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Abstract

The unique properties of exceptional point (EP) singularities, arising from non-Hermitian physics,
have unlocked new possibilities for manipulating light—-matter interactions. A tailored gain-loss
variation, while encircling higher-order EPs dynamically, can significantly enhance the control of the
topological flow of light in multi-level photonic systems. In particular, the integration of dynamically
encircled higher-order EPs within fiber geometries holds great promise for advancing specialty optical
fiber applications, though a research gap remains in exploring and realizing such configurations. Here,
we report a triple-core specialty optical fiber engineered with customized loss and gain to explore the
topological characteristics of a third-order EP (EP3), formed by two interconnected second-order EPs
(EP2s). We elucidate chiral and nonchiral light transmission through the fiber, based on second- and
third-order branch point behaviors and associated adiabatic and nonadiabatic modal characteristics,
while considering various dynamical parametric loops to encircle the embedded EPs. We investigate
the persistence of EP-induced light dynamics specifically in the parametric regions immediately
adjacent to, though not encircling, the embedded EPs, thereby potentially leading to improved device
performance. Our findings offer significant implications for the design and implementation of novel
light management technologies in all-fiber photonics and communications.

1. Introduction

Over recent years, photonic systems have proven to be exceptional platforms for exploring non-Hermitian
quantum mechanics (NHQM), primarily due to their intrinsic openness in the sense of ubiquitous loss and gain
[1-3]. In particular, one of the intriguing phenomena in NHQM is the emergence of exceptional points (EPs), a
special type of spectral singularities that appears within the parameter space of open systems. At an EP, coupled
eigenvalues and their corresponding eigenvectors coalesce simultaneously, creating a defect in the topology of
the eigenspace of the underlying Hamiltonian [4, 5]. Extensive theoretical and experimental research on
implementing EPs across various photonic systems has demonstrated their effectiveness as a powerful tool for
manipulating and detecting the energy states of light [6—9]. The unique properties of EPs, along with their
realization in photonic structures, enable a broad range of advanced quantum-inspired applications, such as
topological state-switching [ 10—13], asymmetric energy transfer [14—16], lasing [17] and antilasing [18], slow-
light optimization [19], exceptional refrigeration[20] enhanced nonreciprocity [21-23], and extremely precise
enhanced sensing [24—27]. Remarkable exploration of EPs has also been observed in quantum optics, paving the
way for applications in advanced quantum state engineering [28, 29], quantum state tomography [30], and
quantum heat engines [31].

EPs are a special class of branch points that exhibit unique system dynamics when encircled in the parameter
space [8]. Their centrality plays a crucial role [32] in determining various topological properties. Quasistatically
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varying coupling control parameters along a closed loop around an EP results in adiabatic permutations among
the corresponding coupled eigenvalues [33]. However, the system fails to meet such adiabatic expectations when
considering a dynamic effect (time-dependence or analogous length-dependence in photonic systems) in the
parametric encirclement process. In this case, regardless of the initial eigenstates, the system ultimately ends up
in different particular dominating eigenstates depending on the chirality, in the sense of direction of the EP-
encirclement process [34, 35]. Such an intriguing topological property, based on a dynamically encircled EP,
enables asymmetric mode conversion in guided-wave geometries, where, regardless of input, light is converted
into two distinct dominating modes, while propagating in opposite directions. In the context of second-order
EPs (EP2s), this phenomenon has been theoretically explored within waveguide [15, 16] and fiber geometries
[36] and experimentally validated in a microwave waveguide system [37]. Furthermore, recent reports have
questioned whether it is essential to encircle an EP2 within a parametric loop to achieve asymmetric light
dynamics [38, 39]. The findings suggest that similar asymmetric behavior, influenced by both adiabatic and
nonadiabatic effects, can also arise when the loop passes even close by the EP2 without fully enclosing it.

However, investigating complex light behaviors near higher-order EPs is often challenging due to the
requirement of an intricate spatial complexity of the underlying photonic system, compounded by increased
parametrization [40—42]. The coalescence of n coupled states is predicted to require (n* 4 n — 2)/2 control
parameters [40]. As an example, five control parameters required to host and manipulate a a third order EP (EP3;
n = 3), which highlights the system’s inherent complexity. An alternative approach has been proposed [43, 44],
where the topological branch-point behavior of an EPn emerges from the combined influence of (n — 1) EP2s.
This method has been numerically demonstrated in waveguide [45] and microcavity [13] systems, offering the
advantage of reducing the required control parameters and simplifying both experimental and numerical
implementations. Recent studies on dynamically encircled higher-order EPs in various waveguide based
geometries highlight their great potential for controlling light behavior in multi-level photonic systems [45—48].
In this context, optical fiber geometries operating with higher-order EPs hold promise for transformative
advances in light guidance schemes, though a significant research gap remains, with only a few reports focusing
primarily on EP2s [36, 49].

In this paper, we investigate the topological properties arising from dynamically encircled EP3 formed by
two interconnected EP2s within a specially designed three-core optical fiber segment supporting three quasi-
guided modes. Non-Hermiticity is attained through a tailored gain-loss profile that is simply modulated across a
2D parameter space, avoiding any need for complex parametrization. We examine the topological behaviors
associated with both second- and third-order branch points by exploring various parametric loops in the 2D
gain-loss plane, specifically focusing on mode-flipping dynamics. Our primary focus is on the dynamics of light,
driven by the asymmetric transfer of modes, while considering the dynamical parametric variations along
different loops relative to the locations of the EPs. We particularly emphasize the chiral aspects of the underlying
dynamics. Additionally, we highlight a particular case of a dynamical encirclement scheme confined within the
interaction regime of embedded higher-order EP, without encircling any of the connected EP2s. The proposed
fiber-based dynamical higher-order EP encirclement scheme holds promise for realizing higher-order mode
converters with precise mode selectivity, facilitating multi-modal operation in all-fiber networks for advanced
communication technologies.

