â=−i(ω0I+H) â+KprobeÂin +KdissB̂in +KampB̂
†
in, (12)

where

H=


−iγ1 g J 0
g iγ2 0 J
J 0 −iγ3 g
0 J g iγ4

, (13)

and γ1 = (η1 +κ)/2, γ2 = (η2 −κ)/2, γ3 = (η3 +κ)/2 and γ4 = (η4 −κ)/2. The input vectors as defined
in equation (10) are Âin = (Â1,in Â2,in Â3,in Â4,in)

T, B̂in = (B̂1,in B̂2,in B̂3,in B̂4,in)
T, B̂†

in = (B̂†
1,in B̂

†
2,in B̂

†
3,in

B̂†
4,in)

T ̸= (B̂in)
†. The various coupling matrices are Kprobe =diag(

√
κ,
√
κ,
√
κ,
√
κ), Kdiss = diag(

√
η1,0,√

η3,0), Kamp = diag(0,−√
η2,0,−

√
η4).

Up to this point, we have assumed that all system parameters are fixed and known. However, in realistic
scenarios, certain parameters might be subject to small variations or uncertainties. To capture this, we now
introduce a linear perturbation parameter θ, which is encoded within the system’s dynamical generatorH
given in equation (13). The resulting perturbed generator, denoted byHθ, takes the following form

Hθ =H− θn. (14)

Here, n is the perturbation matrix that specifies which parameters in the system are affected by the
perturbation. This matrix allows us to control the sensitivity of the system dynamics to changes in θ.

For instance, if we set n= I, where I is the identity matrix, then the perturbation parameter θ influences
the common cavity frequency, ω0. This configuration implies that θ shifts the entire frequency spectrum by a
small amount, modeling a uniform frequency perturbation across all modes. In more general cases, n could
represent specific structures, allowing targeted perturbations to certain elements of H, such as coupling
strengths, decay rates, or detuning parameters.

Through this approach, we can analyze the robustness of the system’s behavior under small parameter
shifts and explore how different choices of n impact the dynamics induced by the perturbed generatorHθ.

3.1. Solution in the Fourier space
At this point, it is useful to transform equation (12) into the Fourier space by defining the Fourier transform
of a time-dependent operator û(t)=(û1(t) û2(t) . . .)T as û[ω]:=Fω[û(t)]=

´
dteiωtû(t). The correspondint

position and mementum quadratures are defined as q̂u[ω]=û[ω] + (û[ω])† and ip̂u[ω]=û[ω]− (û[ω])†. Thus,
equation (12) in the Fourier space reads:

−iωâ[ω] =−i(ω0I+H) â[ω] +KprobeÂin [ω] +KdissB̂in [ω] +KampB̂
†
in [ω] . (15)

The Fourier transform corresponds to a fixed unitary rotation in phase space [35], under which the structure
of the dynamical equations is preserved. As such, the generator H continues to act from the left on the
operator vector ˆ̂a[ω] in the frequency domain, just as in the time domain [36]. Equation (15) therefore
represents a change of basis rather than a change in the underlying dynamics.

Since we will be working with Gaussian probe fields, which are completely characterized by amplitude
and covariance matrix, we define the quadratures vectors corresponding to the cavity modes

Ŝ
S
[ω]:=(q̂1[ω], · · · , q̂4[ω], p̂1[ω], · · · , p̂4[ω])T, as well as the auxiliary field modes Ŝ

•
in[ω]:=(q̂•in

1 [ω], · · · ,
q̂•in
4 [ω], p̂•in

1 [ω], · · · , p̂•in
4 [ω])T, and •=A,B. In this quadrature representation equation (15) becomes

−ωJŜ
S
[ω] =− (ω0I+ H) JŜ

S
[ω] +

√
κŜ

A

in [ω] + KB1 Ŝ
B

in [ω] + KB2 Ŝ
B

in [−ω] . (16)

In the context of equation (15), any (4× 4) matrix F is now expressed in the (symplectic) phase space as

F≡ J{F} :=
(
Re [F] − Im [F]
Im [F] Re [F]

)
, (17)

4
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so that H= J {H}, I= J {I} corresponds to a 8× 8 identity matrix, and J:=J {iI} is the symplectic form,
which plays the role of the imaginary unit. Similarly, the input-output relation in equation (11) for the probe
field amplitude is given in quadrature basis by

Ŝ
A

out [ω] = Ŝ
A

in [ω]−
√
κŜ

S

in [ω] . (18)

To express the dynamics entirely in terms of the input and output fields, we eliminate the internal system

operator Ŝ
S
by substituting the input-output relation equation (18) into the system’s dynamical

equation equation (16). This yields a linear relation of the form ((ω−ω0)I− H)SAout[ω] = · · · , whose solution
naturally involves the inverse ((ω−ω0)I− H)−1. This inverse acts as the Green’s function of the system and
encapsulates its frequency-dependent response to external inputs.

