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Quantumness and its hierarchies in PT -symmetric down-conversion models
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We investigate the hierarchy of quantum correlations in a quadratic bosonic parity-time-symmetric system
(PTSS) featuring distinct dissipation and amplification channels. The hierarchy includes global nonclassicality,
entanglement, asymmetric quantum steering, and Bell nonlocality. We elucidate the interplay between the system
physical nonlinearity (which serves as a source of quantumness) and the specific dynamics of bosonic PTSSs,
which are qualitatively influenced by their damping and amplification characteristics. Using a set of quantifiers
(including local and global nonclassicality depths, negativity, steering parameters, and the Bell parameter) we
demonstrate that the standard PTSS typically exhibits weaker quantumness than its counterparts affected solely
by damping or solely by amplification. Both the maximum values attained by these quantifiers and the speed and
duration of their generation are generally lower in the standard PTSS. A comparative analysis of three two-mode
PTSSs (standard, passive, and active) with identical eigenvectors and real parts of eigenfrequencies, but differing
in their damping and amplification strengths, reveals the crucial role of quantum fluctuations associated with
gain and loss. Among them, the passive PTSS yields the most strongly nonclassical states. Nevertheless, under
suitable conditions, the standard PTSS can also generate highly nonclassical states. The supremacy of the passive
PTSS is further supported by its fundamental advantages in practical realizations.

DOI: 10.1103/9vty-ctf7

I. INTRODUCTION

Since the seminal works on parity-time-symmetric systems
(PTSSs) by Bender et al. [1,2], non-Hermitian Hamiltonians
with real eigenvalues have attracted considerable attention
in the physics community [3]. This interest stems from the
fact that PTSSs possess unique structures in their Hilbert (or
Liouville) spaces, which exhibit degeneracies, both in eigen-
values and eigenvectors, at specific parameter values known
as exceptional points (EPs). These degeneracies give rise to
a variety of intriguing physical phenomena (for details, see
Ref. [4,5]). Systems operating at or near EPs can be harnessed
for a range of applications, including enhanced sensing [6–8],
enhanced nonlinear interactions [9–12], unidirectional light
propagation [13,14], and even invisibility cloaking [15,16].
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Interesting behaviors of nonlinear optical systems have
also been studied under PTSS conditions, i.e., when damping
and amplification are balanced. It has been shown that highly
nonclassical states can be generated in such systems un-
der suitable conditions [9–12], despite the unavoidable noise
present in quantum systems involving damping and/or ampli-
fication [17]. This raises an important question: to what extent
does the specific dynamics in the Hilbert space of bosonic
PTSSs influence the ability of system physical nonlinearities
(though analyzed in many cases in their linearized versions) to
generate quantumness [18–21]? The system’s dynamics affect
the rate at which different forms of quantumness emerge,
the maximal values attained by various quantifiers, and their
asymptotic limits. A fundamental problem thus arises: Can the
specific dynamics in the Hilbert space of a PTSS enhance the
ability of physical nonlinearities to generate diverse forms of
nonclassical states?

In this paper, we address in detail this complex issue
by the extended numerical analysis of different versions of
two-mode bosonic PT -symmetric system with parametric
down-conversion that covers the entire system’s parame-
ter space and includes all common forms of quantumness
(system nonclassicality, entanglement, steering, and the Bell
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FIG. 1. Schematics of the two-mode bosonic system analyzed under different conditions: (a) standard PT -symmetric system, where mode
1 is damped (γ1 > 0) and mode 2 is amplified (γ2 < 0); (b) system with only mode 1 damped (γ1 > 0, γ2 = 0); (c) system with only mode
2 amplified (γ2 < 0, γ1 = 0); (d) passive PT -symmetric system with mode 1 doubly damped (2γ1 > 0, γ2 = 0); (e) active PT -symmetric
system with mode 2 doubly amplified (2γ2 < 0, γ1 = 0). Various parameters calculated for these systems are consistently distinguished in the
following figures using the superscripts: (a) ad , (b) d , (c) a, (d) dd , and (e) aa.

nonlocality). The emergence of quantumness is discussed
as competition between the system’s coherent dynamics and
detrimental influence of the reservoir fluctuating forces. The
obtained complete numerical analysis allows us to draw even
several general conclusions. Whereas the coherent dynamics
does not allow to fully compensate for the influence of the
reservoir forces for the most of the parameters in the standard
PTSS, it leads to the generation of the states with high levels
of quantumness in the passive PTSS.

The paper is structured as follows. In Sec. II we discuss the
general behavior of bosonic PT -symmetric systems whose
properties emerge in the competition between their coherent
evolution and the influence of the noise inevitably accompa-
nying damping and amplification present in the system. In
Sec. III, the considered PTSS is introduced, its solution is
found, and statistical properties of its modes are described
considering Gaussian fields. Nonclassicality depths, negativ-
ity, steering parameter and the Bell parameter are introduced
and determined for the Gaussian fields in Sec. IV. The role
of standard PT symmetry in nonclassical-state generation
is elucidated in Sec. V using the comparison with the sys-
tems influenced only either by damping or amplification. In
Sec. VI, relying on similarity of coherent dynamics in the
standard PTSS, passive PTSS with doubled damping, and ac-
tive PTSS system with doubled amplification [see the scheme
in Figs. 1(a), 1(d), and 1(e)], the role of reservoir fluctuations
accompanying damping and amplification in nonclassical-
state generation is elucidated. Section VII is devoted to the
comparison of the PTSSs ability to generate different forms
of quantumness and quantum correlations. Time and speed
aspects of the nonclassical-state generation are addressed in
Sec. VIII. Conclusions are drawn in Sec. IX.

II. COMPETING EFFECTS OF COHERENT DYNAMICS
AND RESERVOIR NOISE IN QUANTUM

PT -SYMMETRIC SYSTEMS

When we look back at the history, PTSSs were extensively
studied within the framework of classical physics (see Refs.
[22,23] and Refs. [4,24–27]), particularly in optics, where
their specific coherent dynamics proved especially beneficial.
A hallmark of PTSSs is the simplification of system dynamics
at EPs, often accompanied by the enhancement of certain
system properties. The extension of these concepts to quantum

optical bosonic systems, via the use of Glauber coherent states
and the Glauber-Sudarshan P representation of the statisti-
cal operator [28,29], appeared straightforward. The idea of
employing PTSSs endowed with some form of physical non-
linearity to generate various nonclassical and entangled states
promised significant and attractive outcomes. Indeed, a range
of nonlinear PTSSs have been used to produce nonclassical
states with unusual properties [9–12].

However, a critical problem was identified: the pres-
ence of chaotic fluctuating forces, which, according to
both the fluctuation-dissipation and analogous amplification-
fluctuation theorems, inevitably accompany damping and
amplification. Due to their chaotic nature, these forces tend
to degrade all forms of system quantumness [17]. As a re-
sult, two competing effects come into play in PTSSs with
respect to the generation of quantumness: while the coher-
ent PT -symmetric dynamics tends to support and enhance
quantumness, the accompanying chaotic fluctuations tend to
suppress it [30]. This raises a fundamental question: Can the
coherent PT -symmetric dynamics fully compensate for the
detrimental effects of the fluctuating forces, or even enhance
the system’s quantumness despite their presence?

While it is difficult, if not impossible, to answer this ques-
tion in full generality, valuable physical insight can be gained
by analyzing specific, well-defined models. One of the sim-
plest models that satisfies the necessary criteria involves two
interacting bosonic modes, mutually coupled through both
linear and (physically) nonlinear interactions and subject to
damping and amplification. An important technical advantage
of this model lies in the fact that, under the physically relevant
conditions, the model can be analyzed in its linearized version
in which its dynamical operator equations remain linear, en-
abling a fully analytical treatment.

By focusing on Gaussian states, we are able to analytically
determine all relevant parameters characterizing the system,
including the effects of averaging over the chaotic fluctuating
forces. This analytical approach makes it possible to sys-
tematically explore the entire parameter space of the model,
as well as to examine its temporal evolution. The study of
this evolution is supported by both numerical simulations and
asymptotic (long-time) analytical formulas.