2. Results and discussions

2.1. Designing the fiber structure

We design a specialty step-index optical fiber segment consisting of three equally-sized cores surrounded by a
cladding. Figure 1(a) shows a schematic illustration of the designed fiber, where the xy-plane represents the
transverse cross-section, and the z-axis defines the direction of propagation. The refractive indices for the cores
(n¢o) and cladding (n), with n1., > 1, are chosen as #1., = 1.46 and n = 1.45 to facilitate easier fabrication using
silica-based materials. The operating wavelength () is also fixed at 1.55 pm to ensure compatibility with current
communication technologies. Given the chosen n-values and A, we optimize the other geometrical parameters,
i.e., do, =5 pm (core-diameter) and s = 6.7 pm (center-to-center separation between the cores), to enable the
overall fiber geometry to support three quasi-guided modes: the fundamental mode (Vy), the first higher-order
mode (¥), and the second higher-order mode (¥,). It may be noted that each individual core can still function
as a single-mode fiber under these operating conditions. Along the z-axis, the length of the fiber segment is set to
L=35mm.

The designed fiber segment becomes non-Hermitian upon introducing a customized gain-loss profile,
where spatially distributed gain is applied to the leftmost core and loss to the rightmost core, while the middle
core and cladding remain passive (without any gain-loss). This gain-loss profile is parameterized by two
independent tunable (only along z-axis) parameters: the gain-loss coefficient (y) and the loss-to-gain ratio (7).
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Figure 1. (a) Schematic structural geometry of the proposed fiber segment with three equally sized core (xy — transverse plane;

z— propagation axis). (b) Chosen refractive index profile with the distributions of (upper panel) Re(n) and (lower panel) Im(n) for a
specificy=1.2 x 10> and 7= 1. (c) Beam dynamics of the three supported modes in xz-plane (at y = 0) under passive operating
conditions (i.e., when v = 0). Modal field intensities (normalized) are plotted according to the color bar.

Thus, the complex refractive indices of the two outer cores (denoted as n; for the left core and ny, for the right
core) can be expressed as

Ny = Neo — 1'7/7— and IR = Mo + 17) (D

while the rest of the fiber remains passive throughout the operation. The overall complex refractive index profile,
n(x, y), is illustrated in figure 1(b), where the upper and lower panels show the real and imaginary parts of n(x, y),
respectively, for a specific case with 7= 1.2 x 10~ and 7= 1 (referred to a balanced gain-loss condition). The
introduction gain-loss induces mutual coupling between the quasiguided modes. Such a coupling phenomenon
can theoretically be understood by analyzing a three-level perturbed Hamiltonian [50] with an appropriate
choice of perturbation elements as detailed in the Appendix A.

A similar scalable prototype can practically be realized using silica-based materials based on well-established
fiber fabrication techniques, such as the stack-and-draw method for multi-core fibers. Selective doping with
active materials like Erbium or Ytterbium, combined with controlled optical pumping, enables precise gain
modulation. Specifically, the gain profile can be fine-tuned by adjusting the doping concentration and pump
intensity [51]. The loss profiles can be tailored by varying the doping concentrations of absorbing materials. In
this regard, ion-beam implantation allows precise tuning of loss by modifying core properties through calibrated
ion acceleration [52]. This method involves bombarding the optical fiber with accelerated ions, which penetrate
the cladding and reach the core to modify its properties. These proven techniques confirm the feasibility of our
design with existing fabrication methods.

In this study, we design the fiber using RSoft” simulation software. To explore the characteristics of EPs, we
analyze the modal properties. Here, the three quasi-guided modes W; (j =0, 1, 2) can be regarded as eigenstates
of the underlying Hamiltonian, as they satisfy the wave equation with the effective modal indices (#1.¢) serving as
the eigenvalues. Three modes can be distinguished from there corresponding n.g-values, given that
1ei(Wo) > 1ei(¥1) > (V). However, unlike strictly guided modes, they exhibit complex eigenvalues due to
their leaky nature. The real part represents their energies, while the imaginary part accounts for decay rates,
making the system inherently non-Hermitian. When radiative losses are small, quasi-guided modes behave
similarly to guided modes. ¥, has a symmetric field distribution, which is the most confined mode as can be
understood from the corresponding highest #.¢-value. ¥ exhibits an anti-symmetric field distribution. ¥,
displays a more complex field pattern, which can be considered as the first-order symmetric mode. The coupling
between the adjacent cores in a multi-core fiber leads to hybridization of modes. We apply the finite element
method (FEM) to examine transverse modal characteristics, while the beam propagation method (BPM) is used
to investigate the modal propagation dynamics. In figure 1(c), we present the beam dynamics of the three
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Figure 2. Trajectories of the complex #.¢-values associated with Wy, ¥, and U, (represented by blue, red, and green lines, respectively)
as yincreases for two different 7-values. Solid lines indicate the corresponding real part, Re(r), plotted along the left vertical axis,
while dotted lines represent the imaginary part, Im(r.g), plotted along the right vertical axis. (a) For 7= 1: a simultaneous coalescence
of Re(n1¢) and bifurcation of Im(n.¢) associated with Uy and U, occursat y=1.1 x 10>, indicating the emergence of EP2®Y in the
(7, T)-plane. (b) For 7= 2.008: a simultaneous coalescence of Re(#.¢) and bifurcation of Im(r.) associated with ¥, and ¥, occurs at
4=3.6 x 10>, marking the emergence of EP2> in the (, 7)-plane.

supported modes under passive operating conditions (i.e., when v = 0) in xz-plane (at y = 0). It provides a
dynamic visualization of how the modes propagate through the fiber.

2.2. Encountering the multiple EPs and their topological properties

In the designed fiber structure, we study the interactions among W; (j = 0, 1, 2) by tracking the trajectories of the
associated ng-values, while varying the gain-loss profile based on the chosen coupling control parameters yand
7. We investigate the avoided-crossing-type interactions among the three modes by varying v within the range
[0, 6 x 10~°] for different 7-values. Through this analysis, we identify two specific cases where the three modes
approach two interconnected EP2s, as illustrated in figures 2(a) and (b). The n.gvalues associated with

U; (j=0, 1,2)are color-coded in blue, red, and green, with solid lines representing Re(#1.¢) and dotted lines
representing Im(#.¢) (corresponding to the left and right vertical axes, respectively).

