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Abstract
The unique properties of exceptional point (EP) singularities, arising fromnon-Hermitian physics,
have unlocked newpossibilities formanipulating light–matter interactions. A tailored gain-loss
variation, while encircling higher-order EPs dynamically, can significantly enhance the control of the
topologicalflowof light inmulti-level photonic systems. In particular, the integration of dynamically
encircled higher-order EPswithinfiber geometries holds great promise for advancing specialty optical
fiber applications, though a research gap remains in exploring and realizing such configurations. Here,
we report a triple-core specialty optical fiber engineeredwith customized loss and gain to explore the
topological characteristics of a third-order EP (EP3), formed by two interconnected second-order EPs
(EP2s).We elucidate chiral and nonchiral light transmission through the fiber, based on second- and
third-order branch point behaviors and associated adiabatic and nonadiabaticmodal characteristics,
while considering various dynamical parametric loops to encircle the embedded EPs.We investigate
the persistence of EP-induced light dynamics specifically in the parametric regions immediately
adjacent to, though not encircling, the embedded EPs, thereby potentially leading to improved device
performance. Ourfindings offer significant implications for the design and implementation of novel
lightmanagement technologies in all-fiber photonics and communications.

1. Introduction

Over recent years, photonic systems have proven to be exceptional platforms for exploring non-Hermitian
quantummechanics (NHQM), primarily due to their intrinsic openness in the sense of ubiquitous loss and gain
[1–3]. In particular, one of the intriguing phenomena inNHQM is the emergence of exceptional points (EPs), a
special type of spectral singularities that appears within the parameter space of open systems. At an EP, coupled
eigenvalues and their corresponding eigenvectors coalesce simultaneously, creating a defect in the topology of
the eigenspace of the underlyingHamiltonian [4, 5]. Extensive theoretical and experimental research on
implementing EPs across various photonic systems has demonstrated their effectiveness as a powerful tool for
manipulating and detecting the energy states of light [6–9]. The unique properties of EPs, alongwith their
realization in photonic structures, enable a broad range of advanced quantum-inspired applications, such as
topological state-switching [10–13], asymmetric energy transfer [14–16], lasing [17] and antilasing [18], slow-
light optimization [19], exceptional refrigeration[20] enhanced nonreciprocity [21–23], and extremely precise
enhanced sensing [24–27]. Remarkable exploration of EPs has also been observed in quantumoptics, paving the
way for applications in advanced quantum state engineering [28, 29], quantum state tomography [30], and
quantumheat engines [31].

EPs are a special class of branch points that exhibit unique systemdynamics when encircled in the parameter
space [8]. Their centrality plays a crucial role [32] in determining various topological properties. Quasistatically
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varying coupling control parameters along a closed loop around anEP results in adiabatic permutations among
the corresponding coupled eigenvalues [33]. However, the system fails tomeet such adiabatic expectations when
considering a dynamic effect (time-dependence or analogous length-dependence in photonic systems) in the
parametric encirclement process. In this case, regardless of the initial eigenstates, the systemultimately ends up
in different particular dominating eigenstates depending on the chirality, in the sense of direction of the EP-
encirclement process [34, 35]. Such an intriguing topological property, based on a dynamically encircled EP,
enables asymmetricmode conversion in guided-wave geometries, where, regardless of input, light is converted
into two distinct dominatingmodes, while propagating in opposite directions. In the context of second-order
EPs (EP2s), this phenomenon has been theoretically exploredwithinwaveguide [15, 16] andfiber geometries
[36] and experimentally validated in amicrowavewaveguide system [37]. Furthermore, recent reports have
questionedwhether it is essential to encircle an EP2within a parametric loop to achieve asymmetric light
dynamics [38, 39]. Thefindings suggest that similar asymmetric behavior, influenced by both adiabatic and
nonadiabatic effects, can also arise when the loop passes even close by the EP2without fully enclosing it.

However, investigating complex light behaviors near higher-order EPs is often challenging due to the
requirement of an intricate spatial complexity of the underlying photonic system, compounded by increased
parametrization [40–42]. The coalescence of n coupled states is predicted to require (n2+ n− 2)/2 control
parameters [40]. As an example, five control parameters required to host andmanipulate a a third order EP (EP3;
n= 3), which highlights the system’s inherent complexity. An alternative approach has been proposed [43, 44],
where the topological branch-point behavior of an EPn emerges from the combined influence of (n− 1)EP2s.
Thismethod has been numerically demonstrated inwaveguide [45] andmicrocavity [13] systems, offering the
advantage of reducing the required control parameters and simplifying both experimental and numerical
implementations. Recent studies on dynamically encircled higher-order EPs in variouswaveguide based
geometries highlight their great potential for controlling light behavior inmulti-level photonic systems [45–48].
In this context, optical fiber geometries operatingwith higher-order EPs hold promise for transformative
advances in light guidance schemes, though a significant research gap remains, with only a few reports focusing
primarily on EP2s [36, 49].

In this paper, we investigate the topological properties arising fromdynamically encircled EP3 formed by
two interconnected EP2swithin a specially designed three-core optical fiber segment supporting three quasi-
guidedmodes. Non-Hermiticity is attained through a tailored gain-loss profile that is simplymodulated across a
2Dparameter space, avoiding any need for complex parametrization.We examine the topological behaviors
associatedwith both second- and third-order branch points by exploring various parametric loops in the 2D
gain-loss plane, specifically focusing onmode-flipping dynamics. Our primary focus is on the dynamics of light,
driven by the asymmetric transfer ofmodes, while considering the dynamical parametric variations along
different loops relative to the locations of the EPs.We particularly emphasize the chiral aspects of the underlying
dynamics. Additionally, we highlight a particular case of a dynamical encirclement scheme confinedwithin the
interaction regime of embedded higher-order EP, without encircling any of the connected EP2s. The proposed
fiber-based dynamical higher-order EP encirclement scheme holds promise for realizing higher-ordermode
converters with precisemode selectivity, facilitatingmulti-modal operation in all-fiber networks for advanced
communication technologies.