Regarding the effect of noise in our system, it origi-
nates from quantum sources, as it arises from interactions
with quantum reservoirs composed of two-level atoms. These
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atoms are either in the ground state (in the case of damping)
or in the excited state (for amplification). The quantum state
of the reservoir atoms fundamentally alters the character of
the reservoir-induced noise: excited atoms can induce both
spontaneous and stimulated emission in the system, whereas
ground-state atoms only allow for stimulated absorption. This
distinction leads to the fact that amplification-related noise
is more detrimental than damping-related noise: it is simply
stronger [17].

However, as already mentioned above, the generation of
quantum features in the system is governed by more than
just the noise level; it also strongly depends on the system’s
physical nonlinearity, which is determined by the product of
the nonlinear coupling constant and the mode amplitudes.
The coherent part of the dynamics typically leads to larger
mode amplitudes, especially in the presence of amplification,
which can in turn enhance the generation of quantumness.
This stands in contrast to the detrimental effects introduced
by noise. As a result, the system’s behavior emerges from
the competition between these two opposing factors: chaotic
noise versus coherent physically nonlinear dynamics.

This interplay lies at the heart of our investigation and
constitutes the central motivation behind it. While noise often
dominates and at least partially suppresses quantum effects,
there exist regions in the parameter space where coherent
dynamics prevail, enabling the emergence of nonclassical
behavior despite the presence of noise. This delicate bal-
ance is what makes the results fundamentally interesting and
potentially attractive.

The selection of an appropriate reference system is an
important issue. The hallmark features of PTSSs arise from
a balance between gain and loss in the modes, and these fea-
tures should be absent in any suitable reference system. Such
reference configurations include systems in which only one
mode is subject to damping while the other evolves freely, or
vice versa, one mode is amplified while the other remains un-
affected. However, detailed analysis across the full parameter
space reveals that, in most cases, the PT -symmetric dynamics
does not offer a significant advantage in generating different
forms of quantumness. This suggests that the influence of
chaotic fluctuating forces is typically too strong to be com-
pensated for by coherent PT -symmetric evolution.

This naturally leads us to consider more general PT -
symmetric-like systems, namely, their passive and active
variants [31]. In passive (active) PT -symmetric systems, the
modes experience unequal levels of damping (amplification).
However, the eigenvalues of their corresponding dynamical
matrices share a common damping (amplification) compo-
nent, while the remaining parts (along with the associated
eigenvectors) retain the essential characteristics of standard
PTSSs. As such, aside from the global damping (or am-
plification) factor, the coherent dynamics remain effectively
identical to those of the standard PTSS counterpart. This
structural similarity is promising for the generation of quan-
tumness, provided that the impact of chaotic fluctuations is
sufficiently reduced.

Indeed, the contributions of chaotic fluctuating forces are
not symmetric: those associated with damping are generally
weaker than those arising from amplification. This is because
amplification typically involves coupling to inverted two-level

atoms, which are susceptible to spontaneous photon emission,
a process that significantly enhances the destructive influence
of noise. Based on this observation, we analyze a passive
PTSS in which one mode is subject to double damping,
while the other evolves freely. As demonstrated below, this
configuration turns out to be optimal for the generation of
quantumness.

Nevertheless, active PTSSs, where one mode is doubly am-
plified and the other evolves without gain or loss, should not
be dismissed a priori. Despite the stronger fluctuating forces
inherent to amplification, the shared amplification factor
can significantly enhance the system’s physical nonlinear-
ity through its influence on the coherent PT -symmetric-like
dynamics. While under typical conditions the detrimental ef-
fects of noise dominate, our results reveal specific parameter
regimes in which amplified coherent dynamics prevail, lead-
ing to enhanced nonclassicality, as discussed in detail below.

In the paper, we analyze a two-mode bosonic system gov-
erned by a quadratic Hamiltonian [11,12,30], the original
nonlinear Hamiltonian belonging to the three-mode optical
nonlinear interaction is linearized by assuming a strong unde-
pleted pump mode (parametric approximation) [18,19]. This
linearized Hamiltonian includes both linear mode coupling
and nonlinear interaction arising from parametric down-
conversion. Though the nonlinear interaction is effectively
described by its linearized form it enables the generation
of quantum states. The quadratic form of the Hamiltonian
yields linear Heisenberg equations of motion, which can be
solved analytically [21]. These solutions incorporate fluctu-
ating Langevin noise operators associated with damping and
amplification, providing a rigorous framework for the sys-
tem’s dynamical analysis.

We note that we refer to the investigated model as
(physically) nonlinear because the Hamiltonian in Eq. (1)
below contains the terms a1a2 + a†

1a†
2, which correspond

to the two-mode squeezing interaction that belongs to the
group of three-mode optical nonlinear interactions described
by second-order susceptibilities χ (2). These interactions are
capable of generating or enhancing nonclassicality and in-
creasing the total number of excitations during evolution, in
contrast to linear optical systems characterized solely by first-
order susceptibilities χ (1). This fundamental distinction then
underpins the definition of certain nonclassicality measures,
such as potentials of quantum entanglement, steering, and Bell
nonlocality [32].

The approach based on linearizing the nonlinear-system
dynamics and subsequent analytical treatment allow for a
detailed comparison between the standard PTSS, affected
by both damping and amplification, and two related con-
figurations involving only damping or only amplification
[see Figs. 1(a) to 1(c)]. By evaluating various quantifiers of
quantumness, characterizing both nonclassicality and quan-
tum correlations, we investigate how the system’s specific
structure impacts the formation of nonclassical states. The
analyzed quantifiers include local and global nonclassicality
depths [33], negativity [34,35] as a measure of entangle-
ment, the steering parameter [36] for asymmetric quantum
steering, and the Bell (nonlocality) parameter [37] for identi-
fying the strongest type of quantum correlations among those
considered.
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We note that, in our analysis, we consider the so-called
quantum exceptional points that occur in the dynamics of open
quantum systems characterized by their Liouvillians. Con-
trary to the usual Hamiltonian EPs, they are fully compatible
with the general dynamics of open quantum systems [38–41].
We note that, rather than analyzing the system’s evolution via
the master equation and its associated Liouvillian, we employ
a more tractable approach based on the analytical solution of
the corresponding Langevin-Heisenberg equations, including
their Langevin noise terms [20,42]. This method not only
reveals the system’s eigenfrequencies (associated with the
Liouvillian spectrum, cf. [39]), but also facilitates the deriva-
tion of Gaussian-state parameters through averaging over the
chaotic noise forces.

III. TWO-MODE BOSONIC SYSTEM WITH DAMPING
AND AMPLIFICATION

The modes are assumed to mutually interact via the linear
exchange of energy (described by linear coupling constant ε)
and the physically nonlinear addition or subtraction of photon
pairs into both modes that originates in parametric down-
conversion [19] (nonlinear coupling constant κ). Damping and
amplification of modes, that causes the presence of additional
Langevin fluctuating operator forces representing the back-
action of the reservoir, describe loss and addition of energy
into the modes (for the sketch of the system analyzed under
different conditions, see Fig. 1). Introducing the photon anni-
hilation (â j) and creation (â†

j ) operators of the modes denoted
as 1 and 2 together with the corresponding Langevin opera-
tor forces l̂ j and l̂†

j and system-reservoir coupling constants
r j , j = 1, 2, we express the appropriate system interaction
Hamiltonian Ĥ as follows [20,30,39]:

Ĥ = [εâ†
1â2 + κ â1â2 + H.c.] + [r1â1 l̂†

1 + r2â2 l̂†
2 + H.c.],

(1)

where the symbol H.c. replaces the Hermitian conjugated
terms. To allow consistent description of both damped and
amplified modes, we chose the Langevin operator forces l̂ j

and l̂†
j , j = 1, 2, as the Pauli spin-flip operators that describe

the reservoir two-level atoms [43]. Invoking the second-order
perturbation theory in the system-reservoir coupling constants
r1 and r2 and eliminating the reservoir operators by replac-
ing them by their reservoir mean values [with the two-level
reservoir atoms in the ground (excited) state for damping
(amplification)] we reveal the corresponding damping and
amplification constants as well as the appropriate mean values
of the Langevin operator forces, see Eqs. (4) and (2) below as
well as detailed derivation in Refs. [20,39,42].

