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Liouvillian and Hamiltonian exceptional points of atomic vapors:
The spectral signatures of quantum jumps
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We investigate spectral singularities in an alkali-metal atomic vapor modeled using four and effectively three
hyperfine states. By comparing the eigenvalue spectra of a non-Hermitian Hamiltonian (NHH) and a Liouvillian
superoperator, we analyze the emergence and characteristics of both semiclassical and quantum exceptional
points. Our results reveal that, for atomic systems, the NHH approach alone may be insufficient to fully capture
the system’s spectral properties. While NHHs can yield accurate predictions in certain regimes, a comprehensive
description typically requires the Liouvillian formalism, which governs the Lindblad master equation and
explicitly incorporates quantum-jump processes responsible for repopulation dynamics. We demonstrate that the
inclusion of quantum jumps fundamentally alters the spectral structure of the system. In particular, we present
examples in which the existence, location in parameter space, or even the order of spectral degeneracies differs
significantly between the two approaches, thereby highlighting the impact of quantum jumps and the limitations
of the NHH method. Finally, using the hybrid-Liouvillian formalism, we show how quantum jumps reshape
spectral features initially predicted by the NHH, ultimately determining the full Liouvillian spectrum.
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I. INTRODUCTION

Non-Hermitian quantum physics has recently attracted
considerable attention for its ability to describe energy dis-
sipation in open quantum systems and to predict exotic
phenomena such as exceptional points (EPs)—non-Hermitian
degeneracies first studied in the 1960s [1]. However, intense
research into EPs began in the early 2000s [2—4], spurred in
part by the introduction of P7 -symmetric quantum mechan-
ics based on non-Hermitian Hamiltonians (NHHs) [5,6].

Numerous studies investigating NHHs and their singu-
larities, often termed Hamiltonian EPs (HEPs), in engi-
neered non-Hermitian systems have emerged across a wide
range of fields, as reviewed in Refs. [7-10]. These in-
clude optics [10-18], electronics [19], plasmonics [20-22],
acoustics [23-28], cavity optomechanics [24,29-32], atom
optics [33], circuit quantum electrodynamics (QED) [34-36],
and cavity QED [37-39]. A variety of physical plat-
forms have been employed in these investigations, such
as photonic [13-16,40] and atomic [33] lattices, meta-
materials [41-45], exciton-polariton systems [46], atomic
vapors [47], trapped ions [48], or thermal atomic ensem-
bles [49]. Numerous proposed applications of EPs span a
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wide range of fields, including [8,9] quantum control and state
engineering, quantum thermodynamics, mode conversion and
switching, topological energy transfer, dynamic stability con-
trol, and non-Hermitian quantum information processing, as
well as neuromorphic and reservoir computing. Considerable
attention has been directed toward signal amplification and
spectral filtering near EPs, particularly for their potential use
in exceptional-point-enhanced quantum sensing [50-52].

Effective NHHs can accurately describe coherent, nonuni-
tary dynamics in classical and semiclassical systems. How-
ever, they fall short in capturing the full behavior of quantum
systems subject to quantum jumps and associated noise
corresponding to the loss or gain of an excitation (like pho-
tons, phonons, or magnons) exchanged with the environment,
which monitors (measures) the system. A fully quantum treat-
ment is therefore required—typically formulated through a
Liouvillian superoperator derived from a master equation,
or equivalently, via Fokker-Planck or Heisenberg-Langevin
equations.

To address the limitations of HEPs derived from NHHs,
the concept of quantum Liouvillian exceptional points (LEPs)
was introduced [53,54]. LEPs are defined as spectral degen-
eracies of Liouvillian superoperators, where both eigenvalues
and eigenvectors coalesce, paralleling the notion of HEPs
in NHHs. By incorporating quantum jumps explicitly, LEPs
extend the applicability of the HEP framework, enabling a
consistent and physically complete description of decoher-
ence and noise in open quantum systems, while preserving
the structure of canonical commutation relations.

For classical or semiclassical systems—where quantum
jumps are negligible—HEPs and LEPs yield consistent pre-
dictions. However, in fully quantum systems, the presence of
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quantum jumps can significantly modify the structure of EPs:
They may generate, shift, or even eliminate EPs, or reduce
their order, as shown in this work. It should be emphasized
that quantum jumps (responsible for repopulation processes)
are particularly important in the context of atomic ensembles,
as they underlie one of the most widely used techniques in
atomic physics, i.e., optical pumping [55].

The connection between HEPs and LEPs can be naturally
elucidated—and even continuously interpolated—within the
hybrid-Liouvillian formalism of Ref. [56], by postselecting
experimental outcomes based on the number of quantum
jumps. The two limiting cases correspond to lack of quantum
jumps (recovering HEPs) and an arbitrary number of jumps
(leading to LEPs).