2. Results and discussions

2.1.Designing thefiber structure
Wedesign a specialty step-index opticalfiber segment consisting of three equally-sized cores surrounded by a
cladding. Figure 1(a) shows a schematic illustration of the designed fiber, where the xy-plane represents the
transverse cross-section, and the z-axis defines the direction of propagation. The refractive indices for the cores
(nco) and cladding (ncl), with nco> ncl, are chosen as nco= 1.46 and ncl= 1.45 to facilitate easier fabrication using
silica-basedmaterials. The operatingwavelength (λ) is alsofixed at 1.55μm to ensure compatibility with current
communication technologies. Given the chosen n-values andλ, we optimize the other geometrical parameters,
i.e., dco= 5 μm (core-diameter) and s= 6.7 μm (center-to-center separation between the cores), to enable the
overallfiber geometry to support three quasi-guidedmodes: the fundamentalmode (Ψ0), thefirst higher-order
mode (Ψ1), and the second higher-ordermode (Ψ2). Itmay be noted that each individual core can still function
as a single-mode fiber under these operating conditions. Along the z-axis, the length of thefiber segment is set to
L= 35mm.

The designed fiber segment becomes non-Hermitian upon introducing a customized gain-loss profile,
where spatially distributed gain is applied to the leftmost core and loss to the rightmost core, while themiddle
core and cladding remain passive (without any gain-loss). This gain-loss profile is parameterized by two
independent tunable (only along z-axis)parameters: the gain-loss coefficient (γ) and the loss-to-gain ratio (τ).
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Thus, the complex refractive indices of the two outer cores (denoted as nL for the left core and nR for the right
core) can be expressed as

( )/n n i n n iand , 1L co R cog t g= - = +

while the rest of thefiber remains passive throughout the operation. The overall complex refractive index profile,
n(x, y), is illustrated infigure 1(b), where the upper and lower panels show the real and imaginary parts of n(x, y),
respectively, for a specific case with γ= 1.2× 10−3 and τ= 1 (referred to a balanced gain-loss condition). The
introduction gain-loss inducesmutual coupling between the quasiguidedmodes. Such a coupling phenomenon
can theoretically be understood by analyzing a three-level perturbedHamiltonian [50]with an appropriate
choice of perturbation elements as detailed in the Appendix A.

A similar scalable prototype can practically be realized using silica-basedmaterials based onwell-established
fiber fabrication techniques, such as the stack-and-drawmethod formulti-core fibers. Selective dopingwith
activematerials like Erbiumor Ytterbium, combinedwith controlled optical pumping, enables precise gain
modulation. Specifically, the gain profile can befine-tuned by adjusting the doping concentration and pump
intensity [51]. The loss profiles can be tailored by varying the doping concentrations of absorbingmaterials. In
this regard, ion-beam implantation allows precise tuning of loss bymodifying core properties through calibrated
ion acceleration [52]. Thismethod involves bombarding the optical fiberwith accelerated ions, which penetrate
the cladding and reach the core tomodify its properties. These proven techniques confirm the feasibility of our
designwith existing fabricationmethods.

In this study, we design the fiber using RSoft® simulation software. To explore the characteristics of EPs, we
analyze themodal properties. Here, the three quasi-guidedmodesΨj ( j= 0, 1, 2) can be regarded as eigenstates
of the underlyingHamiltonian, as they satisfy thewave equationwith the effectivemodal indices (neff) serving as
the eigenvalues. Threemodes can be distinguished from there corresponding neff-values, given that
neff(Ψ0)> neff(Ψ1)> neff(Ψ2). However, unlike strictly guidedmodes, they exhibit complex eigenvalues due to
their leaky nature. The real part represents their energies, while the imaginary part accounts for decay rates,
making the system inherently non-Hermitian.When radiative losses are small, quasi-guidedmodes behave
similarly to guidedmodes.Ψ0 has a symmetric field distribution, which is themost confinedmode as can be
understood from the corresponding highest neff-value.Ψ1 exhibits an anti-symmetric field distribution.Ψ2

displays amore complex field pattern, which can be considered as thefirst-order symmetricmode. The coupling
between the adjacent cores in amulti-core fiber leads to hybridization ofmodes.We apply the finite element
method (FEM) to examine transversemodal characteristics, while the beampropagationmethod (BPM) is used
to investigate themodal propagation dynamics. Infigure 1(c), we present the beamdynamics of the three

Figure 1. (a) Schematic structural geometry of the proposed fiber segment with three equally sized core (xy→ transverse plane;
z→ propagation axis). (b)Chosen refractive index profile with the distributions of (upper panel)Re(n) and (lower panel) Im(n) for a
specific γ= 1.2× 10−3 and τ= 1. (c)Beamdynamics of the three supportedmodes in xz-plane (at y= 0) under passive operating
conditions (i.e., when γ= 0).Modalfield intensities (normalized) are plotted according to the color bar.
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supportedmodes under passive operating conditions (i.e., when γ= 0) in xz-plane (at y= 0). It provides a
dynamic visualization of how themodes propagate through the fiber.

2.2. Encountering themultiple EPs and their topological properties
In the designed fiber structure, we study the interactions amongΨj ( j= 0, 1, 2) by tracking the trajectories of the
associated neff-values, while varying the gain-loss profile based on the chosen coupling control parameters γ and
τ.We investigate the avoided-crossing-type interactions among the threemodes by varying γwithin the range
[0, 6× 10−3] for different τ-values. Through this analysis, we identify two specific cases where the threemodes
approach two interconnected EP2s, as illustrated infigures 2(a) and (b). The neff-values associatedwith
Ψj ( j= 0, 1, 2) are color-coded in blue, red, and green, with solid lines representing Re(neff) and dotted lines
representing Im(neff) (corresponding to the left and right vertical axes, respectively).