Substituting equation (18) into equation (16), we obtain

Ŝ
A

out [ω] =
(
I− KprobeG [ω]

)
Ŝ
A

in [ω]− KprobeG [ω]
(
KdissŜ

B

in [ω] + KampŜ
B

in [−ω]
)
, (19)

where the coupling matrices are given by Kprobe = diag(Kprobe,Kprobe), Kdiss = diag(Kdiss,Kdiss) and
Kamp = diag(Kamp,−Kamp), and G[ω] is the system’s response function

G [ω] = J((ω−ω0) I− H)−1
. (20)

We can further simplify equation (19) as

Ŝ
A

out [ω] =
(
I− KprobeG [ω]

)
Ŝ
A

in [ω]− KprobeG [ω]KŜ
B
[±ω] , (21)

where K is an 8× 16 matrix given in block form by K=[Kdiss,0,Kamp,0;0,Kdiss,0,Kamp] and the vector

Ŝ
B
[±ω]=

(
q̂B1 [ω] · · · q̂B4 [ω], q̂B1 [−ω] · · · q̂B4 [−ω], p̂B1 [ω] · · · p̂B4 [ω], p̂B1 [−ω] · · · p̂B4 [−ω]

)T
include both positive and

negative frequency components.
We define the mean value as S :=⟨Ŝ⟩, and assume that the auxiliary modes B̂ℓ are initialized in the

vacuum state. Under this assumption, the contribution from SBin[±ω] vanishes in equation (21), leading to

SAout [ω] =
(
I− KprobeG [ω]

)
SAin [ω] . (22)

The covariance matrix of the output modes being measured, i.e. VAout[ω] has elements [VAout]jk =
1
2 ⟨{[Ŝ

A

out]j,

[Ŝ
A

out]k}⟩− ⟨[Ŝ
A

out]j⟩⟨[Ŝ
A

out]k⟩. It is not hard to show that an input-output relation, similar to equation (22), is
given by [24]

VAout [ω] =
(
I− KprobeG [ω]

)
VAin [ω]

(
I− KprobeG [ω]

)T
+ KprobeG [ω]KṼBin [ω]KTG [ω]T . (23)

In what follows, we use the input covariance matrices

VAin = (2nA + 1) I8×8, ṼBin = (2nB + 1) I16×16, (24)

where nA and nB are the average thermal photons associated with the probe and bath modes, respectively.
The perturbation described in equation (14) translates in the Fourier space to the following

Hθ = H− θ n, (25)

where n is the matrix n in the Fourier space given by equation (17). The role of n in shaping the structure
and target of the perturbation was discussed earlier; in Fourier space, n serves the analogous purpose. It
determines which spectral components or mode couplings are affected by the parameter θ. For example, if
n= I introduces a uniform frequency shift in real space, the corresponding n yields a uniform spectral shift
across all modes. More generally, n can be designed to encode structured perturbations in the spectral
domain, allowing selective modification of specific modes or interactions. Consequently, the θ-dependent

response function will be denoted by Gθ[ω] = J
(
(ω−ω0)I+ θn− H

)−1
. If we further assume that the probe

frequency is in resonance with the system frequency i.e. ω = ω0, we have

Gθ [ω = ω0] = J(θn− H)−1
. (26)

As a result, the output amplitude in equation (22) and the covariance matrix in equation (23) depend on θ
and we denote them as

SAout [ω = ω0]→ SAout,θ, VAout [ω = ω0]→ VAout,θ. (27)

5
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Figure 1. (a) Sensor model of four bosonic modes âk interacting with inaccessible bath modes B̂k through dissipative (for k=1,3)
and amplification (for k=2,4) interactions. All the four cavity modes are probed by accessible (Gaussian) input field Âk via
dissipative interaction. Using input-output formalism, the accessible and the inaccessible field modes are expressed in terms of the
input and output fields (Âk,in/out and B̂k,in/out ) as defined in equation (10). (b) Heterodyne detection, which is equivalent to

double homodyne detection, is performed on the outputs from the accessible modes i.e. Âk,out, by combining them with the
vacuum |0⟩ on a balanced beam splitter. The resulting fields are then mixed with local oscillators (LO1 and LO2) on two additional
balanced beam splitters. The outputs from these are measured by detectors (Dk) to determine the quadratures p̂k and q̂k,

We stress that the θ-parameter dependence of SAout,θ and VAout,θ is entirely through the response function
Gθ[ω = ω0] in equation (26).