Figure 2(a) shows the trajectories of n.grvalues as yincreases for a fixed 7= 1. Around y=1.1 x 102, we
observe a simultaneous coalescence in Re(#.¢) and a bifurcation in Im(#.g) for the modes Wyand ¥;. Such a
specific type of eigenvalue interactions refers to the presence of an EP2. Thus, we identify an EP2 between ¥, and
U, [labeled as EP2* V] at (1.1 x 1072, 1) in the (7, 7)-plane. In this case, the n.g-value associated with ¥; moves
away from the strong interaction region induced by EP2>", Similarly, for a chosen 7 = 2.008, we observe
another coalescence in Re(#1¢) and bifurcation in Im(#.¢) between modes ¥, and ¥, near y= 3.6 x 10>, as
shown in figure 2(b). This signifies the emergence of another EP2 between ¥, and U, [labeled as EP2?] at
(3.6 x 1072,2.008) in the (7, 7)-plane. Here, the 71 value associated with ¥'; moves away from the strong
interaction region induced by EP2%?,

Therefore, we observe two distinct scenarios in our three-level system, where modes (hence, n.g-values)
from two different pairs coalesce at two EP2s, while the third mode remains unaffected, playing the role of an
observer. Here, strong modal interaction is necessary to achieve such a condition, where the coupling between
modes is sufficiently high to drive the system into multiple EP2s. These two embedded EP2s are interconnected
through ¥, under the chosen setup. Such an interaction scheme indicates the emergence of an EP3 [43] within
the chosen parametric regime, with its topological properties accessible through the two interconnected EP2s. It
is important to note that the strong coupling effectively suppresses unintended mode crosstalk, ensuring
stability of EP-induced topological phenomena.

Now, we consider different parametric loops in the (v, 7)-plane to study the topological effects induced by
the parametrically encircled EPs. By allowing yand 7to vary according to

~v(0) = o sin(f/2) and 7(0) = 15 + rsin(8), )

we analyze different encirclement schemes in the (-, 7)-plane. Here, a sufficiently slow angular variation of ¢
over the interval [0, 27] enables a stroboscopic parametric variation, where the system undergoes an
encirclement along a predefined loop with a high sampling rate. The parameters o, 7, and r (preferably, r < 1)
determine the number of EP2s that can be enclosed within the loop. For a given EP to be properly enclosed
within aloop, 7, must exceed the y-value associated with that EP.

Figure 3(a) displays the coordinates of EP2>" and EP2*%, along with three distinct encirclement schemes
based on equation (2) within the (v, 7)-plane. The topological properties of second-order branch points can be
examined by encircling each EP2 individually. However, the emergence of an EP3, with its characteristic third-
order branch point behavior, becomes evident when a parametric loop encloses both EP2s simultaneously.
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Figure 3. (a) Three chosen parametric loops in the (7, 7)-plane to investigate the topological properties of second- and third-order
branch points. Two red dots indicate the coordinates of two interconnected EP2s. The red circular arrow represent the direction of
encirclement along each of the loops. (b-d) Trajectories of neg-values associated with Wy, Uy, and W, (represented by blue, red, and
green lines, respectively), while considering a clockwise (CW) quasistatic variations of yand 7 (b) along Loop-1, exhibiting the second
order branch point behavior of EP2Y with permutations ne(Wo) — n1ee(¥1) — ne(Wo) and neg(W2) — ne(W5); (c) along Loop-2,
exhibiting the second order branch point behavior of EP2%? with permutations #eg(W) — nei(Ws) — ne(¥o) and

1ei( V1) — neg(¥1); (d) along Loop-3, exhibiting the third order branch point behavior of an analogous EP3 formed by the
interconnected EP2*" and EP2®? with permutations r1eg(Wo) — 11eg(¥5) — 11e(¥1) — 11e(¥o). In (b)-(d), the circular markers of
respective colors represent the starting positions of #1.g-values, where the arrows of respective colors show their directions of
evolution. Here, each point of progression along the trajectory of the n.g-value for each mode is precisely synchronized with a
corresponding point of progression on a distinct loop in the (v, 7)-plane.

Accordingly, we define three specific encirclement schemes as follows: Loop-1 (blue loop), with parameters
Yo=1.2 x 10>, 7y = 1,and r = 0.4, encloses only EP2>"; Loop-2 (green loop), defined by 7, = 4.2 x 102,

7o = 2.008, and r = 0.2, encircles only EP2>?; and Loop-3 (black loop), characterized by y, = 4.2 x 10,
To=1.4,and r=0.9, encloses both the EP2s together. These parametric loops physically represent different
gain-loss distributions. Specifically, Loop-1 and Loop-2 are considered to examine the individual topological
characteristics of EP2" and EP2>?), respectively, whereas Loop-3 is designed to examine the topological
characteristics of an EP3, emerging from interconnected EP2Y and EP2%?, Later, we consider two more loops
to illustrate how the interplay between gain-loss and EPs influences the system’s behavior.

The consequences of the quasistatic encirclement scheme along the selected loops and the underlying
topological behaviors are analyzed by tracing the corresponding trajectories of the n.g-values associated with
W; (j=0, 1,2),as depicted in figures 3(b)—(d). The trajectories are represented by dotted blue, red, and green
curves, respectively, where three circular markers of the same colors indicates their starting points [i.e., when
6 = 01in equation (2)]. Each point along these trajectories in the complex n.g-plane (where s plotted along an
additional axis) corresponds to a unique point on a particular loop in the (7, 7)-plane. Here, we preserve the
quasistatic nature of the encirclement process by varying yand T at a sufficiently slow rate. For practical
implementation, the quasi-static behavior can be maintained by optimizing the number of fiber cross-sections
to distribute the gain-loss profile along the propagation length.