We note that the above approach based on the Heisenberg-
Langevin operator equations with the Langevin fluctuating
operator forces [20] represents an alternative to the commonly
used approach based on the (generalized) master equation for
a statistical operator [42,44]. The convenience of the applica-
tion of these approaches differs according to the situation that
includes both the structure of the model and the type of the
states investigated. In our case in which we pay attention to
Gaussian fields [20,45], the use of the Heisenberg-Langevin
operator equations is more convenient owing to the linearity

that arises in the parametric approximation applied to the
nonlinear interaction [21]. In contrast, the solution of the cor-
responding master equation transformed into the form of the
Fokker-Planck equation [46] would involve the temporal solu-
tion for the mean-field-operator amplitudes and also statistical
coefficients of the Gaussian states [see Eq. (20) below]. In the
applied approach, these coefficients are derived directly from
the operator solution of the Heisenberg-Langevin equations.
This considerably simplifies the calculations.

In the model, we assume that mode 1 is damped (damp-
ing constant γ1) whereas mode 2 is amplified (amplification
constant −γ2). The reservoirs responsible for damping and
amplification are assumed to be described by independent
quantum random Gaussian and Markovian processes with the
following characteristics [43,47,48], j = 1, 2:

〈l̂ j (t )〉 = 〈l̂†
j (t )〉 = 0,

〈l̂†
j (t )l̂ j (t

′)〉 = l̃ jδ(t − t ′),

〈l̂ j (t )l̂†
j (t ′)〉 = l jδ(t − t ′). (2)

In Eq. (2), the real constants l j and l̃ j , j = 1, 2, have to be
chosen such that the commutation relations for the photon
creation and annihilation operators are fulfilled. These are
[â j, â†

j ] = 1 for j = 1, 2 and the remaining commutation re-

lations among the operators â j and â†
j are zero. The symbol δ

stands for the Dirac function. In the case of damping in mode
1 and the reservoir two-level atoms in the ground state, we
have l1 = 2γ1 and l̃1 = 0. However, the amplification in mode
2 and the reservoir two-level atoms in the excited state gives
l2 = 0 and l̃2 = 2|γ2|. We note that, for standard PTSSs, am-
plification just compensates for damping, i.e., γ1 = −γ2 ≡ γ .
However, we assume γ1 ≡ 2γ and γ2 ≡ 0 for the analyzed
passive PTSS. Similarly, we have γ1 ≡ 0 and γ2 ≡ −2γ for
the analyzed active PTSS. We also note that a more general
PTSS containing also the nonlinear Kerr and cross-Kerr terms
was analyzed in Refs. [11,12] using the method of small oper-
ator corrections to mean values. We note that, for the reservoir
dynamics, we assume Markovian processes. However, the
analysis can also be extended to non-Markovian dynamics.
For example, a system coupled to a non-Markovian bath can
be modeled by introducing an ancilla that is linearly coupled
to the system and interacts with a standard Markovian reser-
voir. Such an approach enables the analysis of non-Markovian
quantum exceptional points [49].

The Langevin-Heisenberg equations derived from the
Hamiltonian Ĥ in Eq. (1), with the help of the theory describ-
ing the system interaction with the reservoir, can conveniently
be written in the following matrix form using the vectors

Â
T = (â1, â†

1, â2, â†
2) and L̂T = (l̂1, l̂†

1 , l̂2, l̂†
2 ):

dÂ(t )

dt
= −iMÂ(t ) + L̂(t ), (3)

M =

⎡
⎢⎢⎣

−iγ1 0 ε κ

0 −iγ1 −κ −ε

ε κ −iγ2 0
−κ −ε 0 −iγ2

⎤
⎥⎥⎦. (4)

In Eq. (3), we assume for simplicity real ε and κ .
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We note that the model can readily be reformulated in
terms of a master equation in the Lindblad form. Since it is
naturally expressed in the coherent-state basis, this leads to a
Fokker-Planck equation for the corresponding quasiprobabil-
ity distribution. When assuming Gaussian states, the problem
reduces to solving a set of ordinary differential equations for
the first-order moments (mean amplitudes) and the second-
order moments [the statistical coefficients defined later in
Eq. (21)].

Introducing the evolution matrix P(t, t ′) [21],

P(t, t ′) = exp[−iM(t − t ′)], (5)

the solution of Eq. (3) is obtained as

Â(t ) = P(t, 0)Â(0) + F̂(t ), (6)

F̂(t ) =
∫ t

0
dt ′P(t, t ′)L̂(t ′), (7)

and F̂T ≡ ( f̂1, f̂ †
1 , f̂2, f̂ †

2 ). The properties of the Langevin
fluctuating operator forces in Eq. (2) result in the nonzero
second-order correlation functions of the forces F̂ given as
[21]

〈F̂(t )F̂†T(t )〉 =
∫ t

0
dt̃

∫ t

0
dt̃ ′P(t, t̃ )〈L̂(t̃ )L̂†T(t̃ ′)〉P†T(t, t̃ ′),

(8)

where the symbol T stands for the transposed matrix.
According to Eq. (5), the eigenvectors of the evolution

matrix P coincide with those of the dynamical matrix M
and the corresponding eigenvalues �P(t, t ′) are given as
exp[−i�M(t − t ′)], where �M contains the eigenvalues of
matrix M. Diagonalization of the dynamical matrix M leaves
us with the following eigenvectors and eigenvalues:

M = T�MT−1; (9)

�M = −iγ+diag(1, 1, 1, 1) + μ diag(1, 1,−1,−1), (10)

T = (T1, T2, T3, T4),

TT
1,2 = 1

2
√

ε
(ζ±,−ζ∓,±ζ±ψ+,∓ζ∓ψ+),

TT
3,4 = 1

2
√

ε
(ζ±,−ζ∓,∓ζ±ψ−,±ζ∓ψ−),

T−1 = (T−1
1 , T−1

2 , T−1
3 , T−1

4 ),

T−1T
1,2 =

√
ε

2
√

μ
(ζ±ψ−,−ζ∓ψ−, ζ±ψ+,−ζ∓ψ+),

T−1T
3,4 =

√
ε

2
√

μ
(ζ±, ζ∓,−ζ±,−ζ∓), (11)

and γ+ = (γ1 + γ2)/2, γ− = (γ1 − γ2)/2, ξ = √
ε2 − κ2,

ζ± = √
ε ± ξ , μ =

√
ε2 − κ2 − γ 2−, and ψ± = (μ ± iγ−)/ξ .

We note that the structure of the eigenvectors and eigenvalues
of the matrix M closely resembles that obtained for the spe-
cial case γ1 = −γ2 (PT -symmetric case) analyzed in detail
in Ref. [30] when studying the problem of nonclassicality
and entanglement losses in the long-time limit caused by

fluctuating forces and related to the properties of the fluctu-
ating forces.

According to Eq. (10) there exist two doubly degenerated
eigenvalues

ν1,2 = −i(γ1 + γ2)/2 ±
√

ε2 − κ2 − (γ1 − γ2)2/4. (12)

We have the real eigenvalues νad
1,2 for the standard PTSS:

νad
1,2 =

√
ε2 − κ2 − γ 2. (13)

However, the eigenvalues νdd
j (νaa

j ) for the passive (active)
PTSS additionally contain a common damping (amplification)
factor γ (−γ ):

νdd
1,2 = −iγ ±

√
ε2 − κ2 − γ 2, (14)

νaa
1,2 = iγ ±

√
ε2 − κ2 − γ 2. (15)

Importantly, the eigenvectors of the matrix M corresponding
to the eigenvalues ν1,2 as given in Eq. (11) are identical for the
standard, passive, and active PTSSs. This means that, when
we express the system evolution in the basis of these eigen-
vectors, the dynamics in the three discussed PTSSs differ just
by common multiplicative functions describing exponential
damping in the passive PTSS and exponential amplification in
the active PTSS. This property provides a strong foundation
for a meaningful comparison of the statistical characteristics
of the three systems discussed below. It also accounts for the
fact that all three systems exhibit EPs at identical locations in
the parameter space. The existence and degeneracies of these
EPs, interpreted as Liouvillian EPs, were examined in detail
in Ref. [39].