3.2. Gaussian estimation of linear perturbations
Since we are focusing on Gaussian probe signals—the input bosonic modes Âk,in in figure 1, it is worth to
briefly revisit the estimation theory with Gaussian states and Gaussian measurements [37, 38]. A Gaussian
state ρ(S,V) is completely characterized by its amplitude S and covariance matrix V. In the Gaussian
estimation theory, an unkown parameter θ is encoded on these amplitude and covariance matrix resulting in
a Gaussian state ρθ = ρ(Sθ,Vθ). The ultimate precision in estimating θ is then given by the QFI

Fθ =
1

2
Tr

[
dVθ
dθ

V−1
θ

dVθ
dθ

V−1
θ

]
+ 2

(
dSθ
dθ

)T

V−1
θ

(
dSθ
dθ

)
. (28)

The expression in equation (28) is the standard formula for the QFI in single-parameter estimation with
Gaussian states, where the parameter θ is encoded in both the displacement vector Sθ and the covariance
matrix Vθ. A rigorous derivation of this result can be found in [39], to which we refer the interested reader. A
generalization to the multiparameter case—though not required in the present work—has been developed
in [24].

6
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Figure 2. Parameter space of the dynamical generatorH in equation (13) with balanced gain and loss γℓ=γ for all ℓ=1, . . . ,4.
Here, J represents the coupling between successive modes with gain or loss, and g is the coupling strength between a loss mode
â1(3) and a gain mode â2(4). The green surface, denoted as singular surface, shows points where J=

√
g2 − γ2, whereH becomes

singular (denoted byHS) as given in equation (42). The yellow horizontal plane J= 0 contains diabolic points, while the vertical
meshed plane g= γ includes exceptional points. The intersection of singular surface, the exceptional plane and the diabolic plane
is given by the hybrid exceptional-diabolic (HED) line in red. The gray plane at g=

√
2γ is an arbitrary non-EP plane that

intersects the singularity surface along the black line. The singular points along red (HEP) and black (non-HEP or non-EP) lines
exhibit distinct scaling types of behavior as shown in figure 3 by red and black curves, respectively.

In the context of our model with the amplitude and covariance matrix given in equation (27), the QFI, as
given in equation (28), reads

Fθ =
1

2
Tr

[
dVAout,θ
dθ

(
VAout,θ

)−1 dVAout,θ
dθ

(
VAout,θ

)−1

]
+ 2

(
dSAout,θ
dθ

)T (
VAout,θ

)−1

(
dSAout,θ
dθ

)
. (29)

One can use this formula directly to determine precision by fixing system parameters in H and choosing a
desired perturbation matrix n. It is worth mentioning that the QFI is an optimized quantity which is
obtained by maximizing the classical Fisher information over all possible measurements [40]. Thus, it is
natural to ask if a specific measurement strategy saturates the precision obtained by QFI. As it is described in
the next section, the heterodyne detection performed on the output signals is the optimal measurement for
our system. Such a detection leads to a probability distribution p(xθ) where xθ is a vector of (real)
measurement outcomes. In the context of our bosonic system, the distribution reads

p(xθ) =
1

(2π)N
√
Cθ

exp

(
−1

2
(xθ − x̄)T C−1

θ (xθ − x̄)
)
, (30)

where

xθ = SAout,θ, Cθ = VAout,θ + I, (31)

is the amplitude and covariance matrix and the Fisher information is accordingly given by [41]

Fθ =
1

2
Tr

[
dCθ
dθ

C−1
θ

dCθ
dθ

C−1
θ

]
+ 2

(
dxθ
dθ

)T

C−1
θ

(
dxθ
dθ

)
. (32)

3.3. Precision limits from generator singularity
So far, we have laid the groundwork by showing that the precision (or QFI) can be computed through a
straightforward formula (29) involving the amplitude and covariance matrix. We are now prepared to
explore the effect of the nature of the dynamical generator, denoted by H (or equivalently H), on this
precision. The precision is influenced by H via the response function in equation (26), which serves as the
central object of our analysis. Two distinct cases emerge:

Non-singular dynamical generator.—When H in equation (26) [or equivalently H in equation (13)] is
invertible, the Neumann series can be applied to obtain

Gθ [ω = ω0] = J(θHθ − H)−1
=−JH−1

∞∑
k=0

(
θnθH−1

)k
, (33)
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which approaches (−JH−1) as θ→ 0. Using this in equation (29), the QFI turns out to be

Fθ = a0 +O (θ) , a0 ̸= 0, (34)

indicating that the leading-order term is independent of θ. Here, we have

a0 =
1

2
Tr
[
Y−1ZY−1Z

]
+ 2κ2STing

T
1 Y

−1g1Sin, (35)

where

Y= VAin −κ
(
g0VAin + VAing

T
0

)
+ g0Λg

T
0 , (36)

Z=−κ
(
g1VAin + VAing

T
1

)
+ g0Λg

T
1 + g1Λg

T
0 , (37)

Λ = κ2VAin +κK
(
VB1
in ⊕ VB2

in

)
KT, (38)

with gk =−JH(nH−1)k for k= 0,1 [24]. The auxiliary matrices Y, Z, and Λ are introduced to express the QFI
prefactor a0 in a compact and analytically manageable form. These matrices capture the combined effects of
the input probe noise via VAin, and the environmental noise contributions, characterized by VB1in and VB2in . This
clarifies how the different noise sources influence the QFI.