Figure 2(a) shows the trajectories of neff values as γ increases for afixed τ= 1. Around γ= 1.1× 10−3, we
observe a simultaneous coalescence in Re(neff) and a bifurcation in Im(neff) for themodesΨ0 andΨ1. Such a
specific type of eigenvalue interactions refers to the presence of an EP2. Thus, we identify an EP2 betweenΨ0 and
Ψ1 [labeled as EP2

(0,1)] at (1.1× 10−3, 1) in the (γ, τ)-plane. In this case, the neff-value associatedwithΨ1moves
away from the strong interaction region induced by EP2(0,1). Similarly, for a chosen τ= 2.008, we observe
another coalescence in Re(neff) and bifurcation in Im(neff) betweenmodesΨ0 andΨ2 near γ= 3.6× 10−3, as
shown infigure 2(b). This signifies the emergence of another EP2 betweenΨ0 andΨ2 [labeled as EP2

(0,2)] at
(3.6× 10−3, 2.008) in the (γ, τ)-plane.Here, the neff value associatedwithΨ1moves away from the strong
interaction region induced by EP2(0,2).

Therefore, we observe two distinct scenarios in our three-level system, wheremodes (hence, neff-values)
from two different pairs coalesce at two EP2s, while the thirdmode remains unaffected, playing the role of an
observer. Here, strongmodal interaction is necessary to achieve such a condition, where the coupling between
modes is sufficiently high to drive the system intomultiple EP2s. These two embedded EP2s are interconnected
throughΨ0 under the chosen setup. Such an interaction scheme indicates the emergence of an EP3 [43]within
the chosen parametric regime, with its topological properties accessible through the two interconnected EP2s. It
is important to note that the strong coupling effectively suppresses unintendedmode crosstalk, ensuring
stability of EP-induced topological phenomena.

Now,we consider different parametric loops in the (γ, τ)-plane to study the topological effects induced by
the parametrically encircled EPs. By allowing γ and τ to vary according to

( ) ( ) ( ) ( ) ( )/ rsin 2 and sin , 20 0g q g q t q t q= = +

we analyze different encirclement schemes in the (γ, τ)-plane.Here, a sufficiently slow angular variation of θ
over the interval [0, 2π] enables a stroboscopic parametric variation, where the systemundergoes an
encirclement along a predefined loopwith a high sampling rate. The parameters γ0, τ0, and r (preferably, r< 1)
determine the number of EP2s that can be enclosedwithin the loop. For a given EP to be properly enclosed
within a loop, γ0must exceed the γ-value associatedwith that EP.

Figure 3(a) displays the coordinates of EP2(0,1) and EP2(0,2), alongwith three distinct encirclement schemes
based on equation (2)within the (γ, τ)-plane. The topological properties of second-order branch points can be
examined by encircling each EP2 individually. However, the emergence of an EP3, with its characteristic third-
order branch point behavior, becomes evident when a parametric loop encloses both EP2s simultaneously.

Figure 2.Trajectories of the complex neff-values associatedwithΨ0,Ψ1, andΨ2 (represented by blue, red, and green lines, respectively)
as γ increases for two different τ-values. Solid lines indicate the corresponding real part, Re(neff), plotted along the left vertical axis,
while dotted lines represent the imaginary part, Im(neff), plotted along the right vertical axis. (a) For τ= 1: a simultaneous coalescence
of Re(neff) and bifurcation of Im(neff) associatedwithΨ0 andΨ1 occurs at γ= 1.1× 10−3, indicating the emergence of EP2(0,1) in the
(γ, τ)-plane. (b) For τ= 2.008: a simultaneous coalescence of Re(neff) and bifurcation of Im(neff) associatedwithΨ0 andΨ2 occurs at
γ= 3.6× 10−3,marking the emergence of EP2(0,2) in the (γ, τ)-plane.
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Accordingly, we define three specific encirclement schemes as follows: Loop-1 (blue loop), with parameters
γ0= 1.2× 10−3, τ0= 1, and r= 0.4, encloses only EP2(0,1); Loop-2 (green loop), defined by γ0= 4.2× 10−3,
τ0= 2.008, and r= 0.2, encircles only EP2(0,2); and Loop-3 (black loop), characterized by γ0= 4.2× 10−3,
τ0= 1.4, and r= 0.9, encloses both the EP2s together. These parametric loops physically represent different
gain-loss distributions. Specifically, Loop-1 and Loop-2 are considered to examine the individual topological
characteristics of EP2(0,1) and EP2(0,2), respectively, whereas Loop-3 is designed to examine the topological
characteristics of an EP3, emerging from interconnected EP2(0,1) and EP2(0,2). Later, we consider twomore loops
to illustrate how the interplay between gain-loss and EPs influences the system’s behavior.

The consequences of the quasistatic encirclement scheme along the selected loops and the underlying
topological behaviors are analyzed by tracing the corresponding trajectories of the neff-values associatedwith
Ψj ( j= 0, 1, 2), as depicted infigures 3(b)–(d). The trajectories are represented by dotted blue, red, and green
curves, respectively, where three circularmarkers of the same colors indicates their starting points [i.e., when
θ= 0 in equation (2)]. Each point along these trajectories in the complex neff-plane (where γ is plotted along an
additional axis) corresponds to a unique point on a particular loop in the (γ, τ)-plane. Here, we preserve the
quasistatic nature of the encirclement process by varying γ and τ at a sufficiently slow rate. For practical
implementation, the quasi-static behavior can bemaintained by optimizing the number offiber cross-sections
to distribute the gain-loss profile along the propagation length.

While considering a complete 2π rotation in the clockwise (CW) direction along Loop-1 [allowing a
quasistatic gain-loss variation around only EP2(0,1), while keeping EP2(0,2) outside], we can observe an adiabatic
swapping between the neff-values associatedwith themodes connected through EP2(0,1), i.e.,Ψ0 andΨ1, [like,
neff(Ψ0)→ neff(Ψ1)→ neff(Ψ0); signifying two simultaneous adiabatic switching processes neff(Ψ0)→neff(Ψ1) and
neff(Ψ1)→ neff(Ψ0)] in figure 3(b).Meanwhile, the neff-value associatedwithΨ2 remains unchanged
[neff(Ψ2)→neff(Ψ2); as also evident infigure 3(b)], indicating it is unaffected by the structured gain-loss
modulation along Loop-1. In a similar fashion, a complete 2πCWrotation along Loop-2 [allowing a quasistatic
gain-loss variation around only EP2(0,2), while keeping EP2(0,1) outside] results in an adiabatic swapping between
the neff-values ofΨ0 andΨ2, leaving the neff-value ofΨ1 unchanged [like, neff(Ψ0)→neff(Ψ2)→ neff(Ψ0);
neff(Ψ1)→ neff(Ψ1)], as shown infigure 3(c). Such intriguing interactions among the neff-values of three coupled