The solution of the Heisenberg equations (3) can then be
written in the following form that explicitly expresses the
symmetry contained in the above four-dimensional matrix
formulation:

â(t ) = U(t )â(0) + V(t )â†(0) + f̂ (t ). (16)

In Eq. (16), we introduce âT ≡ (â1, â2), Uj,k (t ) =
P2 j−1,2k−1(t, 0), Vjk (t ) = P2 j−1,2k (t, 0), and f̂ j (t ) = F̂2 j−1(t ),
j, k = 1, 2. The matrices U and V attain the form

U(t ) = 1

μ

[
μc(t ) − γ−s(t ) −iεs(t )

−iεs(t ) μc(t ) + γ−s(t )

]
exp(−γ+t ),

V(t ) = − iκs(t )

μ

[
0 1
1 0

]
exp(−γ+t ), (17)

where s(t ) ≡ sin(μt ) and c(t ) ≡ cos(μt ).
Incorporation of the solution into Eq. (8) for the matrix

〈F̂(t )F̂†T(t )〉 of correlation functions of the fluctuating forces
results in the following formulas for its elements:〈

f̂ 2
1 (t )

〉 = (l2 + l̃2)εκh(t )θ,

〈 f̂1(t ) f̂ †
1 (t )〉 = [l1h−(t ) − (ε2l2 + κ2 l̃2)h(t )]θ,

〈 f̂ †
1 (t ) f̂1(t )〉 = [l̃1h−(t ) − (κ2l2 + ε2 l̃2)h(t )]θ,〈

f̂ 2
2 (t )

〉 = (l1 + l̃1)εκh(t )θ,

〈 f̂2(t ) f̂ †
2 (t )〉 = [l2h+(t ) − (ε2l1 + κ2 l̃1)h(t )]θ,

〈 f̂ †
2 (t ) f̂2(t )〉 = [l̃2h−(t ) − (κ2l1 + ε2 l̃1)h(t )]θ,
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〈 f̂1(t ) f̂2(t )〉 = [l1iκd−(t ) + l̃2iκd+(t )]θ,

〈 f̂2(t ) f̂1(t )〉 = [l̃1iκd−(t ) + l2iκd+(t )]θ,

〈 f̂ †
1 (t ) f̂2(t )〉 = [l̃1iεd−(t ) − l̃2iεd+(t )]θ,

〈 f̂2(t ) f̂ †
1 (t )〉 = [l1iεd−(t ) − l2iεd+(t )]θ, (18)

where θ = 1/(2μ2). We introduce the following functions in
Eq. (18):

f (t ) = 1 − exp(−2γ+t ) exp(−2iμt )

2(γ+ + iμ)
,

g(t ) = [1 − exp(−2γ+t )]/(2γ+),

h(t ) = Re{ f (t )} − g(t ),

h±(t ) = Re{(μ ± iγ−)2 f (t )} + ξ 2g(t ),

d±(t ) = Im{(μ ± iγ−) f (t )} ∓ γ−g(t ). (19)

We note that we also have 〈F̂(t )〉 = 〈F̂†(t )〉 = 0.

IV. NONCLASSICALITY, ENTANGLEMENT, STEERING,
AND BELL NONLOCALITY IN TWO-MODE

BOSONIC SYSTEMS

In the analysis of nonclassicality and quantum correlations,
we consider only the Gaussian states [20,45] that, however,
represent the most useful states both in the analysis of fun-
damental physical experiments and applications. Moreover
and most importantly, the linear Heisenberg-Langevin equa-
tions in Eq. (3) describe the state evolution inside this group of
states. They are conveniently described by their normal char-
acteristic function CN written in the general form as [20,45]

CN (μ1, μ2, t ) = exp

{ ∑
j=1,2

[
(α∗

j (t )μ j − c.c.)

− Bj (t )|μ j |2 + Cj (t )μ2∗
j + c.c.

2

]

+ [D(t )μ∗
1μ

∗
2 + D̄(t )μ1μ

∗
2 + c.c.]

}
, (20)

and c.c. replaces the complex conjugated term.
The parameters Bj , Cj , D, and D̄ that, together with the

mode complex amplitudes, identify the state are obtained
according to the formulas valid for the initial coherent states
with amplitudes α1(0) and α2(0):

Bj (t ) ≡ 〈δâ†
j (t )δâ j (t )〉 =

∑
l=1,2

[|Vjl (t )|2 + 〈 f̂ †
j (t ) f̂ j (t )〉],

Cj (t ) ≡ 〈[δâ2
j (t )]2〉 =

∑
l=1,2

[Ujl (t )Vjl (t ) + 〈 f̂ 2
j (t )〉],

D(t ) ≡ 〈δâ1(t )δâ2(t )〉
=

∑
l=1,2

[U1l (t )V2l (t ) + 〈 f̂1(t ) f̂2(t )〉],

D̄(t ) ≡ −〈δâ†
1(t )δâ2(t )〉

= −
∑
l=1,2

[V ∗
1l (t )V2l (t ) + 〈 f̂ †

1 (t ) f̂2(t )〉], (21)

where δâ j = â j − 〈â j〉 for j = 1, 2. Substituting Eq. (17) into
Eq. (21), we arrive at the formulas appropriate for our model:

Bj (t ) = (κ/μ)2s̃(t ) + 〈 f †
j (t ) f j (t )〉,

Cj (t ) = −(εκ/μ2)s̃(t ) + 〈 f 2
j (t )〉, j = 1, 2,

D(t ) = −i(κ/μ)c̃(t ) + i(κγ+/μ2)s̃(t ) + 〈 f1(t ) f2(t )〉,
D̄(t ) = −〈 f †

1 (t ) f2(t )〉, (22)

where s̃(t ) = sin2(μt ) exp(−2γ+t ), c̃(t ) = sin(μt ) cos(μt )
exp(−2γ+t ), and the correlation functions of the fluctuating
forces are given in Eq. (18).

At an EP, we have μ = 0 and the formulas (22) for the
statistical parameters considerably simplify (μ → 0):

BEP
j (t ) = κ2t2 exp(−2γ+t ) + l̃ jg(t )/2 − (κ2l3− j

+ ε2 l̃3− j )h̃0(t )/2,

CEP
j (t ) = −εκt2 exp(−2γ+t ) + (l3− j + l̃3− j )εκ h̃0(t )/2,

j = 1, 2,

DEP(t ) = −iκ (t − γ+t2) exp(−2γ+t ) + (l1 + l̃2)iκ

× [t exp(−2γ+t ) − g(t )]/(2γ+) − (l1 − l̃2)

× iκγ−h̃0(t )/2,

D̄EP(t ) = (l̃2 − l̃1)iε[t exp(−2γ+t ) − g(t )]/(2γ+)

+ (l̃1 + l̃2)iεγ−h̃0(t )/2, (23)

where h̃0(t ) ≡ [(t + γ+t2) exp(−2γ+t ) − g(t )]/γ 2
+. We can

see that the original oscillatory behavior of the standard PTSS
is replaced by the polynomial one at the EP. For the passive
(active) PTSS additional exponential damping (amplification)
occurs.