Singular dynamical generator.— Conversely, when H is non-invertible, or singular, the inverse of
equation (26) can be calculated using the Sain-Massey (SM) expansion from singular matrix perturbation
theory [42, 43], yielding

Gθ [ω = ω0] = J(θn− HS)
−1

= θ−s
[
X0 + θX1 + θ2X2 + · · ·

]
, (39)

where X0 ̸= 0, and s is an integer that determines the pole order in this expansion (see appendix B). In this
scenario, the QFI in equation (28) exhibits a divergent behavior,

Fθ = θ−2s [b0 +O (θ)] , b0 ̸= 0, (40)

where the coefficient is given by [24]

b0 = Tr
(
nX0nX0 + V−1

in nX0VinXT0 n
T
)
+κ2STinX

T
0 n

TV−1
in nX0Sin. (41)

The above analysis reveals that the nature of the dynamical generator H critically affects the behavior of the
QFI and, consequently, the achievable precision in parameter estimation. In essence, the nature of the
dynamical generator H—whether singular or non-singular—determines the balance between stable precision
and enhanced sensitivity in parameter estimation. For non-singular H, the QFI remains finite as θ→ 0,
ensuring constant precision and resilience to small perturbations, which supports stable measurement
outcomes. Conversely, when H is singular, the QFI diverges as θ→ 0, allowing for high sensitivity to
parameter variations. This distinction enables the design of quantum systems tailored for either stable
precision or heightened sensitivity, aligning experimental goals with the nature of H.

4. Enhanced precesion at HED points

Let us first take a quick look at the structure of the dynamical generatorH in equation (13). If we assume all
the gain and loss rates are equal i.e. γℓ = γ, ∀ℓ= 1,2,3,4, the matrix H can be expressed as direct sum
H=M1 ⊗ I+ I⊗M2 whereM1 = [0, J; J,0] andM2 = [−iγ,g;g, iγ] with eigenvalues λ1,± =±J and
λ2,± =±

√
g2 − γ2, respectively [8]. Such a decomposition is useful since the eigenvalues of H, denoted by

µk,ℓ,± = λk,± +λℓ,± with k, ℓ=1,2, are simply given by the sum of the eigenvalues of M1 andM2. Secondly,
H demonstrates an exceptional curve when g= γ for all points µk,ℓ,±=±J while as for J= 0 pertains to a
diabolic curve given by all points µk,ℓ,±=±

√
g2 − γ2. However, what is going to be an even more interesting

case for us is thatH is singular for all points satisfying J=±
√

g2 − γ2 and we denote it as follows (restricting
to positive square root)

HS =


−iγ g

√
g2 − γ2 0

g iγ 0
√

g2 − γ2√
g2 − γ2 0 −iγ g
0

√
g2 − γ2 g iγ

 . (42)
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In light of the discussion in section 3.2, one expects enhanced sensitivity in sensing linear perturbations
when the system is operator atHS. However, note that in section 3.2, the conclusion about enhanced
precision was based on the singularity H and not of H. However, it turns out that detH= |detH|2 (see lemma
2 in the supplementary material of [24]). Therefore, in light of equation (17), HS = J {HS} is also singular
and the expansion equation (39) applies.

The precision enhancement is quantified in terms of the pole order s in the expansion equation (39) –
which for a particular HS is determined by the perturbation matrix nθ. Let us consider the as an example the
perturbation matrix n= I—an 8× 8 identity matrix. This matrix perturbs the common cavity frequency ω0

by the same amount θ as (ω0 − θ).
Sensing at an HED singularity.— Let us consider the case when g= γ i.e. the system is at HED point.

Following the procedure in [24, 42] we find that the response function in equation (39) has the following
form

Gθ [ω = ω0] = θ−2 (X0 + θX1) , (43)

where as shown in appendix C the coefficients are given by

X0 = HS|g=γ , X1 = I. (44)

We can now use the response function Gθ[ω = ω0] given by equation (43) to calculate the corresponding
amplitude and covariance matrix given in equations (22) and (23), respectively. Subsequently, we use these
quantities to calculate the QFI given in equation (29) and obtain

FHED
θ = θ−4 [b ′

0 +O (θ)] , (45)

where b ′
0 is b0 given in equation (41) for this particular case i.e. with perturbation matrix n= I and coefficient

X0 and X1 given in equation (44). The precision in equation (45) leads to quadratic scaling of the error

δQθ =
1√
FHED

θ

∝ θ2. (46)