Figure 3. (a)Three chosen parametric loops in the (γ, τ)-plane to investigate the topological properties of second- and third-order
branch points. Two red dots indicate the coordinates of two interconnected EP2s. The red circular arrow represent the direction of
encirclement along each of the loops. (b-d)Trajectories of neff-values associatedwithΨ0,Ψ1, andΨ2 (represented by blue, red, and
green lines, respectively), while considering a clockwise (CW) quasistatic variations of γ and τ (b) along Loop-1, exhibiting the second
order branch point behavior of EP2(0,1)with permutations neff(Ψ0)→ neff(Ψ1)→ neff(Ψ0) and neff(Ψ2)→ neff(Ψ2); (c) along Loop-2,
exhibiting the second order branch point behavior of EP2(0,2)with permutations neff(Ψ0)→ neff(Ψ2)→ neff(Ψ0) and
neff(Ψ1)→ neff(Ψ1); (d) along Loop-3, exhibiting the third order branch point behavior of an analogous EP3 formed by the
interconnected EP2(0,1) andEP2(0,2)with permutations neff(Ψ0)→ neff(Ψ2)→ neff(Ψ1)→ neff(Ψ0). In (b)-(d), the circularmarkers of
respective colors represent the starting positions of neff-values, where the arrows of respective colors show their directions of
evolution. Here, each point of progression along the trajectory of the neff-value for eachmode is precisely synchronizedwith a
corresponding point of progression on a distinct loop in the (γ, τ)-plane.
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modes, as observed infigures 3(b) and (c), which display distinct adiabatic permutations associatedwith the
pairs {Ψ0,Ψ1} and {Ψ0,Ψ2}, reveal the individual second-order branch-point topology of EP2

(0,1) and EP2(0,2).
Notably, with a counter-clockwise (CCW) parametric variation along both Loop-1 and Loop-2, similar neff
trajectories are observed, differing only in that the two swappingmodes exchange their paths.

Now,we consider a quasistatic variation of γ and τ along Loop-3, which simultaneously encloses both
EP2(0,1) and EP2(0,2). Such a patterned perturbation results in a successive and adiabatic permutation among the
neff-values of all the coupledmodes. Figure 3(d) shows the results for aCWencirclement process along Loop-3,
wherewe can observe the permutation pattern neff(Ψ0)→ neff(Ψ2)→ neff(Ψ1)→ neff(Ψ0) [signifying three
simultaneous adiabatic switching processes neff(Ψ0)→ neff(Ψ2), neff(Ψ2)→ neff(Ψ1) and neff(Ψ1)→ neff(Ψ0)].
However, we can observe a different pattern like neff(Ψ0)→ neff(Ψ1)→neff(Ψ2)→ neff(Ψ0)upon considering the
CCWencirclement process along Loop-3. Such characteristic features of neff trajectories vividly illustrates the
topology of a third-order branch point and demonstrates the emergence of an EP3 in the presence of
interconnected EP2swithin the same 2D (γ, τ)-plane.

2.3. Effect of dynamical parametric variation: consideration of nonadiabatic terms
Now,we study the propagation characteristics of the quasiguidedmodesΨj ( j= 0, 1, 2), while considering
dynamic variation of the control parameters γ and τ. To achieve this, we tailor the spatial gain-loss distribution
[i.e., essentially the Im(n) profile] defined by equation (2) along thefiber length (i.e., along z-axis). Accordingly,
we substitute θ= 2πz/L in equation (2) tomap θ= {0, 2π} to z= {0, L}. This substitution leads to the dynamic
parameter distribution:

( ) ( ) ( )x y z
z

L
x y z r

z

L
, , sin and , , sin

2
. 30 0g g

p
t t

p
= = +⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

Here, γ and τ vary solely along the z-axis; they remain fixed across any cross-section in the xy-plane of thefiber.
Equation (3) implies that one complete pass of light through the fiber (z: 0→ L) corresponds to a full cycle in the
parametric loop (θ: 0→ 2π). Here CWparametric variation (θ: 0→ 2π) can be realized by considering the light
propagation in the forward directionwith input at z= 0 and output at z= L. Conversely, a CCWparametric
variation (θ: 2π→ 0) can be achieved by reversing the propagation direction (i.e., along the backward direction)
with input at z= L and output at z= 0.Notably, the chosen shape of a parametric loop given by equation (2) and
itsmapping followed by equation (3) allow to consider γ= 0 at both the beginning (θ= 0) and the end θ= 2π of
the encirclement process. This guarantees the excitation and retrieval of passivemodes at both z= 0 and z= L.
This would not be as straightforward for other parametric loop shapes.

To analyze EP-induced light dynamics with adiabatically expectedmode conversions, wemust account for
implications of the adiabatic theorem,which introduces certain nonadiabatic correction termsThese terms play
a crucial role when considering dynamic parametric variations. Based on the time-dependent Schrödinger
equation associatedwith aHamiltonian (in the quantum formalism) [34], we can express an optical counterpart
for the key proportional factors associatedwith nonadiabatic corrections (a detailed description is included in
Appendix B) in the proposedfiber structure as

( ) ( ) dz aexp , 4m n

L

m n
0

,ò g tµ - DG ⎡
⎣

⎤
⎦

( ) ( ) dz bexp , 4n m

L

m n
0

,ò g tµ + DG ⎡
⎣

⎤
⎦

In equation (4), the indices {m, n} signify the all possible transitions amongΨj ( j= 0, 1, 2) [i.e.,
{m, n}ä j; m≠ n], wherem→ n and n→m in equations (B.6) and (B.7) correspond to the transitionsΨm→Ψn

andΨn→Ψm, respectively (as expected adiabatically).
In equation (4), the factorΔΓm,n, known as the relative gain, plays the key role in adiabatic breakdown in the