A. Nonclassicality

Coefficients of the quadratic terms in the argument of
exponential function in Eq. (20) can be arranged into the
matrix KCs using the vector (μ1, μ

∗
1, μ2, μ

∗
2 ). The matrix KCs

describes the characteristic function Cs written in the general
s ordering of the field operators [20]

KCs (s) = 1

2

⎡
⎢⎢⎢⎣

−B1,s(s) C∗
1 D̄∗ D

C1 −B1,s(s) D∗ D̄
D̄ D −B2,s(s) C∗

2

D∗ D̄∗ C2 −B2,s(s)

⎤
⎥⎥⎥⎦,

(24)

and Bj,s(s) = (1 − s)/2 + Bj for j = 1, 2. Eigenvalues of the
matrix KCs (s), that depend on the ordering parameter s, bear
the information about the state nonclassicality [19,28]. De-
tailed analysis reveals that the Lee nonclassicality depth τ

[30,33] of the state is equal to the greatest positive eigenvalue
of the matrix KCs (s = 1) written for the normal field-operator
ordering. Applying this procedure to the individual modes, we
immediately arrive at the formula for the local nonclassicality
depths τ j for j = 1, 2:

τ j = max{0, |Cj | − Bj}. (25)
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B. Steering

Quantum correlations of the Gaussian states are de-
scribed by their coherence matrix σ defined for the vector
(q̂1, p̂1, q̂2, p̂2) [45]:

σ =
[

σ1 σ12

[σ12]T σ2

]
, (26)

σ j =
[

1 + 2Bj + 2Re{Cj} 2Im{Cj}
2Im{Cj} 1 + 2Bj − 2Re{Cj}

]
,

σ12 = 2

[
Re{D − D̄} Im{D − D̄}
Im{D + D̄} −Re{D + D̄}

]
, (27)

where q̂ j = (â j + â†
j )/2, p̂ j = (â j − â†

j )/(2i), j = 1, 2. The
steering of mode (3 − j) by mode j for j = 1, 2 is then
expressed using the formula [36]

S j→3− j = max{0, det{σ j}/ det{σ }}/2. (28)

C. Entanglement

The (logarithmic) negativity EN [34,35] as a commonly
accepted measure of entanglement is inferred from the coher-
ence matrix σ PT defined for the vector (q̂1, p̂1, q̂2,−p̂2), i.e.,
for the partially transposed state of mode 2 [50–52]

σ PT =
[

σ1 σ PT
12[

σ PT
12

]T
σ PT

2

]
, (29)

σ PT
2 =

[
1 + 2B2 + 2Re{C2} −2Im{C2}

−2Im{C2} 1 + 2B2 − 2Re{C2}
]
,

σ PT
12 = 2

[
Re{D − D̄} Im{−D + D̄}
Im{D + D̄} Re{D + D̄}

]
. (30)

The symplectic eigenvalue ν− determined with the help of the
invariants � and δ [45]

ν− =
√

δ

2
−

√
δ2

4
− �,

� = det{σ PT },
δ = det{σ1} + det

{
σ PT

2

} + 2det
{
σ PT

12

}
, (31)

then gives the negativity

EN = max{0,− ln(ν−)}. (32)

D. Bell nonlocality

The strongest quantum correlations, that imply the Bell
nonlocality, are quantified by the Bell parameter BBell [37] that
is in our case a specific linear combination of the mean values
of suitably displaced parity operators �̂(β1, β2). Introducing
two sets of displacements (β1, β2) and (β ′

1, β
′
2) the Bell pa-

rameter BBell is determined along the formula

BBell(β1, β2; β ′
1, β

′
2) = 〈�̂(β1, β2)〉 + 〈�̂(β ′

1, β2)〉
+ 〈�̂(β1, β

′
2)〉 − 〈�̂(β ′

1, β
′
2)〉. (33)

If |BBell| > 2 for any suitable choice of the displacements
(β1, β2) and (β ′

1, β
′
2), the state exhibits the Bell nonlocality

manifested by the violation of the Bell inequalities [37]. Ac-
cording to Refs. [53,54], the mean value of a displaced parity

operator is directly obtained from the Wigner function �s=0

using the formula

〈�̂(β1, β2)〉 = π2

4
�s=0(β1, β2). (34)

To reveal the Wigner function �s=0, we first have to
rewrite the matrix KCs (s = 0) into that written for the vector
μreal,T ≡ (Re{μ1}, Im{μ1}, Re{μ2}, Im{μ2}):

Kreal
Cs

=

⎡
⎢⎢⎣

−B1,s(0) + Re{C1} Im{C1}
Im{C1} −B1,s(0) − Re{C1}

Re{D + D̄} Im{D − D̄}
Im{D + D̄} Re{−D + D̄}

Re{D + D̄} Im{D + D̄}
Im{D − D̄} Re{−D + D̄}

−B2,s(0) + Re{C2} Im{C2}
Im{C2} −B2,s(0) − Re{C2}

⎤
⎥⎥⎦. (35)

Forming the vector αreal,T≡(Im{α1}, Re{α1}, Im{α2}, Re{α2})
from the arguments α1 and α2 of the Wigner function
�s=0(α1, α2) the four-dimensional Fourier transform of the
characteristic function Cs=0(αreal,T ) related to the symmetric
ordering of field operators leaves the Wigner function in the
form

�s=0(α1, α2) = exp
[
αreal,T Kreal,−1

Cs
αreal

]
π2

√
det{Kreal

Cs
}

. (36)

In Eq. (36), we use the inverse to the matrix Kreal
Cs

and its
determinant.

The Bell parameter BBell depends on two sets of displace-
ments that have to be suitably chosen to reveal the violation
of the Bell inequalities. In the numerical analysis, inspired
by Refs. [53,55,56], we set (β1, β2) = (0, 0) and system-
atically scan the remaining complex displacements (β ′

1, β
′
2)

(expressed in radial coordinates) such that |β ′
j | � 2

√
Bj,s(0)

for j = 1, 2.

V. ROLE OF PT -SYMMETRY
IN NONCLASSICAL-STATE GENERATION

Before diving into a detailed discussion of the system’s
behavior, it is important to note that its dynamics, particularly
regarding damping and amplification, are shaped by two com-
peting effects. The first involves the influence of damping or
amplification on the coherent component of the system’s evo-
lution. In this context, amplification is generally considered
beneficial compared to damping, as it increases mode ampli-
tudes. This increase, in turn, enhances the system’s effective
physical nonlinearity, defined as the product of the nonlinear
coupling constant and the mode amplitudes.

The second effect stems from random fluctuating forces
(i.e., quantum noise) that tend to degrade nonclassical fea-
tures and quantum correlations by disrupting phase coherence
within the system. Notably, the noise accompanying amplifi-
cation is generally stronger than that associated with damping,
due in part to spontaneous photon emission from reservoir
atoms in excited states.

In detail, mutual balance between damping and ampli-
fication in standard PTSSs gives their specific dynamical
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behavior. In our case, PT symmetry is reached assuming
γ1 = γ , γ2 = −γ , l1 = 2γ , l̃2 = 2γ , l̃1 = l2 = 0. In specific
cases, at EPs, spectral degeneracies of the dynamical matrix
M occur being accompanied by the corresponding eigenvector
degeneracies. This means that the system evolution consider-
ably simplifies and only a single eigenfrequency is sufficient
to describe the evolution. Following Eq. (10), or Eq. (13), such
situation occurs provided that μ ≡

√
ε2 − κ2 − γ 2 = 0. For

the Hamiltonian Ĥ in Eq. (1) and assuming γ1 = −γ2 = γ ,
EPs occur for

κ2

ε2
+ γ 2

ε2
= 1. (37)

In the analyzed system, this specific dynamics influences
the ability to generate nonclassical states of different kinds.
The nonclassicality of a generated state reflects either local
nonclassicalities of the constituting modes 1 and 2 or quan-
tum correlations between these modes. Whereas we quantify
below the nonclassicalities by the corresponding Lee nonclas-
sicality depths τ , τ1, and τ2, quantum correlations with the
increasing quantumness are in turn quantified by the nega-
tivity EN (entanglement), steering parameters S1→2 and S2→1

(steering), and the Bell parameter (Bell nonlocality).
We examine the system behavior by assuming the modes

initially in their vacuum states (arbitrary initial coherent states
in both modes can be considered as well) and follow their
temporal evolution. To assess the behavior of the investigated
quantities, we determine their maximal values along the time
t axis

τ = max
tε

{τ (tε)}, EN = max
tε

{EN (tε)},
τ j = max

tε
{τ j (tε)}, S j→3− j = max

tε
{S j→3− j (tε)},

BBell = max
tε

{BBell(tε)}, (38)

where j = 1, 2 and compare these maximal values for the
whole parameter space of the investigated system. We note
that, due to linearity of the corresponding Heisenberg equa-
tions, the parameter space is effectively two-dimensional and
is spanned by the variables κ/ε and γ /ε.