Sensing at a non-HEP singularity.— Next, let us consider a non-HEP singularity by setting g=
√
2γ in

equation (42) [or equivalently in its quadrature representation HS(g,γ)], we find

Gθ [ω = ω0] = θ−1
[
X0 + θX1 + θ2X2 + · · ·

]
, (47)

where the even and odd coefficients are given by X2k = (2γ)−2kXeven and X2k+1 = (2γ)−2k−1Xodd

Xeven =



r2 0 0 r 0 0 −r2 0
0 r2 r 0 0 0 0 r2

0 r r2 0 −r2 0 0 0
r 0 0 r2 0 r2 0 0
0 0 r2 0 r2 0 0 r
0 0 0 −r2 0 r2 r 0
r2 0 0 0 0 r r2 0
0 −r2 0 0 r 0 0 r2


,

Xodd =



0 r −r2 0 −r2 0 0 0
r 0 0 −r2 0 r2 0 0

−r2 0 0 r 0 0 −r2 0
0 −r2 r 0 0 0 0 r2

r2 0 0 0 0 r −r2 0
0 −r2 0 0 r 0 0 −r2

0 0 r2 0 −r2 0 0 r
0 0 0 −r2 0 −r2 r 0


. (48)

where k= 0,1,2, . . . and r=−1/
√
2. Thus, in this case, the precision behaves as

Fnon−HED
θ = θ−2 [b ′ ′

0 +O (θ)] , (49)

with b ′ ′
0 being b0 in equation (41) with coefficients given in equation (48). The form of precision in

equation (49) leads to a linear scaling of the error

9
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Figure 3. Estimation error of the parameter θ affecting cavity frequency ω0 in equation (12). The solid curves correspond to the
quantum Cramér–Rao bound δQθ = 1/

√
Fθ , where Fθ is numerically calculated from equation (29). The dashed curves

represent the classical Cramér–Rao bound achieved through heterodyne detection, expressed as δCθ = 1/
√
Fθ with Fθ obtained

numerically from equation (32). The scaling depicted by the quantum Cramér–Rao bound in the two cases is in agreement with
the analytic results given in equations (46) and (50). Similarly analytic predictions are obtained for heterodyne detection. The
dotted blue lines serve as reference lines, scaling proportionally to θ and θ2, as indicated. The quadratic error scaling exhibited by
the red solid and dashed curves is achieved by tuning the singular generatorHS in equation (42) to g= γ, corresponding to the
HED line in the parameter space shown in figure 2. In contrast, the black solid and dashed curves indicate linear scaling, where
the singular generatorHS is set to g=

√
2γ, representing the non-HED black line in figure 2. The parameters used include a

common loss/gain rate γ set to γ= 1, coupling strengths κ= 1, η1 = η2 = η3 = η4 = 0.5. The average number of thermal
photons in the input Gaussian probe and the bath is set to nA = nB = 1.

Table 1. Summary of singularity types, their corresponding conditions, and their relevance to the sensing parameter θ, which influences
the common mode frequency. The sensitivity is quantified by the quantum and classical Cramér–Rao bounds, represented as
δQθ = 1/Fθ and δCθ = 1/Fθ , where Fθ and Fθ denote the quantum and classical (pertaining to heterodyne detection) Fisher
information, as provided in equations (29) and (32), respectively.

Singularity region Condition Sensitivity (δQθ,δCθ)

Singular surface J2 = g2 − γ2 θ (g ̸= γ), θ2 (g= γ)
Diabolical plane J= 0 θ0 if g ̸= γ
Exceptional plane g= γ θ0 if J ̸= 0
HED line (g,γ, J) = (γ,γ,0) θ2

δQθ =
1√

Fnon−HED
θ

∝ θ. (50)

Consequently, while perturbing the system at the HED singularity achieves a quadratic scaling of error,
perturbations away from this singularity result in only linear error scaling. These findings align with the
numerical results shown in figure 3, which were obtained by directly computing the QFI from equation (28)
without any approximations. For heterodyne detection, the CFI is given by equation (32) using the
amplitude and covariance matrix specified in equation (31). By following the same procedure as outlined
above, and analogous to equations (45) and (49), the CFI in the two cases is obtained as:

FHED
θ = θ−4 [c ′0 +O (θ)] , Fnon−HED

θ = θ−2 [c ′ ′0 +O (θ)] , (51)

where the coefficients c ′0 > 0 and c ′ ′0 > 0. Consequently, the corresponding errors scale as:

δCθ =
1√
FHED
θ

∝ θ2, δCθ =
1√

Fnon−HED
θ

∝ θ. (52)

The analytical predictions for the scaling behaviors in equations (46), (50) and (52) are supported by the
plots in figure 3, which were obtained by numerically computing the Fisher information given in
equations (29) and (32). A summary of the scaling behavior in different situations is presented in table 1.