While considering a complete 27 rotation in the clockwise (CW) direction along Loop-1 [allowing a
quasistatic gain-loss variation around only EP2>", while keeping EP2> outside], we can observe an adiabatic
swapping between the n.¢-values associated with the modes connected through EP2OY e, W, and ¥y, [like,
et (Wo) — Meg( V1) — nee(Wo); signifying two simultaneous adiabatic switching processes 1eg(Vg) — 1ee(¥,) and
1ef(V1) — neg(Vo)] in figure 3(b). Meanwhile, the n.g-value associated with ¥, remains unchanged
[1(V5) — n.g(V,); as also evident in figure 3(b)], indicating it is unaffected by the structured gain-loss
modulation along Loop-1. In a similar fashion, a complete 271 CW rotation along Loop-2 [allowing a quasistatic
gain-loss variation around only EP2®?, while keeping EP2>"" outside] results in an adiabatic swapping between
the n.g-values of Uy and W5, leaving the #.g-value of W; unchanged [like, #1.(Vo) — #1g(¥V2) — 1eel(Po)s
1ei(W1) — ne(¥1)], as shown in figure 3(c). Such intriguing interactions among the #.g-values of three coupled




10P Publishing

Phys. Scr. 100 (2025) 045529 ARoyetal

modes, as observed in figures 3(b) and (c), which display distinct adiabatic permutations associated with the
pairs { Wy, ¥, } and { ¥y, U, }, reveal the individual second-order branch-point topology of EP2®V and EP2?.
Notably, with a counter-clockwise (CCW) parametric variation along both Loop-1 and Loop-2, similar #.¢
trajectories are observed, differing only in that the two swapping modes exchange their paths.

Now, we consider a quasistatic variation of yand 7along Loop-3, which simultaneously encloses both
EP2®Y and EP2>?, Such a patterned perturbation results in a successive and adiabatic permutation among the
neg-values of all the coupled modes. Figure 3(d) shows the results for a CW encirclement process along Loop-3,
where we can observe the permutation pattern n,{(Vy) — (V) — #6(V1) — n1(Wo) [signifying three
simultaneous adiabatic switching processes 11g(Wg) — #ei(V), Meg(V2) — #eg(V1) and ne (V) — neg(Wo)].
However, we can observe a different pattern like n1.((Wg) — #1e(U1) — 1eg(V2) — 11e6(¥o) upon considering the
CCW encirclement process along Loop-3. Such characteristic features of n g trajectories vividly illustrates the
topology of a third-order branch point and demonstrates the emergence of an EP3 in the presence of
interconnected EP2s within the same 2D (v, 7)-plane.

2.3. Effect of dynamical parametric variation: consideration of nonadiabatic terms

Now, we study the propagation characteristics of the quasiguided modes W; (j =0, 1, 2), while considering
dynamic variation of the control parameters yand 7. To achieve this, we tailor the spatial gain-loss distribution
[i.e., essentially the Im(#) profile] defined by equation (2) along the fiber length (i.e., along z-axis). Accordingly,
we substitute § = 27z/L in equation (2) to map 6 = {0, 27} to z= {0, L}. This substitution leads to the dynamic
parameter distribution:

Y%, ¥, 2) = Yo sin(%) and 7(x, ¥, 2) =1+ rsin(iﬂ). 3)

Here, yand 7vary solely along the z-axis; they remain fixed across any cross-section in the xy-plane of the fiber.
Equation (3) implies that one complete pass of light through the fiber (z: 0 — L) corresponds to a full cycle in the
parametric loop (6: 0 — 2m). Here CW parametric variation (6: 0 — 27) can be realized by considering the light
propagation in the forward direction with input at z= 0 and output at z = L. Conversely, a CCW parametric
variation (0: 2 — 0) can be achieved by reversing the propagation direction (i.e., along the backward direction)
with inputatz= L and output at z= 0. Notably, the chosen shape of a parametric loop given by equation (2) and
its mapping followed by equation (3) allow to consider -y = 0 at both the beginning (§ = 0) and the end § = 27 of
the encirclement process. This guarantees the excitation and retrieval of passive modes atbothz=0and z= L.
This would not be as straightforward for other parametric loop shapes.

To analyze EP-induced light dynamics with adiabatically expected mode conversions, we must account for
implications of the adiabatic theorem, which introduces certain nonadiabatic correction terms These terms play
a crucial role when considering dynamic parametric variations. Based on the time-dependent Schrédinger
equation associated with a Hamiltonian (in the quantum formalism) [34], we can express an optical counterpart
for the key proportional factors associated with nonadiabatic corrections (a detailed description is included in
Appendix B) in the proposed fiber structure as

Npon ¢ —exp [fL AL, (7, T)dz] (4a)
0

Nym < +exp [fL ATy (7, T)dz] (4b)
0

In equation (4), the indices {1, n} signify the all possible transitions among ¥; (j=0, 1, 2) [i.e.,

{m,n} € j; m=mn], where m — nand n — min equations (B.6) and (B.7) correspond to the transitions ¥,, — W,
and ¥, — U, respectively (as expected adiabatically).

In equation (4), the factor AT',,, ,, known as the relative gain, plays the key role in adiabatic breakdown in the
EP-based light dynamics. The relative gain AT',,, ,, is defined as the relative difference between the average loss
(I,v) experienced by each mode. To estimate I',, for a mode, we can consider the corresponding adiabatic
trajectory of Im(r.g) during a given encirclement scheme, where I}, = (27)"! yg Im(nes) df (it approximates
the mode’s accumulated loss over one cycle). Depending on the adiabatic evolution of #.¢-values for a given
encirclement scheme, two distinct cases arise: either AT',,, ,, > 0 or AT',,, , < 0. These relations determine
whether nonadiabatic corrections terms () either dominate or support the anticipated adiabatic dynamics,
influenced by the corresponding amplifying or decaying exponential terms in equation (4). For instance, when
AT, >0, N,,_., converges due to a decaying exponential term, while V,, _,,,, diverges due to an amplifying
exponential term. This results in the validation of the adiabaticity for the transition ¥,,, — U,,, whereas violation
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Figure 4. (a) Loop-1 (blue loop) and Loop-4 (violet loop), enclosing only EP2" (red dot), along with (b) corresponding mapped
length-dependent distributions of gain (dotted lines of respective colors) and loss (solid lines of respective colors) in the leftmost and
rightmost cores. Beam propagation simulation results in xz-plane (at y = 0), while dynamically varying the control parameters