EP-based light dynamics. The relative gainΔΓm,n is defined as the relative difference between the average loss
(Γav) experienced by eachmode. To estimateΓav for amode, we can consider the corresponding adiabatic
trajectory of Im(neff) during a given encirclement scheme, where ∮( ) ( )n d2 Imav

1
effp qG = - (it approximates

themode’s accumulated loss over one cycle). Depending on the adiabatic evolution of neff-values for a given
encirclement scheme, two distinct cases arise: eitherΔΓm,n> 0 orΔΓm,n< 0. These relations determine
whether nonadiabatic corrections terms ( ) either dominate or support the anticipated adiabatic dynamics,
influenced by the corresponding amplifying or decaying exponential terms in equation (4). For instance, when
ΔΓm,n> 0, m n converges due to a decaying exponential term, while n m diverges due to an amplifying
exponential term. This results in the validation of the adiabaticity for the transitionΨm→Ψn, whereas violation
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of the adiabaticity for the transitionΨn→Ψm. Consequently,Ψm evolves adiabatically, whereasΨn undergoes a
nonadiabatic transition.On the other hand, forΔΓm,n< 0, we can similarly estimate the nonadiabatic
correction terms from equation (4), wherewe obtain an exactly opposite scenario:Ψn evolves adiabatically, while
Ψm follows a nonadiabatic transition.

In the following sections, we validate our prior analysis of EP-induced light dynamics by examiningmode
propagation characteristics obtained using the BeamPropagationMethod (BPM) in RSoft® simulation software.
Specifically, we explore the distinctive features of both chiral and non-chiral light dynamics for various
dynamical encirclement schemes.

2.4. Characteristics of chiral light dynamics
Figure 4 presents the beampropagation simulation results under a dynamical encirclement scheme only around
EP2(0,1), where EP2(0,2) remains away from the encirclement regime. Initially, we examine the beamdynamics
for Loop-1 (blue loop), as depicted infigure 4(a). Infigure 4(b), the solid and dotted blue lines represent the
length-dependent variations in loss and gain [aftermapping Loop-1 via equation (3)] in the rightmost and
leftmost cores, respectively. For this setup, when aCWdynamical encirclement scheme is considered by exciting

Figure 4. (a) Loop-1 (blue loop) and Loop-4 (violet loop), enclosing only EP2(0,1) (red dot), alongwith (b) correspondingmapped
length-dependent distributions of gain (dotted lines of respective colors) and loss (solid lines of respective colors) in the leftmost and
rightmost cores. Beampropagation simulation results in xz-plane (at y= 0), while dynamically varying the control parameters
(c) along Loop-1 in (upper panel) theCWdirection (z: 0→ L), resulting in asymmetric conversions {Ψ0,Ψ1}→Ψ1 andΨ2→Ψ2, and
in (lower panel) theCCWdirection (z: L→ 0), resulting in asymmetric conversions {Ψ0,Ψ1}→Ψ0 andΨ2→Ψ2; (d) along Loop-4 in
(upper panel) the CWdirection (z: 0→ L), resulting in asymmetric conversions {Ψ0,Ψ1,Ψ2}→Ψ1, and in (lower panel) the CCW
direction (z: L→ 0), resulting in asymmetric conversions {Ψ0,Ψ1,Ψ2}→Ψ0.We re-normalize thefield intensities (plotted according
to the given color bar for all the beampropagation results) at each zduring propagation to accurately illustrate the evolution of
themodes.
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themodes from z= 0, bothmodesΨ0 andΨ1 [connected through EP2
(0,1)] are converted intoΨ1 at z= L. Here,

the nonadiabatic correction terms appearwithΔΓ0,1> 0, indicating thatΨ0 undergoes an adiabatic transition,
whileΨ1 experiences a nonadiabatic transition.Meanwhile,Ψ2 remains unaffected by the dynamical parametric
variation along Loop-1, retaining inΨ2 at z= L. Such asymmetric conversion ofmodes [{Ψ0,Ψ1}→Ψ1 and
Ψ2→Ψ2] are shown in the upper panel offigure 4(c). Conversely, under a CCWdynamical encirclement scheme
by exciting themodes from z= L,Ψ0 andΨ1 are converted intoΨ0 at z= 0.Here, the nonadiabatic correction
terms appear withΔΓ0,1< 0.Hence,Ψ0 andΨ1 undergo nonadiabatic and adiabatic transitions, respectively,
whileΨ2 remains unchanged, leading to the asymmetricmode conversions {Ψ0,Ψ1}→Ψ0 andΨ2→Ψ2, as
shown in the lower panel offigure 4(c).

It is noteworthy that the gain-loss accumulated over Loop-1 is insufficient to impact the nonadiabatic
correction terms associatedwithΨ2, leaving it unaffected in both propagation directions, as shown infigure 4(c).
However,Ψ2 would no longer remain unaffected, if we consider a comparatively larger loop that still encircles
only EP2(0,1).We examine such a scenario by considering a new loop (say, Loop-4, defined by parameters
γ0= 2.5× 10−3, τ0= 1, and r= 0.4), as illustrated by the violet loop in figure 4(a). The solid and dotted violet
lines infigure 4(b) show the correspondingmapped loss and gain distribution, respectively, in the fiber
structure. By comparing the gain-loss profiles induced by Loop-1 and Loop-4, we observe that the accumulated
gain-loss in Loop-4 is considerably higher. This increased accumulation of gain-loss bringsΨ2 into
consideration for interaction induced by EP2(0,1), due to the involvement of associated nonadiabatic correction
factorsΔΓ0,2 andΔΓ1,2. The corresponding beampropagation results are shown infigure 4(d). In the upper
panel, the effective nonadiabatic corrections based onΔΓ1,2< 0 andΔΓ0,1> 0 during aCWparametric
variation along Loop-4 lead all threemodesΨj, ( j= 0, 1, 2) to convert intoΨ1, resulting in {Ψ0,Ψ1,Ψ2}→Ψ1. In
contrast, theCCWparametric variation along Loop-4 introduces effective nonadiabatic corrections based on
ΔΓ0,2< 0 andΔΓ0,1< 0, resulting in the asymmetric conversion {Ψ0,Ψ1,Ψ2}→Ψ0, as illustrated in the lower
panel offigure 4(d).