It should be stressed that LEPs are embedded within
the well-established formalism of open quantum systems,
making their interpretation and computation more transpar-
ent and physically grounded. Unlike NHH-based approaches,
which often require the computation of system-specific met-
rics to ensure physical validity—following the formalism of
PT -symmetric quantum mechanics [5,6,57]—the analysis of
Liouvillians and their exceptional points relies solely on stan-
dard quantum mechanics. This eliminates the ambiguities and
potential pitfalls of the NHH framework, which, although
mathematically rich and conceptually intriguing [58—60], can
lead to misleading or incorrect conclusions (like apparent
violations of no-go quantum information theorems [57]) if
applied imprecisely.

Until recently, most research on EPs has focused on
HEPs in classical or semiclassical systems, but interest in
LEPs of fully quantum systems has been steadily increasing
after their introduction in 2019—particularly driven by re-
cent experimental advances in circuit QED [35,36,61,62] and
trapped ion platforms [63-65]. Proposed applications of LEPs
include enhanced quantum sensing and precise dynamical
control of quantum systems. Notably, LEPs play a signifi-
cant role in quantum thermodynamics—for instance, they act
as indicators of critical decay regimes in quantum thermal
machines [66], and experimental findings suggest they may
enhance the efficiency of quantum heat engines [61,64]. Nev-
ertheless, a more comprehensive investigation of the role of
LEPs in comparison to HEPs is needed to fully exploit their
potential for emerging quantum technologies.

LEPs have also been proposed and studied in the context
of non-Markovian processes [67]. However, the present work
focuses on dissipative dynamics and the corresponding LEPs
within the framework of the standard Lindblad master equa-
tion.

Moreover, we study only EPs, but it would be inter-
esting to search for other types of spectral degeneracies,
including diabolical points (defined by degenerate eigenval-
ues with the corresponding orthogonal eigenvectors) [68] and
hybrid points, which are higher-order degeneracies combin-
ing properties of exceptional and diabolical points [69,70].
It is also worth noting that quantum exceptional, diabolical,
and hybrid degeneracies can alternatively be characterized
using the Heisenberg-Langevin formalism, as demonstrated in
Refs. [71-74].

In this work, motivated by the experimental observation
of HEPs in alkali-metal atomic vapors modeled with a few

hyperfine states [49], we investigate the emergence of LEPs
within the same framework—including its generalization to
account for detunings—and compare these quantum LEPs
with the corresponding HEPs predicted by the non-Hermitian
Hamiltonian approach.

Alkali-metal atomic vapors represent one of the most ver-
satile platforms in atomic optics and quantum technologies.
These systems operate across a wide range of conditions,
enabling the study of diverse quantum phenomena. In the
ultracold regime, alkali atoms are essential for realizing Bose-
Einstein condensates [75-77] and optical lattices [77,78],
which enable implementations of various quantum informa-
tion algorithms. In the opposite thermal limit, known as the
hot-vapor regime, temperatures often exceed 100 °C, allow-
ing operation in the spin-exchange relaxation-free (SERF)
regime [79-81]. In this regime, rapid interatomic collisions
suppress decoherence, enabling collective spin dynamics [80],
extended coherence times, and the observation of many-body
entanglement [81].

Lying between these ultracold and hot vapor regimes is
the room-temperature domain, where alkali vapors confined
in antirelaxation-coated cells (e.g., paraffin-coated) exhibit
surprisingly long spin coherence times [82]. This regime
has enabled the observation of a wide range of quantum
effects, including coherent population trapping [83], spin
squeezing [84], macroscopic entanglement [85,86], spin wave
dynamics [86], and the generation of squeezed and entangled
light modes [84,87].

Remarkably, the room-temperature and SERF regimes
have also provided the foundation for developing ultrasensi-
tive quantum sensors. These include magnetometers [§8—90],
atomic gyroscopes [90,91], and detectors for exotic physics,
such as searches for dark matter [92,93]. The combination
of long coherence times, collective quantum behavior, and
accessible experimental setups makes alkali-metal vapors a
powerful testbed for investigating EPs, particularly in the con-
text of enhanced quantum sensing.

Specifically, we employ an effective four-level model (and
its effective three-level version) to describe optical transitions
between two hyperfine manifolds in atomic vapors, character-
ized by total angular momenta f (ground state) and F (excited
state). Of particular interest is the minimal configuration that
still captures the essential dynamical features—namely, the
transition f = 1 — F = 0. This simple model is sufficient
to distinguish the interactions of atomic states with light of
different polarizations.