(c) along Loop-1 in (upper panel) the CW direction (z: 0 — L), resulting in asymmetric conversions { Wo, ¥, } — ¥; and ¥, — W, and
in (lower panel) the CCW direction (z: L — 0), resulting in asymmetric conversions { ¥y, ¥ } — ¥y and ¥, — U,; (d) along Loop-4 in
(upper panel) the CW direction (z: 0 — L), resulting in asymmetric conversions { Wy, ¥;, ¥, } — ¥y, and in (lower panel) the CCW
direction (z: L — 0), resulting in asymmetric conversions { ¥y, U}, ¥, } — W,. We re-normalize the field intensities (plotted according
to the given color bar for all the beam propagation results) at each z during propagation to accurately illustrate the evolution of

the modes.

of the adiabaticity for the transition ¥,, — W,,.. Consequently, ¥, evolves adiabatically, whereas ¥,, undergoes a
nonadiabatic transition. On the other hand, for AT',, ,, < 0, we can similarly estimate the nonadiabatic
correction terms from equation (4), where we obtain an exactly opposite scenario: ¥,, evolves adiabatically, while
P, follows a nonadiabatic transition.

In the following sections, we validate our prior analysis of EP-induced light dynamics by examining mode
propagation characteristics obtained using the Beam Propagation Method (BPM) in RSoft” simulation software.
Specifically, we explore the distinctive features of both chiral and non-chiral light dynamics for various
dynamical encirclement schemes.

2.4. Characteristics of chiral light dynamics

Figure 4 presents the beam propagation simulation results under a dynamical encirclement scheme only around
EP2Y, where EP2®% remains away from the encirclement regime. Initially, we examine the beam dynamics
for Loop-1 (blue loop), as depicted in figure 4(a). In figure 4(b), the solid and dotted blue lines represent the
length-dependent variations in loss and gain [after mapping Loop-1 via equation (3)] in the rightmost and
leftmost cores, respectively. For this setup, when a CW dynamical encirclement scheme is considered by exciting
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the modes from z= 0, both modes ¥y and ¥, [connected through EP2V] are converted into ¥, atz= L. Here,
the nonadiabatic correction terms appear with AI'g ; > 0, indicating that ¥, undergoes an adiabatic transition,
while U, experiences a nonadiabatic transition. Meanwhile, ¥, remains unaffected by the dynamical parametric
variation along Loop-1, retaining in ¥, at z= L. Such asymmetric conversion of modes [{ Wy, V; } — ¥; and

W, — WU,] are shown in the upper panel of figure 4(c). Conversely, under a CCW dynamical encirclement scheme
by exciting the modes from z= L, ¥y and ¥, are converted into ¥, at z= 0. Here, the nonadiabatic correction
terms appear with AI'g ; < 0. Hence, ¥y and ¥; undergo nonadiabatic and adiabatic transitions, respectively,
while ¥, remains unchanged, leading to the asymmetric mode conversions { Wy, ¥, } — ¥yand ¥, — ¥,, as
shown in the lower panel of figure 4(c).

It is noteworthy that the gain-loss accumulated over Loop-1 is insufficient to impact the nonadiabatic
correction terms associated with W,, leaving it unaffected in both propagation directions, as shown in figure 4(c).
However, ¥, would no longer remain unaffected, if we consider a comparatively larger loop that still encircles
only EP2>", We examine such a scenario by considering a new loop (say, Loop-4, defined by parameters
Yo =2.5x 107>, 79=1,and r = 0.4), as illustrated by the violet loop in figure 4(a). The solid and dotted violet
lines in figure 4(b) show the corresponding mapped loss and gain distribution, respectively, in the fiber
structure. By comparing the gain-loss profiles induced by Loop-1 and Loop-4, we observe that the accumulated
gain-loss in Loop-4 is considerably higher. This increased accumulation of gain-loss brings ¥, into
consideration for interaction induced by EP2®", due to the involvement of associated nonadiabatic correction
factors ATy, and A"y ,. The corresponding beam propagation results are shown in figure 4(d). In the upper
panel, the effective nonadiabatic corrections based on AI'; ; < 0and AI'g; > 0 during a CW parametric
variation along Loop-4 lead all three modes ¥}, (j =0, 1, 2) to convert into Wy, resulting in { ¥y, ¥;, ¥,} — ¥;.In
contrast, the CCW parametric variation along Loop-4 introduces effective nonadiabatic corrections based on
ATy, <0and ATy ; < 0, resulting in the asymmetric conversion { Vg, ¥y, ¥, } — W, as illustrated in the lower
panel of figure 4(d).

Therefore, while considering the dynamical parameter space defined by Loop-1, light dynamics is partially
driven by the device’s chirality. Specifically, the transitions of Uy and ¥, yield direction-dependent outputs,
regardless of the input, while ¥; remains unaffected in both propagation directions [as illustrated in figure 4(c)].
In contrast, with the parametric variation along Loop-4, fully chirality-driven asymmetric light dynamics is
observed, where regardless of the initial mode, light is converted into different dominant modes depending on
the propagation direction. Thus, for multimode structures, the overall chiral dynamics depends not only on
whether the relevant EP2 is enclosed within the parametric loop but also on the total accumulated gain-loss
influencing interactions across all the supported modes.