To reveal the role of balance between damping and am-
plification in the standard PTSS, we compare its behavior
with two specific cases (systems) in which only damping
(γ1 = γ , γ2 = 0, l1 = 2γ , l̃1 = l2 = l̃2 = 0) and only ampli-
fication (γ1 = 0, γ2 = −γ , l̃2 = 2γ , l1 = l̃1 = l2 = 0) influ-
ence the system dynamics. Both systems for comparison,
owing to their physical nonlinearities, preserve the ability to
generate the nonclassical states. Mutual comparison of the
maximal values of the quantities characterising both non-
classicality and different types of quantum correlations then
sheds light on how beneficial the balance between damping
and amplification in standard PTSSs is when generating the
nonclassical states. We note that in the systems for comparison
different conditions for EPs occur:

κ2

ε2
+ γ 2

4ε2
= 1. (39)

The change of the system dynamics caused by the ab-
sence of amplification even results in the observation of
nonclassical properties of the modes in the asymptotic limit
t → ∞ [tε → ∞]. In this case, only the following coeffi-

cients from Eq. (22) attain asymptotically nonzero values

B2(∞) = κ2

ε2 − κ2
, C2(∞) = − εκ

ε2 − κ2
. (40)

They imply the nonclassicality in mode 2 quantified by the
nonclassicality depth τ2:

τ2(∞) = κ

ε + κ
. (41)

A. Nonclassicality

As documented in Figs. 2(a) to 2(d), (first row), the an-
alyzed standard PTSS allows for the generation of highly
nonclassical states with τ, τ1, τ2 → 1/2 for small γ /ε and
κ/ε close to 1, i.e., when the system damping and amplifi-
cation are small. We note that 1/2 gives the greatest value
of nonclassicality depth attained by a Gaussian state.As the
nonlinear coupling constant κ represents the source of non-
classicality, the greater the value of κ is the better the ability
of the system to generate nonclassical states is. Despite the
balance between damping and amplification, the greater the
damping and amplification are the worse the system ability
to provide nonclassical states is. This is because stronger
damping and amplification are accompanied by more in-
tense fluctuating forces. This relationship is quantified by the
fluctuation-dissipation and fluctuation-amplification theorems
[43]. These fluctuating forces then weaken the system ability
to generate nonclassical states. We can see in Fig. 2(b) that we
also reach greatest field intensities nad in the area of parame-
ters optimal for nonclassical-state generation.

The comparison of maximal values of the nonclassicality
depths τ and τ1 with those characterizing the systems with
only damping [see Figs. 2(a) and 2(c), (second row)] and only
amplification [see Figs. 2(a) and 2(c), (third row)] leads us
to the conclusion that both systems for comparison provide
greater maximal values than those of the corresponding stan-
dard PTSS for most system parameters. The only exception is
the narrow region in the graph of the ratio τ ad

1 /τ d
1 of nonclas-

sicality depths [see Fig. 2(c), second row] for values of κ/ε

close to 1. In this region, a large nonlinear coupling constant
κ , combined with the high amplitudes of the amplified mode
2 in the standard PTSS, leads to enhanced effective physical
nonlinearity. This, in turn, results in stronger nonclassicality
compared to the case without the amplified mode 2. No-
tably, this region naturally occurs near the curve of EPs and
within the domain of exponential mode amplitude growth, in
contrast to the periodic amplitude behavior observed in the
PT -symmetric region.

However, for fixed model parameters, the nonclassicality
depth τ2 of mode 2 is highest for the system with only damp-
ing [see Fig. 2(d), (second row)] and lowest for the system
with only amplification [see Fig. 2(d), (third row)]. Moreover,
in the area of parameters optimal for nonclassical-state gen-
eration, both systems for comparison give more intense (and
more nonclassical) nonclassical states.

B. Entanglement and steering

The analysis of entanglement quantified by the negativ-
ity EN and steering described by the steering parameters
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(a) (b) (c) (d)

FIG. 2. (a) Nonclassicality depth τ ad and (b) the corresponding mean photon number nad
τ , (c), [(d)] local nonclassicality depth τ ad

1 [τ ad
2 ]

of mode 1 [2] of standard PTSS as they depend on model parameters γ /ε and κ/ε. The values of the drawn parameters are compared with
those originating in the model with considered only damping (superscript d) and only amplification (superscript a). In white areas, τ ad

2 = 0.
Solid (dashed) black curves identify positions of EPs in PTSS (systems with only damping and only amplification). The superscript notation
is explained in Fig. 1.

S1→2 and S2→1 provides us the graphs in Figs. 3(a) to 3(d),
(first row) for the standard PTSS and the graphs in Figs. 3(a)
to 3(d), (second row) when the system with only damping is
considered and the graphs in Figs. 3(a) to 3(d), (third row)
when the system with only amplification is addressed. The
conclusions drawn from these graphs are similar to the above
ones for the nonclassicality depth τ : Both systems for com-
parison allow for greater values of the negativity EN and the
steering parameters S1→2 and S2→1 than the standard PTSS.
We note that, whereas greater nonlinearity constant κ/ε and
small damping and amplification constants are required to
allow steering of the amplified mode 2 by the damped mode 1,
the amplified mode 2 steers the damped mode 1 for any value
of the system parameters.

C. Bell nonlocality

The advantage of the system with only damping in
nonclassicality-state generation over the other two investi-
gated systems manifests dramatically when generating the
states that exhibit the Bell nonlocality. Only this system allows
to violate the Bell inequalities in the wide area of the system
parameters: Only the small nonlinearity constant κ/ε and
greater damping and amplification constants γ /ε prevent from

the violation of the Bell inequalities [see Fig. 4(a)]. Contrary
to this, only very small values of damping and amplification
constants γ /ε are compatible with the states violating the
Bell inequalities in the standard PTSS and its variant with
only amplification [see Figs. 4(b) and 4(c), γ /ε <≈ 0.03].
Even under these conditions the attained values of the Bell
parameters Bad

Bell and Ba
Bell are smaller than the parameters Bd

Bell
belonging to the system with only damping.

In summary, the coexistence of damping and amplification
under balanced conditions in the standard PTSS offers a clear
advantage only when the nonlinear coupling constant κ is
large. In this case, the increased amplitudes of the amplified
mode 2 enhance the system’s effective physical nonlinearity,
leading to higher nonclassicality depths τ1 for the damped
mode 1. However, from the perspective of other quantumness
quantifiers, such as the global nonclassicality depth, negativ-
ity, steering parameters, and the Bell nonlocality parameter,
this balance provides no significant benefit.

VI. ROLE OF QUANTUM FLUCTUATIONS IN
NONCLASSICAL-STATE GENERATION

Parallel eigenvalue analysis of the dynamical matrices
M of the standard PTSS [damping constant γ1 = γ and
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(a) (b) (c) (d)

FIG. 3. (a) Negativity E ad
N and (b) the corresponding mean photon number nad

E , (c), [(d)] steering parameter Sad
1→2 [Sad

2→1] of standard PTSS
as they depend on model parameters γ /ε and κ/ε. The values of the drawn parameters are compared with those originating in the model with
considered only damping (superscript d) and only amplification (superscript a). In white areas, Sad

1→2 = 0. Solid (dashed) black curves identify
positions of EPs in PTSS (systems with damping and amplification). The superscript notation is explained in Fig. 1.

amplification constant γ2 = −γ , for the eigenvalues, see
Eq. (13)], passive PTSS [damping constant γ1 = 2γ and no
amplification γ2 = 0, l1 = 4γ , l̃1 = l2 = l̃2 = 0, see Eq. (14)],
and active PTSS [no damping γ1 = 0 and amplification con-
stant γ2 = −2γ , l̃2 = 4γ , l1 = l̃1 = l2 = 0, see Eq. (15)]
reveals striking similarity.