Therefore, while considering the dynamical parameter space defined by Loop-1, light dynamics is partially
driven by the device’s chirality. Specifically, the transitions ofΨ0 andΨ1 yield direction-dependent outputs,
regardless of the input, whileΨ3 remains unaffected in both propagation directions [as illustrated infigure 4(c)].
In contrast, with the parametric variation along Loop-4, fully chirality-driven asymmetric light dynamics is
observed, where regardless of the initialmode, light is converted into different dominantmodes depending on
the propagation direction. Thus, formultimode structures, the overall chiral dynamics depends not only on
whether the relevant EP2 is enclosedwithin the parametric loop but also on the total accumulated gain-loss
influencing interactions across all the supportedmodes.

2.5. Characteristics of nonchiral light dynamics
Infigure 5, we analyze another three scenarios based on three distinct parametric loops, where for each of the
cases a breakdown of the chiral behavior is revealed. Two of these scenarios involve previously considered
configurations: Loop-2, which encloses only EP2(0,2), and Loop-3, which encircles an analogous EP3 alongwith
its connected EP2(0,1) and EP2(0,2). The third case introduces a newparametric loop, say Loop-5 (defined by
parameters γ0= 4.2× 10−3, τ0= 1.4, and r= 0.2), which passes close to both EP2s. This loop physically defines
a particular gain-loss distribution spanning across the regions of two interconnected EP2s, however without
encircling themdirectly. Figure 5(a) illustrates these three loops, whereas their correspondingmapped
parameter spaces, characterizing the length-dependent loss and gain distributions in the rightmost and leftmost
cores, are presented infigure 5(b). Notably, under the specified characteristic parameters γ0, τ0, r for the
proposed setup [primarily defined by equations (1) and (3)], the loss distribution in the rightmost core remains
identical across all three loops, as shown by the solid black line. The dotted lines of corresponding colors indicate
the gain distributions in the leftmost core for each of the loops. As a result, the gain-loss contrasts vary among
these three loops.

We begin by considering dynamical encirclement along Loop-2, where the nonadiabatic correction factors
exhibit unusual behavior. Although Loop-2 encloses only EP2(0,2) (associatedwithmodesΨ0 andΨ2) the
accumulated gain-loss over Loop-2 also takesΨ1 into account for interactions, necessitating the inclusion of
nonadiabatic correction factors associatedwith all threemodes to accurately capture the actual dynamics of
light. Here, for aCWdynamical encirclement scheme (with input at z= 0 and output at z= L), we obtain
ΔΓ0,2> 0,ΔΓ0,1< 0 andΔΓ1,2< 0.Now,ΔΓ0,1< 0 essentially allows themode conversions {Ψ0,Ψ1}→Ψ0.
Additionally, owing toΔΓ0,2> 0 bothΨ0 andΨ2 are expected to convert intoΨ2, however, due to an additional
combined effect ofΔΓ1,2< 0 andΔΓ0,1< 0 bothΨ0 andΨ2 ultimately end up atΨ0. Thus, we observe the overall
mode conversions {Ψ0,Ψ1,Ψ2}→Ψ0 during propagation from z= 0 to z= L, as exactly demonstrated by the
beampropagation simulation results in the upper panel offigure 5(c). For aCCWdynamical encirclement
scheme (with input at z= L and output at z= 0), the nonadiabatic correction factors based onΔΓ0,2< 0 and
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ΔΓ0,1< 0 enable similarmode conversions. The resulting transitionsmirror theCWcase, leading to
{Ψ0,Ψ1,Ψ2}→Ψ0, as shown in the lower panel offigure 5(c). Therefore, the overall light dynamics along Loop-2
is nonchiral, where, irrespective of both inputs and direction of propagation, light is converted into a particular
dominantmode. Comparingwith adiabatic expectations [as shown infigure 3(c)], we observe that onlyΨ2

follows an adiabatic transition, whereasΨ0 andΨ1 undergo nonadiabatic transitions in both directions.
Now,we study the effect of dynamical encirclement around an analogous EP3 formedwith two

interconnected EP2s. Loop-3 allows us to consider such a situation by encircling both EP2(0,1) and EP2(0,2),
simultaneously.Here, for aCWdynamical encirclement scheme (with input at z= 0 and output at z= L), we
obtainΔΓ0,1< 0,ΔΓ0,2< 0, andΔΓ1,2< 0.Now, thefirst two relations are sufficient to understand the overall
light dynamics. These two relations enable the asymmetric conversion ofΨ1 andΨ2 intoΨ0. Additionally, both
relations validate the retention ofΨ0 intoΨ0. Interestingly, the combination of the first and third relations also
supports the same output.While the third relation suggests that bothΨ1 andΨ2 are expected to convert intoΨ1,
they ultimately end up atΨ0 due to the influence of thefirst relation.Hence, during the propagation from z= 0
to z= L, light isfinally converted into the dominantΨ0, with the conversions {Ψ0,Ψ1,Ψ2}→Ψ0, as similar to the
beampropagation results shown in the upper panel offigure 5(c). On the other hand, for aCCWdynamical
encirclement scheme (with input at z= L and output at z= 0), the nonadiabatic correction factors read the
relationsΔΓ0,1< 0,ΔΓ0,2< 0, andΔΓ1,2> 0.Here, thefirst two relations are similar to theCWcase, whereas
the third one is opposite to theCWcase. Consequently, based on the associated nonadiabatic correction factors,
all threemodes are converted intoΨ0 while propagating from z= L to z= 0, as shown in the beampropagation
results in the lower panel offigure 5(c). Therefore, the overall light dynamics along Loop-3, i.e., around anEP3,
is also nonchiral. Comparingwith adiabatic expectations [as shown infigure 3(d)], we observe that onlyΨ1

follows an adiabatic transition in the forward direction, whereasΨ2 follows an adiabatic transition in the
backward direction. The rest of the transitions are nonadiabatic.