2.5. Characteristics of nonchiral light dynamics

In figure 5, we analyze another three scenarios based on three distinct parametric loops, where for each of the
cases a breakdown of the chiral behavior is revealed. Two of these scenarios involve previously considered
configurations: Loop-2, which encloses only EP2>?, and Loop-3, which encircles an analogous EP3 along with
its connected EP2>" and EP2>®. The third case introduces a new parametric loop, say Loop-5 (defined by
parameters o, = 4.2 X 10>, 7o = 1.4, and r = 0.2), which passes close to both EP2s. This loop physically defines
aparticular gain-loss distribution spanning across the regions of two interconnected EP2s, however without
encircling them directly. Figure 5(a) illustrates these three loops, whereas their corresponding mapped
parameter spaces, characterizing the length-dependent loss and gain distributions in the rightmost and leftmost
cores, are presented in figure 5(b). Notably, under the specified characteristic parameters o, 7, 7 for the
proposed setup [primarily defined by equations (1) and (3)], the loss distribution in the rightmost core remains
identical across all three loops, as shown by the solid black line. The dotted lines of corresponding colors indicate
the gain distributions in the leftmost core for each of the loops. As a result, the gain-loss contrasts vary among
these three loops.

We begin by considering dynamical encirclement along Loop-2, where the nonadiabatic correction factors
exhibit unusual behavior. Although Loop-2 encloses only EP2%? (associated with modes ¥, and ¥,) the
accumulated gain-loss over Loop-2 also takes U} into account for interactions, necessitating the inclusion of
nonadiabatic correction factors associated with all three modes to accurately capture the actual dynamics of
light. Here, for a CW dynamical encirclement scheme (with input at z= 0 and output at z= L), we obtain
ATy, >0,Al; <0and AT'; , < 0. Now, ATy ; < 0 essentially allows the mode conversions { Wy, U; } — ¥,
Additionally, owing to Al , > 0 both Wy and ¥, are expected to convert into W,, however, due to an additional
combined effect of AI'; , < 0 and AT’y ; < 0 both ¥yand ¥, ultimately end up at ¥,. Thus, we observe the overall
mode conversions { Wy, U1, ¥, } — ¥, during propagation from z =0 to z= L, as exactly demonstrated by the
beam propagation simulation results in the upper panel of figure 5(c). For a CCW dynamical encirclement
scheme (with input at z= L and output at z= 0), the nonadiabatic correction factors based on AI'y , < 0 and
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Figure 5. (a) Loop-2 (green loop), Loop-3 (black loop), and Loop-5 (red loop) in the proximity of EP2>" and EP2? (two red dots).
(b) Corresponding mapped length-dependent distributions of gain (dotted lines of respective colors) and loss (solid black line, as the
loss distribution is same for all the three mentioned loops) in the leftmost and rightmost cores. (c) Beam propagation simulation
results in xz-plane (at y = 0), while dynamically varying the control parameters along Loop-2 in (upper panel) the CW direction

(z:0 — L) and (lower panel) the CCW direction (z: L — 0), resulting in nonchiral conversions { Wy, ¥, ¥, } — ¥, (for both the
directions). Note that, we observe similar beam propagation dynamics for Loop-2, Loop-3, and Loop-5; therefore, results are
presented for only one case. We re-normalize the field intensities (plotted according to the given color bar for all the beam propagation
results) at each z during propagation to accurately illustrate the evolution of the modes.

AT’y ; < 0 enable similar mode conversions. The resulting transitions mirror the CW case, leading to

{Wo, Uy, U, } — Wy, as shown in the lower panel of figure 5(c). Therefore, the overall light dynamics along Loop-2
is nonchiral, where, irrespective of both inputs and direction of propagation, light is converted into a particular
dominant mode. Comparing with adiabatic expectations [as shown in figure 3(c)], we observe that only ¥,
follows an adiabatic transition, whereas ¥, and ¥; undergo nonadiabatic transitions in both directions.

Now, we study the effect of dynamical encirclement around an analogous EP3 formed with two
interconnected EP2s. Loop-3 allows us to consider such a situation by encircling both EP2>" and EP2>?,
simultaneously. Here, for a CW dynamical encirclement scheme (with input at z=0 and output atz= L), we
obtain Al'g ; <0, AT'g, < 0,and AT'; , < 0. Now, the first two relations are sufficient to understand the overall
light dynamics. These two relations enable the asymmetric conversion of ¥; and ¥, into Wy, Additionally, both
relations validate the retention of ¥, into W, Interestingly, the combination of the first and third relations also
supports the same output. While the third relation suggests that both ¥, and ¥, are expected to convert into ¥,
they ultimately end up at ¥, due to the influence of the first relation. Hence, during the propagation from z=10
toz= L, light is finally converted into the dominant ¥y, with the conversions { Wy, U;, U, } — Wy, as similar to the
beam propagation results shown in the upper panel of figure 5(c). On the other hand, for a CCW dynamical
encirclement scheme (with input at z= L and output at z = 0), the nonadiabatic correction factors read the
relations ALy ; <0, AT'g, < 0,and AT} , > 0. Here, the first two relations are similar to the CW case, whereas
the third one is opposite to the CW case. Consequently, based on the associated nonadiabatic correction factors,
all three modes are converted into ¥, while propagating from z= L to z= 0, as shown in the beam propagation
results in the lower panel of figure 5(c). Therefore, the overall light dynamics along Loop-3, i.e., around an EP3,
is also nonchiral. Comparing with adiabatic expectations [as shown in figure 3(d)], we observe that only ¥,
follows an adiabatic transition in the forward direction, whereas ¥, follows an adiabatic transition in the
backward direction. The rest of the transitions are nonadiabatic.