4.1. Experimental feasibility
The realization of the HED conditions γℓ = γ and J=

√
g2 − γ2 relies on precise engineering of both

coherent couplings and dissipative processes. Such control is increasingly achievable in photonic and circuit
QED platforms. In particular, tunable gain and loss rates have been demonstrated using optical
pumping [44, 45] and reservoir engineering techniques [46, 47]. Couplings between photonic modes or

10
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superconducting resonators can be dynamically tuned using integrated waveguide circuits or parametric
modulation [48, 49]. These advances suggest that the parameter regimes required for observing
HED-induced QFI enhancement are within reach of current experimental capabilities.

4.2. Effect of measurement imperfections
In practical implementations, various imperfections can influence the sensitivity enhancement predicted in
our idealized model. First, our analysis already accounts for thermal noise by considering a thermal input
state, as defined in equation (24), which serves as a realistic model for finite-temperature environments.
However, other sources of technical noise may also play a role.

A key practical imperfection in quantummeasurements is detector inefficiency, which reduces the amount
of information that can be extracted from a system. This effect can be captured in several equivalent ways.
One common approach models inefficiencies using positive operator-valued measures, which generalize
projective measurements and naturally describe imperfect detection processes [50, 51]. Alternatively,
inefficiency can be modeled by passing the output quantum state through a fictitious lossy bosonic channel
before detection [52–54], or equivalently, by inserting fictitious beam splitters in front of ideal detectors, as
discussed in [55].

In the specific case of homodyne detection, reduced detector efficiency manifests as a smoothing of the
Wigner function, due to the corresponding smoothing of its quadrature marginals relative to those obtained
with ideal, unit-efficiency detectors [56]. Across all these modeling frameworks, detector inefficiency results
in a degradation of the QFI, which may even suppress its divergence near singular points such as HED
points [19, 57].

Another relevant factor is gain-loss imbalance, where the ideal symmetry γℓ = γ may not be exactly
satisfied. Such deviations can shift or even remove the system from a singular point, altering the pole
structure of the response function and potentially reducing the achievable sensitivity. In extreme cases, an
imbalance may destabilize the system, leading to runaway amplification or decaying modes.

At the modeling level, both thermal noise and gain-loss imbalance can be rigorously treated using general
open-system frameworks, such as the Heisenberg–Langevin formalism (as we use here) or master equations
with temperature-dependent Lindblad terms [58]. These approaches enable the description of
nonzero-temperature baths and dissipative processes on equal footing, and can be used to systematically
study stability and metrological performance.

While we focus here on analytic structure and ideal scaling, a more detailed numerical analysis of
imperfections—including specific thermal models, detection inefficiencies, and HED robustness—could be
fruitfully explored in a follow-up study aimed at guiding experimental realizations.

5. Conclusion

In conclusion, our findings highlight the persistence of quadratic scaling at second-order EPs, even in the
presence of orthogonal subspace induced by the second-order DPs in a four mode bosonic system. The
interplay between EP condition, the singularity condition, and the diabolic condition of the dynamical
generator is critical to achieving this enhanced precision. Notably, the quadratic scaling is uniquely observed
at HED points, where these conditions naturally coalesce. This underscores the significance of HED points in
optimizing precision and offers valuable insights for advancing non-Hermitian systems and quantum
sensing applications. By using the tools of the singular matrix perturbation theory and Gaussian estimation
framework, we reveal that HED points offer a significant twofold improvement in sensitivity over standard
singularities in this system. The ultimate estimation limits, derived through the QFI, identify heterodyne
detection as the optimal measurement strategy to achieve this enhanced scaling. These results deepen our
understanding of HED singularities and open pathways for their application in high-precision quantum
sensing and metrology.
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Appendix A. Quantum Langevin equations

The total Hamiltonian describing the sensor model in figure 1 reads

Ĥ= ĤS + ĤB + ĤSB, (A1)

where

ĤS =
4∑

ℓ=1

ωkâ
†
k âk + g

(
â†1 â2 + â†3 â4 + h.c.

)
+ J
(
â†1 â3 + â†2 â4 + h.c.

)
, (A2)

ĤB ≈
4∑

ℓ=1

ˆ ∞

−∞
dω ′ ω ′ Â†

ℓ (ω
′) Âℓ (ω

′)+
4∑

ℓ=1

ˆ ∞

−∞
dω ′ ω ′ B̂†

ℓ (ω
′) B̂ℓ (ω

′) , (A3)

ĤSB ≈
4∑

ℓ=1

ˆ ∞

−∞
dω ′

√
κ(ω ′)

2π

[
âℓÂ

†
ℓ (ω

′)+ h.c.
]
+
∑
ℓ=2,4

ˆ ∞

−∞
dω ′

√
ηℓ (ω ′)

2π

[
â†ℓB̂

†
ℓ (ω

′)+ h.c.
]