Furthermore, we investigate the light dynamics under the dynamical variations of γ and τ along Loop-5. This
loop traverses the interaction regimes of both EP2(0,1) and EP2(0,2), passing close to these points without
enclosing either. This configuration is selected to test the recent claim of asymmetric light dynamics occurring
without enclosing EP2s [38, 39], particularly to verify if this behavior extends to higher-order EPs. Based on the

Figure 5. (a) Loop-2 (green loop), Loop-3 (black loop), and Loop-5 (red loop) in the proximity of EP2(0,1) and EP2(0,2) (two red dots).
(b)Correspondingmapped length-dependent distributions of gain (dotted lines of respective colors) and loss (solid black line, as the
loss distribution is same for all the threementioned loops) in the leftmost and rightmost cores. (c)Beampropagation simulation
results in xz-plane (at y= 0), while dynamically varying the control parameters along Loop-2 in (upper panel) theCWdirection
(z: 0→ L) and (lower panel) theCCWdirection (z: L→ 0), resulting in nonchiral conversions {Ψ0,Ψ1,Ψ2}→Ψ0 (for both the
directions). Note that, we observe similar beampropagation dynamics for Loop-2, Loop-3, and Loop-5; therefore, results are
presented for only one case.We re-normalize thefield intensities (plotted according to the given color bar for all the beampropagation
results) at each z during propagation to accurately illustrate the evolution of themodes.
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characteristics of the associated neff-values, it is expected that allmodeswill remain in their original states
without any asymmetric conversion.However, it is crucial to examinewhether associated nonadiabatic factors
could introduce unexpected behavior in the light dynamics. For Loop-5, we observe relationships between the
relative gain factors similar to those found for Loop-3. Specifically, for a CWvariation, we haveΔΓ0,1< 0,
ΔΓ0,2< 0, andΔΓ1,2< 0, while for aCCWvariation, the relationships areΔΓ0,1< 0,ΔΓ0,2< 0, andΔΓ1,2> 0.
The influence of associated nonadiabatic correction factors enables the nonchiral conversions
{Ψ0,Ψ1,Ψ2}→Ψ0, irrespective of the inputmodes and propagation directions, consistent with the beam
propagation results illustrated infigure 5(c). Therefore, the light dynamics retains its nonchiral behavior for
Loop-5, similar to the case of Loop-3; however, in this scenario, all transitions are classified as nonadiabatic.

To account for potential parametric tolerances during fabrication, we introduce controlled random
fluctuations in the selected loops and evaluate their impact on the robustness of the anticipated asymmetric
mode conversion schemes.We present results specifically for Loop-5 infigure 6, as it represents a unique case
where third-order branch point behavior is observed, with the trajectory passing very close to interconnected
EP2swithout enclosing them. Figure 6(a) illustrates Loop-5with up to 25% randomfluctuations in the
(γ, τ)-plane. The correspondingmapped parameter space, depicting the length-dependent gain and loss
distributions in the rightmost and leftmost cores, is shown infigure 5(b). Despite thesefluctuations, the beam
propagation dynamics remain consistent, as evident infigure 5(c). Notably, the system continues to exhibit
nonchiral conversions {Ψ0,Ψ1,Ψ2}→Ψ0, independent of the inputmodes and propagation direction. This
behavior alignswith the results obtained for Loop-5without parametric fluctuations, demonstrating the
robustness of the proposed scheme. Similarly, we can confidently affirm that the systemdynamics would remain
robust for the other loops aswell. This study further supports the feasibility and practical implementation of our
proposed design.

The key question now is how long the characteristics of asymmetricmode conversion induced by a
dynamically encircled EP3 remain evident when any of the connected EP2s are not enclosed. To investigate this,
we gradually reduce the size of Loop-3 by decreasing the parameter r (starting from r= 0.9) in equation (2),
while keeping the other parameters, γ0 and τ0,fixed.We then examine the behavior of relative gain factors and
associated beampropagation results to determine if they remain consistent with the original Loop-3 case.
Loop-5 represents the optimized parameter space with r= 0.2 until which the nonadiabatic correction factors
behave similarly to those in Loop-3. Below this threshold (for the proposed fiber structure), asymmetric

Figure 6. (a) Loop-5with up to 25% randomfluctuations (b)Correspondingmapped length-dependent distributions of gain
(dotted lines of respective colors) and loss (solid black line, as the loss distribution is same for all the threementioned loops) in the
leftmost and rightmost cores. (c)Robust beampropagation simulation results [in xz-plane (at y= 0)]with nonchiral conversions
{Ψ0,Ψ1,Ψ2}→Ψ0 for both the (upper panel)CWand (lower panel)CCWdynamical encirclement schemes along Loop-5with
fluctuations. The impact of parametric tolerances are also evident in the beampropagation results.We re-normalize the field
intensities (plotted according to the given color bar for all the beampropagation results) at each z during propagation to accurately
illustrate the evolution of themodes.
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conversions are no longer observed, and allmodes remain in their original states while transitioning. It is
important to note that loopswith similar characteristics can also be defined by varying γ0 or τ0 (instead of only
varying r). In general, our observations suggest that as long as the nonadiabatic correction factors retain
properties analogous to those observed during dynamical encirclement enclosing connected EP2s (i.e., an
analogous EP3), the phenomenon of asymmetricmode conversion persists, evenwithout enclosing an EP3 or
the two connected EP2s.

Although similar nonchiral light dynamics are observed for Loop-2, Loop-3, and Loop-5, Loop-5
accumulates a significantly lower amount of gainwith reduced gain-loss contrast. Also, the dynamics followed
by Loop-5 exhibit greater robustness, allowing for largerfluctuations, compared to other loops.We observe this
aspect while examining the impact parametric tolerances for all the selected loops, confirming the robustness of
EP-induced anticipated light dynamics. This observation suggests that it is possible to design a parametric loop
as small as feasible,minimizing both the accumulated gain and the gain-loss contrast, while still achieving
equivalent light dynamics. This highlights the advantage of Loop-5 over other loops, offering enhanced
fabrication feasibility andmaking itmore practical for implementation.