Furthermore, we investigate the light dynamics under the dynamical variations of yand 7 along Loop-5. This
loop traverses the interaction regimes of both EP2>? and EP2®?, passing close to these points without
enclosing either. This configuration is selected to test the recent claim of asymmetric light dynamics occurring
without enclosing EP2s [38, 39], particularly to verify if this behavior extends to higher-order EPs. Based on the
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Figure 6. (a) Loop-5 with up to 25% random fluctuations (b) Corresponding mapped length-dependent distributions of gain
(dotted lines of respective colors) and loss (solid black line, as the loss distribution is same for all the three mentioned loops) in the
leftmost and rightmost cores. (c) Robust beam propagation simulation results [in xz-plane (at y = 0)] with nonchiral conversions
{Wo, U3, U, } — U, for both the (upper panel) CW and (lower panel) CCW dynamical encirclement schemes along Loop-5 with
fluctuations. The impact of parametric tolerances are also evident in the beam propagation results. We re-normalize the field
intensities (plotted according to the given color bar for all the beam propagation results) at each z during propagation to accurately
illustrate the evolution of the modes.

characteristics of the associated n.g-values, it is expected that all modes will remain in their original states
without any asymmetric conversion. However, it is crucial to examine whether associated nonadiabatic factors
could introduce unexpected behavior in the light dynamics. For Loop-5, we observe relationships between the
relative gain factors similar to those found for Loop-3. Specifically, for a CW variation, we have AI'g ; <0,
ATy, <0,and AT} , < 0, while for a CCW variation, the relationships are AT’y ; <0, AT'y, < 0,and AT'; , > 0.
The influence of associated nonadiabatic correction factors enables the nonchiral conversions

{Wo, U, U, } — Wy, irrespective of the input modes and propagation directions, consistent with the beam
propagation results illustrated in figure 5(c). Therefore, the light dynamics retains its nonchiral behavior for
Loop-5, similar to the case of Loop-3; however, in this scenario, all transitions are classified as nonadiabatic.

To account for potential parametric tolerances during fabrication, we introduce controlled random
fluctuations in the selected loops and evaluate their impact on the robustness of the anticipated asymmetric
mode conversion schemes. We present results specifically for Loop-5 in figure 6, as it represents a unique case
where third-order branch point behavior is observed, with the trajectory passing very close to interconnected
EP2s without enclosing them. Figure 6(a) illustrates Loop-5 with up to 25% random fluctuations in the
(7, 7)-plane. The corresponding mapped parameter space, depicting the length-dependent gain and loss
distributions in the rightmost and leftmost cores, is shown in figure 5(b). Despite these fluctuations, the beam
propagation dynamics remain consistent, as evident in figure 5(c). Notably, the system continues to exhibit
nonchiral conversions { ¥, ¥;, ¥, } — ¥, independent of the input modes and propagation direction. This
behavior aligns with the results obtained for Loop-5 without parametric fluctuations, demonstrating the
robustness of the proposed scheme. Similarly, we can confidently affirm that the system dynamics would remain
robust for the other loops as well. This study further supports the feasibility and practical implementation of our
proposed design.

The key question now is how long the characteristics of asymmetric mode conversion induced by a
dynamically encircled EP3 remain evident when any of the connected EP2s are not enclosed. To investigate this,
we gradually reduce the size of Loop-3 by decreasing the parameter r (starting from r = 0.9) in equation (2),
while keeping the other parameters, v, and 7o, fixed. We then examine the behavior of relative gain factors and
associated beam propagation results to determine if they remain consistent with the original Loop-3 case.
Loop-5 represents the optimized parameter space with r = 0.2 until which the nonadiabatic correction factors
behave similarly to those in Loop-3. Below this threshold (for the proposed fiber structure), asymmetric
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conversions are no longer observed, and all modes remain in their original states while transitioning. It is
important to note that loops with similar characteristics can also be defined by varying -y, or 7 (instead of only
varying r). In general, our observations suggest that as long as the nonadiabatic correction factors retain
properties analogous to those observed during dynamical encirclement enclosing connected EP2s (i.e., an
analogous EP3), the phenomenon of asymmetric mode conversion persists, even without enclosing an EP3 or
the two connected EP2s.

Although similar nonchiral light dynamics are observed for Loop-2, Loop-3, and Loop-5, Loop-5
accumulates a significantly lower amount of gain with reduced gain-loss contrast. Also, the dynamics followed
by Loop-5 exhibit greater robustness, allowing for larger fluctuations, compared to other loops. We observe this
aspect while examining the impact parametric tolerances for all the selected loops, confirming the robustness of
EP-induced anticipated light dynamics. This observation suggests that it is possible to design a parametric loop
as small as feasible, minimizing both the accumulated gain and the gain-loss contrast, while still achieving
equivalent light dynamics. This highlights the advantage of Loop-5 over other loops, offering enhanced
fabrication feasibility and making it more practical for implementation.

3. Conclusion

This study explores the advanced light manipulation capabilities enabled by higher-order EPs in a non-
Hermitian photonic system with circular geometry. Focusing on a custom-engineered triple-core optical fiber,
we investigate the topological and dynamic properties of an EP3 formed by two interconnected EP2s. We
consider different parametric loops through tailored gain-loss modulation in a 2D parameter space to reveal
various chiral and nonchiral aspects of light dynamics assisted with asymmetric mode conversions. We observe
that the chiral or nonchiral aspects depend not only on whether the relevant EP2 is enclosed within the
parametric loop but also on the total accumulated gain-loss influencing interactions across all supported modes
and, thereby, the influence of associated nonadiabatic corrections. Notably, this research demonstrates that the
effects induced by higher-order EPs extend beyond direct encirclement, persisting in regions near but not
enclosing the connected EP2s, thereby facilitating efficient and compact designs for practical applications.
Opverall, the results showcase a simplified approach to leverage non-Hermiticity for hosting the topological and
dynamic properties of higher-order EPs without requiring complex parameterization, thereby demonstrating
precise control over light dynamics. Our findings pave the way for fiber-based higher-order mode converters
with improved mode selectivity and multi-modal functionality, addressing critical needs in all-fiber
communication networks and signal processing. Furthermore, the proposed concept offers significant potential
for experimental realization, with promising applications in developing all-fiber components such as isolators,
circulators, and ultra-sensitive optical fiber sensors.

Funding

A.L.and A.M. acknowledge the financial support from the Maestro Grant (No. DEC-2019/34/A/ST2,/00081)
of the Polish National Science Center (NCN).