+
∑
ℓ=1,3

ˆ ∞

−∞
dω ′

√
ηℓ (ω ′)

2π

[
âℓB̂

†
ℓ (ω

′)+ h.c.
]
, (A4)

with commutation relations
[
Âℓ(ω

′), Â†
ℓ(ω

′ ′)
]
=
[
B̂ℓ(ω

′), B̂†
ℓ(ω

′ ′)
]
=δ(ω ′ −ω ′ ′). The Heisenberg equation

of motion ∂tÔ=−i [Ô,Ĥtotal], where Ĥtotal = ĤS + ĤB + ĤSB:

∂tâ1 =−iω1a1 − ig12a2 − iJa3 − f̂ A1 − f̂ B1 , (A5)

∂tâ2 =−iω2a2 − ig12a1 − iJa4 − f̂ A2 −
(
f̂ B2

)†
, (A6)

∂tâ3 =−iω3a3 − ig34a4 − iJa1 − f̂ A3 − f̂ B3 , (A7)

∂tâ4 =−iω4a4 − ig34a3 − iJa2 − f̂ A4 −
(
f̂ B4

)†
, (A8)

with

f̂Aj =
i√
2π

ˆ ∞

−∞
dω ′
√
κ(ω ′)

[
Âj (ω

′) |t=t0e
−iω ′(t−t0)

−i

√
κ(ω ′)

2π

ˆ t

t0

dt ′aj (t
′)e−iω ′(t−t ′)

]
, (A9)

f̂Bj =
i√
2π

ˆ ∞

−∞
dω ′
√
ηj (ω ′)

[
B̂j (ω

′) |t=t0e
−iω ′(t−t0)

−i

√
ηj (ω ′)

2π

ˆ t

t0

dt ′aj (t
′)e−iω ′(t−t ′)

]
. (A10)

We proceed by solving for the probe fields Âk and the reservoir fields B̂k and substitute in
equations (A5)–(A8). Subsequently, we invoke the Markov approximation by ignoring the frequency
dependence of the rates

κ(ω ′)≈ κ, ηk (ω
′)≈ ηk. (A11)

This leads to a simpler set of equations

∂tâ1 =−iω1â1 − igâ2 − iJâ3 + f̂ ′1, (A12)

∂tâ2 =−iω2â2 − igâ1 − iJâ4 + f̂ ′2, (A13)

∂tâ3 =−iω3â3 − igâ4 − iJâ1 + f̂ ′3, (A14)

∂tâ4 =−iω4â4 − igâ3 − iJâ2 + f̂ ′4, (A15)

where

f̂ ′1 =
√
κÂ1,in −

κ

2
â1 +

√
η1B̂1,in −

η1
2
â1, (A16)

f̂ ′2 =
√
κÂ2,in −

κ

2
â2 −

√
η2B̂

†
2,in +

η2
2
â2, (A17)
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f̂ ′3 =
√
κÂ3,in −

κ

2
â3 +

√
η3B̂3,in −

η3
2
â3, (A18)

f̂ ′4 =
√
κÂ4,in −

κ

2
â4 −

√
η4B̂

†
4,in +

η4
2
â4. (A19)

The equations (A12)–(A15) together with equations (A16)–(A19) constitute the equation (12) in the main
text written in a compact form with the definition of the input fields given in equation (10) of the main text.

Appendix B. The SM procedure for expanding inverses of singular matrices

Let an n× nmeromorphic matrix function A(z) have a Laurent expansion about z0:

A(z) =
∞∑
j=0

(z− z0)
jAj, (B1)

where Aj ∈ Cn×n, A0 ̸= 0. Suppose the inverse A−1(z) exists in some (possibly punctured) disc centered at
z= z0. Then, A−1(z) can be expressed as a Laurent series:

A−1 (z) =
1

(z− z0)
s

[
X0 +(z− z0)X1 +(z− z0)

2 X2 + · · ·
]
, (B2)

where s is a natural number called the order of the pole at z= z0, and X0 ̸= 0.
To determine the value of s and compute the coefficient matrices Xk, we use the SM method [42, 59, 60].

The method introduces an augmented matrix, defined as:

A(t) :=


A0 0 0 . . . 0
A1 A0 0 . . . 0
A2 A1 A0 . . . 0
...

...
... . . .

...
At At−1 At−2 . . . A0

 . (B3)

The pole order s is identified as the smallest value of t for which the rank condition

rankA(t) − rankA(t−1) = n (B4)

is satisfied, where n is the dimension of the matrix A(z).
Once s is known, the coefficient matrices Xk are determined recursively for k= 1,2, . . . using

Xk =
s∑

j=0

G(s)
0j

(
δj+k,sI−

k∑
i=1

Ai+jXk−i

)
, (B5)

with the initial value X0 given by the block G(s)
0s , here I is the n–dimensional identity matrix.