3. Conclusion

This study explores the advanced lightmanipulation capabilities enabled by higher-order EPs in a non-
Hermitian photonic systemwith circular geometry. Focusing on a custom-engineered triple-core opticalfiber,
we investigate the topological and dynamic properties of an EP3 formed by two interconnected EP2s.We
consider different parametric loops through tailored gain-lossmodulation in a 2Dparameter space to reveal
various chiral and nonchiral aspects of light dynamics assistedwith asymmetricmode conversions.We observe
that the chiral or nonchiral aspects depend not only onwhether the relevant EP2 is enclosedwithin the
parametric loop but also on the total accumulated gain-loss influencing interactions across all supportedmodes
and, thereby, the influence of associated nonadiabatic corrections. Notably, this research demonstrates that the
effects induced by higher-order EPs extend beyond direct encirclement, persisting in regions near but not
enclosing the connected EP2s, thereby facilitating efficient and compact designs for practical applications.
Overall, the results showcase a simplified approach to leverage non-Hermiticity for hosting the topological and
dynamic properties of higher-order EPswithout requiring complex parameterization, thereby demonstrating
precise control over light dynamics. Ourfindings pave theway for fiber-based higher-ordermode converters
with improvedmode selectivity andmulti-modal functionality, addressing critical needs in all-fiber
communication networks and signal processing. Furthermore, the proposed concept offers significant potential
for experimental realization, with promising applications in developing all-fiber components such as isolators,
circulators, and ultra-sensitive opticalfiber sensors.
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AppendixAAn analytical interpretation of the proposed coupling scheme

To elucidate the emergence of an EP3 linkedwith two interconnected EP2s in the proposed fiber geometry, we
employ an analytical framework based on a 3× 3 non-HermitianHamiltonian given by
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Here, the diagonal termsλj ( j= 0, 1, 2) correspond to eigenvalues (analogous toneff-values) of three supported
modesΨj ( j= 0, 1, 2) in the unperturbed fiber geometry. These are defined by theirmodal energies ˜ jl and decay
rates δj. The off-diagonal termsκ01 andκ02 represent complex perturbations (analogically associatedwith the
gain-loss control parameters). Consistent with the proposed interaction scheme, we set two off-diagonal terms
to zero to consider strong interactions between the pairs {Ψ0,Ψ1} and {Ψ0,Ψ2}.

The eigenvalues of, denoted as ( )j j, 0, 1, 2= , are determined by solving the cubic characteristic
equation:
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1

2
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where the coefficients u1, u2, and u3 are given by
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Based onCardano’smethod [53], the eigenvalues of can be expressed as

¯ ( )   l, A60 w w= + -+ -

( )   l, A71 = + -+ -

¯ ( )   l. A82 w w= + -+ -

where

( ) ( )/ h h k A92 3 1 3=  +

with

( )h
u u u u

k
u u

l
u

27 6 6
,

9 3
and

3
. A101

2
1 2 3 1

2
2 1= - + - = - + =

Here,ω represents the cube root of unity (ω3= 1) and w̄ is its complex conjugate.
Based on the perturbation parameters, we can independently control the interaction between the pairs

{ } ,0 1 and { } ,0 2 among the three coupled eigenvalues ( ) j 0, 1, 2j = . Under specific perturbation
settings, distinct EP2s emergewhen two eigenvalues coalesce. These conditions are defined as:

¯ ( )     and or . A11w w= = =+ - + - + -

The fulfillment of these equalities in equation (A11) ensures the vanishing of the square-root term in  [as in
equation (A9)], resulting in a cube-root dependency of . Consequently, the presence of cube-root terms in the
eigenvalues ( ) j 0, 1, 2j = signifies the emergence of a third-order branch point, i.e., an EP3 linkedwith two
interconnected EP2s. It is crucial to note that when focusing on a single EP2, the analytical problem reduces to a
2× 2Hamiltonian, where the two corresponding eigenvalues contain square-root terms [54]. As a result, the
system’s sensitivity to perturbations at an individual EP2 follows a square-root dependence. In contrast, when
dealingwith a 3× 3Hamiltonian, the eigenvalues include cube-root terms, leading to a cube-root dependence
of sensitivity on perturbations, as seen in the case of an EP3.

Appendix BNonadiabatic correction factors

Here, we provide a detailed explanation of the nonadiabatic correction factors arising during dynamical
parametric variation. From a quantummechanical perspective, we consider that the underlying 3× 3
Hamiltonian depends on two time-dependent generic parameters,κ1(t) andκ2(t). In the adiabatic limit, the
eigenfunctions of are determined by the time-dependent Schrödinger equation (TDSE). To illustrate the
mathematics of nonadiabatic dynamics during transitions between two eigenstates, we focus on the transitions
between the statesΨm andΨn, which are associatedwith eigenvalues m and n. Here, (m, n)ä {0, 1, 2}with
m≠ n for the selected three-level Hamiltonian. According to the standard adiabatic theorem, the dynamical
nonadiabatic correction terms that arise during the EP-induced transitionsΨm→Ψn andΨn→Ψm are
described as

{ ( ) ( )} ( ) i t t dtexp , , B1m n m n
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respectively, Here,T represents the EP-encirclement duration. The term m n,
adD is related to the adiabatically

expected trajectories of m and n, while varying the time-dependent parametersκ1(t) andκ2(t). This can be
expressed as
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Here,Δγm,n represents the relative gain between two consideredmodes. Depending onwhetherΔγm,n> 0 or
Δγm,n< 0, the exponential divergence of m n or n m with respect toT beats theT−1 suppression [due to
time derivative of the potential parameters, i.e., jk , as in equations (B3) and (B4)] associatedwith the
corresponding pre-exponential terms.

Therefore, after substituting equation (B5) in equations (B1) and (B2), we can realize the key proportional
factors of the nonadiabatic correction terms as
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Based on the analogy between the Schrödinger equation in quantummechanics and the paraxial Helmholtz
equation in optics, we can express the optical counterpart of the nonadiabatic correction factors by using
equation (4). In this context, the time-dependent parametric variation in quantummechanics is analogous to
the length-dependent parametric variation in optics (i.e., t≡ z andT≡ L). In equation (4), we consider the gain-
loss control parameters γ and τwhich are analogous to the generic parametersκ1 andκ2.
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