Their eigenfrequencies �M differ just by their imaginary
parts common to all eigenvalues: Whereas the imaginary part
of �M is zero for the standard PTSS, it gives the average
damping constant γ for the passive system and the average
amplification constant −γ for the active system. Also, as
already discussed in Sec. III, the corresponding eigenvectors
are the same. We note that detailed analysis of such behavior
is given in Ref. [31]. This similarity means that, for the same
initial conditions for modes 1 and 2, the evolution of oper-
ator amplitudes of the passive [active] system differs from
that of the standard PTSS just by the multiplicative func-
tion exp(−γ t ) [exp(γ t )]. When the coefficients of the normal
characteristic function CN given in Eq. (22) are considered
the multiplicative factors are exp(−2γ t ) [exp(2γ t )]. It is not
only this coherent dynamics that causes different evolution of
the three PTSS. The dynamics of these systems differ also
because of different properties of their fluctuating operator
forces l̂ j and l̂†

j , j = 1, 2, prescribed to the modes in Eq. (2).
Specifically, the properties of fluctuating forces assigned to
the modes with amplification have more detrimental influence

to the nonclassical-state generation than those belonging to
the modes with damping because of spontaneous emission in
the reservoir modes [17]. We note that, when a mode is neither
damped nor amplified no fluctuating forces are required to
comply with the rules of quantum mechanics.

Detailed comparison of the properties of modes in these
three systems is provided in Fig. 5 by determining the max-
imal values of the nonclassicality depths τ , τ1, and τ2 and
Fig. 6 by plotting the maximal values of the negativity EN and
the steering parameters S1→2 and S2→1. We note that, in the
passive PTSS, mode 2 is asymptotically nonclassical and the
corresponding parameters including the nonclassicality depth
τ2 are given in Eqs. (40) and (41).

A. Comparison with passive PT -symmetric system

According to Figs. 5(a) to 5(d), (first row), the nonclas-
sicality depths τ and τ2 are always smaller for the standard
PTSS compared to those of the passive one. This is true also
for the nonclassicality depth τ1 for κ/ε smaller than approx.
0.6. Greater values of τ1 for the standard PTSS than those for
the passive one are reached only for κ/ε greater than approx.
0.6. This is so, because doubled damping of mode 1 does
not provide enough time for nonclassical-state generation for
greater nonlinear coupling constants κ/ε. Moreover, in the
standard PTSS, the amplified mode 2 results in larger mode-2
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(a) (b) (c)

(e)(d)

FIG. 4. (a) Bell parameter Bd
Bell, (b) [(c)] ratio (Bad

Bell − 2)/(Bd
Bell − 2) [(Ba

Bell − 2)/(Bd
Bell − 2)] of Bell parameters, (d) Bell parameter Bdd

Bell

and the corresponding mean photon number ndd
Bell as they depend on model parameters γ /ε and κ/ε. In white areas, the Bell inequalities are not

violated (BBell = 2). Solid [dashed] black curves identify positions of EPs in PTSS as well as systems with doubled damping and amplification
(systems with damping and amplification). The superscript notation is explained in Fig. 1.

amplitudes, which in turn enhance the effective physical non-
linearity. The standard PTSS also provides the nonclassical
states with greater overall intensities compared to those of
the passive PTSS, excluding the area of parameters with κ/ε

above 0.8 [see Fig. 5(b), (first row)]. The comparison of the
behavior of quantum correlations described by the negativity
and steering parameters as presented in Figs. 6(a) to 6(d), (first
row) is even more straightforward. The standard PTSS always

gives smaller maximal values of the negativity EN and the
steering parameters S1→2 and S2→1 and the states with smaller
overall intensities. In the passive PTSS, the states violating the
Bell inequalities are generated in the wide area of the system
parameters, similarly as in the damped part of the standard
system [compare Figs. 4(d) and 4(a)]. These states also attain
greater overall intensities, as documented in Fig. 4(e). This
contrasts with the behavior of the standard PTSS that provides

(a) (b) (c) (d)

FIG. 5. (a) Nonclassicality depth τ ad and (b) the corresponding mean photon number nad
τ , (c), [(d)] local nonclassicality depth τ ad

1 [τ ad
2 ] of

mode 1 [2] of standard PTSS relative to the values of passive PTSS with only doubled damping (superscript dd) and active PTSS with only
doubled amplification (superscript aa) as they depend on model parameters γ /ε and κ/ε. In white areas, τ ad

2 = 0. Solid black curves identify
positions of EPs in PTSS as well as systems with only doubled damping and only doubled amplification. The superscript notation is explained
in Fig. 1.
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(a) (b) (c) (d)

FIG. 6. (a) Negativity E ad
N and (b) the corresponding mean photon number nad

E , (c), [(d)] steering parameter Sad
1→2 [Sad

2→1] of standard PTSS
relative to the values of passive PTSS (superscript dd), and active PTSS (superscript aa) as they depend on model parameters γ /ε and κ/ε. In
white areas, Sad

1→2 = 0. Solid black curves identify positions of EPs in PTSS as well as systems with doubled damping and amplification. The
superscript notation is explained in Fig. 1.

such states only for very small values of the damping and am-
plification constants γ . This behavior qualitatively originates
in the stronger detrimental effects of the fluctuating forces in
the amplified mode of the standard PTSS compared to those
of mode 2 of the passive system (no amplification).

B. Comparison with active PT -symmetric system

Stronger fluctuating forces in the active PTSS imply in
general worse conditions for the nonclassical-state genera-
tion compared to the standard PTSS. Indeed, the graphs in
Figs. 5(a) to 5(d), (second row) giving the maximal values
of nonclassicality depths τ , τ1, and τ2 confirm this. Only
when κ/ε is greater than approx. 0.6 mode 1 in the active
system (no damping) attains greater nonclassicality depths
τ1 compared to the damped mode 1 of the standard PTSS.
This effect is due to the higher effective physical nonlinear-
ity of the active PTSS, which arises from its larger mode
amplitudes. This behavior of mode 1 also results in greater
maximal values of the global nonclassicality depth τ of the
active PTSS compared to those of the standard one in certain
subarea around κ/ε = 1. In general the active PTSS gives
greater overall intensities of the generated nonclassical states.
As for quantum correlations and opposed to what was written
when comparing with the passive PTSS, the standard PTSS
always gives greater maximal values of the negativity EN as
well as the steering parameters S1→2 and S2→1. However the
nonclassical states attain smaller overall intensities than those
reached in the active PTSS [see Fig. 6(b), (second row)]. The
ability of both systems to generate the states with the Bell
nonlocality is very weak and it is restricted to very low values
of the damping and amplification constants γ /ε.

We note that, in the above calculations, we assumed the
reservoir two-level atoms in the ground states to consistently
describe damping and in the excited states to consistently
describe amplification. Nevertheless, the two-level reservoir
atoms for damping can partly be in their excited states sim-
ilarly as the reservoir two-level atoms for amplification can
partly be in their ground states. These modifications of the
reservoir properties make closer the behavior of the above
considered standard, passive, and active PTSSs. In the asymp-
totic limit of equally populated ground and excited levels of
the atoms in both reservoirs, the behavior of all PTSSs is
identical.

VII. QUANTUMNESS AND HIERARCHY
OF QUANTUM CORRELATIONS

The results presented above about the system’s nonclas-
sicality and its quantum correlations, made systematically
across the entire hierarchy of quantum correlations (entangle-
ment, steering, and Bell nonlocality), show that the balance
between damping and amplification in the standard PTSS, and
the ensuing specific system dynamics, do not improve, except
for minor cases, the system’s ability to generate nonclassical
states exhibiting different kinds of quantumness. We note that
similar hierarchies of quantumness potentials were studied in
Refs. [32,57], in the context of single-qubit states.