Here, G(s)
0s is part of the generalized inverse matrix G(s), defined as:

G(s) :=


G(s)
00 . . . G(s)

0s
... . . .

...

G(s)
s0 . . . G(s)

ss

 , (B6)

which represents the Moore-Penrose pseudo-inverse of the augmented matrix at t= s, i.e. G(s) = (A(s))+

[61]. Here, the superscript (+) denotes the pseudoinverse of a matrix, which reduces to the standard inverse
for a square, non-singular matrix. This approach systematically determines both the pole order and the
expansion coefficients.

Appendix C. SM expansionwith the singular dynamical generator given in equation (42)

We now proceed to analyze the SM expansion of the response function at resonance. For clarity, we restate
the expansion from equation (39) below:

Gθ [ω = ω0] = J(θn− HS)
−1

= θ−s
[
X0 + θX1 + θ2X2 + · · ·

]
, (C1)
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where the goal is to determine the order s of the pole and the coefficient matrices Xℓ for a specific class of
linear perturbation to mode-frequency in the presence of a singular dynamical generatorHS in
equation (42). Assuming g= γ, the phase space representation ofHS, as defined in equation (17), is given in
by the following 8× 8 matrix:

HS|g=γ =



0 γ 0 0 γ 0 0 0
γ 0 0 0 0 −γ 0 0
0 0 0 γ 0 0 γ 0
0 0 γ 0 0 0 0 −γ
−γ 0 0 0 0 γ 0 0
0 γ 0 0 γ 0 0 0
0 0 −γ 0 0 0 0 γ
0 0 0 γ 0 0 γ 0


. (C2)

We focus on a symmetric four-mode perturbation characterized by the identity matrix

n= I8×8, (C3)

which corresponds to uniform modulation of all cavity frequencies [22, 24].
To determine the pole order s and the coefficient matrices Xℓ, we compute the augmented matricesA( j)

defined as

A(0) =
(
−HS|g=γ

)
, (C4)

A(1) =

(
−HS|g=γ 0

I −HS|g=γ

)
, (C5)

A(2) =

−HS|g=γ 0 0
I −HS|g=γ 0
0 I −HS|g=γ

 . (C6)

Evaluating the ranks of these matrices, we find

rank
[
A(2)

]
− rank

[
A(1)

]
= 8, (C7)

which equals the dimension of the response matrix Gθ. This confirms that the SM expansion has a pole of
order s= 2.

The next step involves computing the matrix G(2) = [A(2)]+, the Moore-Penrose pseudoinverse ofA(2).
We organize G(2) in block form:

G(2) =
[
A(2)

]+
=

(
G(2)
00 G(2)

01 G(2)
02

· · · · · · · · ·

)
24×24

, (C8)

where the top-right block yields the leading coefficient in the SM expansion:

X0 = G(2)
02 . (C9)

The explicit forms of the relevant blocks are as follows:

G(2)
00 = γτ



0 −1 0 0 1 0 0 0
−1 0 0 0 0 −1 0 0
0 0 0 −1 0 0 1 0
0 0 −1 0 0 0 0 −1
1 0 0 0 0 −1 0 0
0 1 0 0 −1 0 0 0
0 0 1 0 0 0 0 −1
0 0 0 1 0 0 −1 0


, (C10)
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G(2)
01 =



β 0 0 0 0 α 0 0
0 β 0 0 −α 0 0 0
0 0 β 0 0 0 0 α
0 0 0 β 0 0 −α 0
0 −α 0 0 β 0 0 0
α 0 0 0 0 β 0 0
0 0 0 −α 0 0 β 0
0 0 α 0 0 0 0 β


, (C11)

G(2)
02 = γ



0 1 0 0 1 0 0 0
1 0 0 0 0 −1 0 0
0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 −1
−1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0
0 0 −1 0 0 0 0 1
0 0 0 1 0 0 1 0


= HS

∣∣
g=γ

, (C12)

where τ = 1
4γ2+1 , α = 2γ2 τ and β = (2γ2 + 1)τ = τ +α. With these blocks in hand, the remaining

coefficients Xℓ can be recursively determined using the relations:

X1 =−G(2)
00 A1X0 +G(2)

01 , (C13)

X2 = G(2)
00 (I− A1X1) , (C14)

Xℓ =−G(2)
00 A1Xℓ−1 for ℓ⩾ 3. (C15)

Substituting A1 = I and the expressions above yields X1 = I (8× 8 identity matrix) and Xℓ = 0 for ℓ⩾ 2.
Hence, the only non-zero coefficients in equation (C1) are X1 = I and X0 = HS|g=γ . Thus, the complete SM
expansion under the symmetric perturbation n= I8×8 finally reads:

Gθ = Jθ−2
(
H|g=γ + θI

)
. (C16)

The same method can be systematically applied to other perturbation matrices n.
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