Conflict of interest

The author declares no conflict of interest.

Data availability statement
The data cannot be made publicly available upon publication because they are not available in a format that is

sufficiently accessible or reusable by other researchers. The data that support the findings of this study are
available upon reasonable request from the authors.

Appendix A An analytical interpretation of the proposed coupling scheme

To elucidate the emergence of an EP3 linked with two interconnected EP2s in the proposed fiber geometry, we
employ an analytical framework based ona 3 x 3 non-Hermitian Hamiltonian H given by
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Koz 0 X

Here, the diagonal terms A; (j= 0, 1, 2) correspond to eigenvalues (analogous to r1g-values) of three supported
modes ¥; (j =0, 1,2) in the unperturbed fiber geometry. These are defined by their modal energies \j and decay
rates 6;. The off-diagonal terms k¢ and ¢, represent complex perturbations (analogically associated with the
gain-loss control parameters). Consistent with the proposed interaction scheme, we set two off-diagonal terms
to zero to consider strong interactions between the pairs { Wy, ¥; } and {¥,, ¥, }.

The eigenvalues of H, denoted as &j, (j = 0, 1, 2), are determined by solving the cubic characteristic
equation:

E+ &+ €+ us =0, (A2)
where the coefficients u;, u,, and u; are given by
m=—o+ N+ N), (A3)
y = Aod — Kg) + M+ (Ao — Koy, (A4)
us = —(No My — MEg, — MKy (A5)

Based on Cardano’s method [53], the eigenvalues of H can be expressed as

Eo=wEl +wE — 1, (A6)
E=&+E& -1, (A7)
=0 +wE — 1 (A8)
where
Er = (h £ Jh* + K®)/3 (A9)
with

Mlz Uy Us Mlz U 1251
h=- a2 B o 4B and =2 (A10)

27 6 6 9 3 3

Here, wrepresents the cube root of unity (w’ = 1) and @ is its complex conjugate.

Based on the perturbation parameters, we can independently control the interaction between the pairs
{&o» &1} and (&, &,} among the three coupled eigenvalues & (j = 0, 1, 2). Under specific perturbation
settings, distinct EP2s emerge when two eigenvalues coalesce. These conditions are defined as:

E =& and w& =E or WE =E. (A11)

The fulfillment of these equalities in equation (A11) ensures the vanishing of the square-root termin &, [asin
equation (A9)], resulting in a cube-root dependency of £... Consequently, the presence of cube-root terms in the
eigenvalues &; (j = 0, 1, 2) signifies the emergence of a third-order branch point, i.e., an EP3 linked with two
interconnected EP2s. It is crucial to note that when focusing on a single EP2, the analytical problem reducesto a
2 x 2 Hamiltonian, where the two corresponding eigenvalues contain square-root terms [54]. As aresult, the
system’s sensitivity to perturbations at an individual EP2 follows a square-root dependence. In contrast, when
dealing with a 3 x 3 Hamiltonian, the eigenvalues include cube-root terms, leading to a cube-root dependence
of sensitivity on perturbations, as seen in the case of an EP3.

Appendix B Nonadiabatic correction factors

Here, we provide a detailed explanation of the nonadiabatic correction factors arising during dynamical
parametric variation. From a quantum mechanical perspective, we consider that the underlying 3 x 3
Hamiltonian H depends on two time-dependent generic parameters, x(t) and x,(#). In the adiabatic limit, the
eigenfunctions of H are determined by the time-dependent Schrédinger equation (TDSE). To illustrate the
mathematics of nonadiabatic dynamics during transitions between two eigenstates, we focus on the transitions
between the states ¥, and W,,, which are associated with eigenvalues £,, and &,. Here, (i, n) € {0, 1,2} with

m == n for the selected three-level Hamiltonian. According to the standard adiabatic theorem, the dynamical
nonadiabatic correction terms that arise during the EP-induced transitions ¥,,, — ¥, and ¥,, — ¥, are
described as

Nmﬂn = Nmﬂnexp {_ifT Agﬁn{ﬁl(t)) Hz(f)}dt}a (Bl)
0
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T
Nnﬁm_Nﬁmexp{jLi f AEYS (i (t), Hz(t)}dt}, (B2)
0
with the pre-exponential terms
2
Ny = (Ul i), 20} | 3 Fe |l m20) ), (83)
j=1 Ok
.0
Noom = { Gl ma(0), 520} | D Kj— | Tulma(0), 52()} ), (B4)
=1 Ok

respectively, Here, Trepresents the EP-encirclement duration. The term A2, is related to the adiabatically
expected trajectories of £,, and &,, while varying the time-dependent parameters x1(¢) and x,(#). This can be
expressed as

AEY k() Ka(1)) = E3 (D), Ka(0)} — EX{R(0), Ka()}
= Re[AEY (k1(t), Ka(t)}] — iAT, (ki (1), Ko (D)) (B5)

Here, A~,, , represents the relative gain between two considered modes. Depending on whether A-y,, ,, > 0 or
A%, < 0, the exponential divergence of NV;,_.,, or N, _,,, with respect to T'beats the T~ suppression [due to
time derivative of the potential parameters, i.e., £;, as in equations (B3) and (B4)] associated with the
corresponding pre-exponential terms.

Therefore, after substituting equation (B5) in equations (B1) and (B2), we can realize the key proportional
factors of the nonadiabatic correction terms as

Nm—»n 68 —eXP [fT Arm,n{ﬁl(t)a K/Z(t)}dt:l (B6)
0

T
Ny 5 +exp [ [ ATuatmo, ﬁz(t)}dt] (B7)
0

Based on the analogy between the Schrédinger equation in quantum mechanics and the paraxial Helmholtz
equation in optics, we can express the optical counterpart of the nonadiabatic correction factors by using
equation (4). In this context, the time-dependent parametric variation in quantum mechanics is analogous to
the length-dependent parametric variation in optics (i.e., t = zand T'= L). In equation (4), we consider the gain-
loss control parameters yand 7 which are analogous to the generic parameters x; and k5.
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