In general, the set of states exhibiting the Bell nonlocal-
ity forms a subset of the set of steerable states. Similarly,
steerable states constitute a subset of entangled states. Finally,
all entangled states belong to the class of nonclassical states,
together with those exhibiting only local nonclassicality. This
hierarchy of quantum states, classified according to different
forms of quantumness, is also preserved for the quantities
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(a) (b) (c)

(e)(d)

FIG. 7. Nonclassical boundaries for Bell parameter BBell > 2 (black solid curve), local nonclassicality depth τ2 > 0 of mode 2 (blue dashed
curves), and steering parameter S1→2 > 0 (red dashed-dotted curves) in the plane of model parameters γ /ε and κ/ε drawn for (a) standard,
(b) passive, and (c) active PTSSs. In (b), τ2 > 0 and S1→2 > 0 hold for all model parameters. (d) Local nonclassicality depth τ dd

2 of mode 2
and (e) steering parameter Sdd

1→2 for passive PTSS are shown as they depend on model parameters γ /ε and κ/ε; solid black curves identify
positions of EPs in passive PTSS. The superscript notation is explained in Fig. 1.

discussed above, which are defined as the maxima taken over
the dimensionless time εt .

Moreover, we find that states exhibiting the Bell nonlo-
cality, as the states with the strongest nonclassicality, are
effectively generated only in systems without amplification,
across broad ranges of the system parameters [see Fig. 4]. For
comparison, these ranges are plotted in Figs. 7(a), 7(b), and
7(c) for the standard, passive, and active PTSSs, respectively.
Even weak amplification prevents the system from generating
the Bell-nonlocal states. In contrast, steerable and entangled
states are observed in standard, passive, and active PTSSs for
any values of the system parameters. Steering is, however,
strongly asymmetric. In the system with amplification, the
nonamplified mode is steerable for any value of the system
parameters, but the amplified mode is steerable only for very
weak values of the considered damping or amplification [see
Figs. 3(c) and 6(c); compare the boundaries in Figs. 7(a) to
7(c); see also Fig. 7(e)].

Similarly, the nonamplified mode exhibits local nonclas-
sicality for any values of the system parameters. This is not
the case for observing local nonclassicality in the ampli-
fied mode, which requires smaller values of the considered
damping or amplification constants [see Figs. 2(d) and 5(d);
compare the boundaries in Figs. 7(a) to 7(c); see also
Fig. 7(d)].

In the case of the standard PTSS, the states violating the
Bell inequalities, the states in which the amplified mode ex-
hibits local nonclassicality, and the states allowing steering
of the amplified mode cannot be generated across the entire
range of system parameters. These states are reached only

for small values of the damping and amplification constants.
In contrast, entangled and steerable states are easily obtained
throughout the full parameter space.

VIII. EVOLUTION OF THE NEGATIVITY,
NONCLASSICALITY DEPTH, AND THEIR

GENERATION SPEED

Above we compared the maximal values of nonclassical-
ity depths and several quantifiers of quantum correlations
attained during the system evolution. Here, we address the
process of nonclassical-state generation in a more detailed
way by analyzing the times needed to arrive at these maximal
values and speeds of their generation in the standard PTSS.
As typical examples, we investigate in Figs. 8(a) to 8(d) the
times t and speeds v belonging to the negativity EN and local
nonclassicality depth τ1 of mode 1. We can see in Figs. 8(a)
to 8(d), (first row), that greater values of the damping and
amplification constants γ shorten these times t ad

EN
and t ad

τ1
and

also slow down the negativity (speed vad
EN

) and nonclassicality
(speed vad

τ1
) generation. Contrary to this, greater values of

the nonlinear coupling constant κ/ε make the times t ad
EN

and
t ad
τ1

longer and the speed vad
EN

of negativity generation faster.
However, the maximal speeds vad

τ1
of mode-1 nonclassicality

generation are reached for κ/ε ≈ 0.6. This is caused by the
interplay of the increasing ability to generate nonclassical
states and slowing down the system evolution when moving
towards an EP with the increasing nonlinear constant κ/ε

[30].
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(a) (b) (c) (d)

FIG. 8. (a) Time instant t ad
EN

corresponding to the maximal negativity EN , (b) maximal speed vad
EN

of the negativity generation, (c) time
instant t ad

τ1
yielding the maximal nonclassicality depth τ1 of mode 1, and (d) maximal speed vad

τ1
of nonclassicality-depth τ1 generation in

standard PTSS as they depend on model parameters γ /ε and κ/ε. The values of the drawn parameters are compared with those originating in
the model with considered only damping (superscript d) and only amplification (superscript a). Solid (dashed) black curves identify positions
of EPs in PTSS (systems with only damping and only amplification). The superscript notation is explained in Fig. 1.

Comparing the behavior of the standard PTSS with the
systems with only damping [see Figs. 8(a) to 8(d), (second
row)] and only amplification [see Figs. 8(a) to 8(d), (third
row)], the maximal values of negativity EN and local non-
classicality τ1 are always reached faster in the standard PTSS.
The maximal speeds vad

EN
of negativity generation are always

greater for the system with only damping which accords with
greater maximal values of the negativity EN reached in this
system. Interestingly, the maximal speeds vad

EN
are very close in

the standard PTSS and the system with only amplification, as
documented in Fig. 8(b), (third row). The maximal speed vad

τ1

of mode-1 nonclassicality generation in the standard PTSS is
usually smaller than those of the systems with only damping
and only amplification. Only when κ/ε � 0.8, amplification
in mode 2 of the standard system and the resulting larger
amplitudes of the mode allows for faster mode-1 nonclassi-
cality generation compared to the system with only damping
Fig. 8(d), (second row).

The generally lower maximum values of nonclassicality
depths and the analyzed quantum-correlation quantifiers ob-
served in the standard PTSS, compared to systems with only
damping or only amplification, can be attributed to two key
factors: a shorter duration of nonclassical-state generation and
a slower buildup of nonclassical properties. This qualitatively

resembles the behavior of fields in nonlinear three-mode para-
metric processes with phase mismatch [18].

The above findings, which identify the passive PTSS as
the most efficient source of nonclassical states, support its
practical implementation, especially since achieving damp-
ing is generally simpler than achieving amplification. The
realization requires a nonlinear medium with a strong χ (2)

nonlinearity [18]. When such a medium is placed inside a res-
onator, the resonator enhances the effective nonlinearity and
simultaneously introduces damping to both frequency down-
converted modes through leakage via the resonator mirrors.
Adding a birefringent material to the resonator, which linearly
couples the modes, then completes the formation of a passive
PTSS. It is worth noting that nonlinear χ (2) crystals inside
resonators have been reliable sources of squeezed light for
decades [58,59].

We note that realizing an active PTSS is also feasi-
ble, for example, using spin-polarized laser technology. In
these lasers, two optical modes coexist, each pumped by
electrons polarized in orthogonal spin directions (left-to-
right and right-to-left). The natural coupling between these
modes in various photonic heterostructures enables the for-
mation of an active PTSS [60]. In Refs. [61–63], such
spin-polarized lasers featuring exceptional points were ana-
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lyzed, with field saturation effectively acting as a Kerr-type
nonlinearity.

IX. CONCLUSIONS

Numerical analysis of two bosonic modes coupled lin-
early and by parametric down-conversion performed across
the full range of system parameters reveals that the standard
PT -symmetric system (PTSS), characterized by balanced
damping and amplification, does not, in general, enhance the
system’s ability to generate nonclassical states of light. This
conclusion is supported across the entire hierarchy of non-
classicality and quantum correlations by comparing in turn
the nonclassicality depths, negativity, steering parameters, and
the Bell parameter for the standard PTSSs and related systems
affected solely by either damping or amplification.

While the standard PTSS outperforms its active counter-
part, where one mode is undamped and the other is doubly
amplified, it is clearly outperformed by the passive variant, in
which one mode is doubly damped and the other is unaffected
by amplification. This is particularly notable because all three
systems possess identical eigenvectors and real parts of their
eigenfrequencies. Their differing behavior arises from distinct
characteristics of the fluctuating forces accompanying damp-
ing and amplification (involving spontaneous emission).

The reduced ability of the standard PTSS to generate non-
classical states can be attributed to two factors: a shorter time
window over which nonclassical properties arise and a slower
rate at which these properties develop.

In conclusion, the most significant benefits of the PTSS
dynamics in physically nonlinear systems are realized in
the passive PTSSs configuration. Such systems can generate
highly nonclassical states (featuring entanglement, quantum
steering, and Bell nonlocality) across wide parameter ranges.
They also allow for practical experimental realizations based
on parametric down-conversion in crystals embedded into
optical resonators.
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