To ensure that the model faithfully represents real atomic
transitions, it is crucial to account for the characteristic
timescales of the system. In typical experimental realizations,
the excited-state relaxation time is several orders of magnitude
shorter than the timescales governing ground-state evolution.
This separation of timescales justifies a common approxi-
mation: eliminating the excited state to obtain an effective
description of the ground-state dynamics.

While adiabatic elimination and direct computation un-
der the assumption of negligible excited-state population are
standard techniques for this reduction, in this work we adopt
a more systematic approach. Specifically, we utilize the ef-
fective operator formalism for open quantum systems, as
introduced in Ref. [94] and detailed in Sec. III. This method
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allows for a controlled dimensionality reduction and is es-
pecially advantageous for systems with larger excited-state
angular momentum.

The paper is organized as follows: In Sec. II, we review
the essential formalisms and definitions of EPs associated
with NHHs, quantum Liouvillians, and hybrid Liouvillians.
Section III introduces an effective description of the slowly
varying ground-state dynamics in our system. Section IV dis-
cusses the model without radio-frequency (RF) detunings in
the context of both the NHHs and Liouvillian superoperators.
In Sec. V, we examine a generalized model with an addi-
tional detuning of the RF magnetic field, in which the HEPs
and LEPs exhibit significant differences. Technical details,
including lengthy derivations and formulas, are provided in
the Appendixes for the reader’s convenience. We present our
conclusions in Sec. VII.

II. QUANTUM AND SEMICLASSICAL EXCEPTIONAL
POINTS: BASIC CONCEPTS

A key objective of this article is to compute and compare
the differences between EPs arising from the non-Hermitian
part of the system’s Hamiltonian—which governs coherent
yet dissipative dynamics—and those of the full Liouvillian,
which additionally incorporates quantum jumps. Follow-
ing Ref. [54], these Hamiltonian and Liouvillian EPs are
commonly referred to as (semi)classical and quantum EPs,
respectively. To this end, we begin by recalling the basic
definitions.

Exceptional points are singularities in a system’s param-
eter space where two or more eigenvalues, along with their
corresponding eigenvectors, coalesce. Unlike conventional
degeneracies, EPs involve not only eigenvalue coincidence
but also a collapse of the eigenspace, resulting in linearly
dependent eigenvectors.

EPs are a hallmark of non-Hermitian systems—i.e., sys-
tems exhibiting loss, gain, or other nonunitary dynamics. As
such, their analysis requires consideration of either an NHH
spectrum or the full Liouvillian superoperator via the Lind-
blad master equation:

N | RS A
p=Lp)=—ilH, pl =) (E{LLLM, P} — LMpL,;>, )
"
where L represents the Liouvillian superoperator acting on
the density matrix and lﬁu denotes quantum-jump operators.
The key distinction between these two approaches lies in
the treatment of quantum jumps: While NHHs account for
dissipative evolution, only the Liouvillian framework captures
the stochastic repopulation effects associated with quantum

jumps. Equation (1) can be rewritten by defining an effective
NHH:

A Ao P
HNH =H - ZLZL;M (2

which leads to the following transformation:

=il p) = —ilHyp = pHL) = [H, pl= 5 3 AL L. p).

"

3

It is important to note that the commutator here includes
complex conjugation, which is typically omitted when H is a
self-adjoint operator. This generalized formulation allows us
to express the master equation as

dp A PP
5 = L) =—ilfy, p1+ 3 Lupk. )

n

This expression underscores the fundamental difference be-
tween analyzing LEPs, which account for the complete
quantum dynamics including quantum jumps, and HEPs,
which reflect only the coherent yet dissipative evolution de-
scribed by the NHH.

Even though these two approaches may seem difficult to
compare—since there is an apparent discontinuity due to the
presence or absence of quantum jumps—there exists a way to
interpolate this transition. This can be achieved by following
the hybrid-Liouvillian formalism [56]:

. 1 o L.
L'(p) = —ilH, p] — Z <§{LLLM, p}— qLupLL>

n

= —ilHy, p1+4q ) LupL}, ©)

n

where ¢ is the quantum-jump parameter. In this framework,
one possible interpretation is that it corresponds to an ex-
periment with postselection, where only trajectories without
quantum jumps (g = 0) are considered. In this limit, the evo-
lution is governed purely by the NHH. More generally, the
hybrid Liouvillian can be understood as describing an experi-
ment in which the selection process leading to postselection is
imperfect. By continuously varying ¢ from O to 1, one obtains
a smooth and physically meaningful interpolation between the
spectrum of the NHH and the full Liouvillian spectrum.

It is worth noting that computing the spectrum of a
Hamiltonian—whether Hermitian or non-Hermitian—is rel-
atively straightforward, as it involves diagonalizing a matrix
whose dimension corresponds to that of the system’s Hilbert
space. In contrast, analyzing the spectrum of the Liouvil-
lian superoperator poses additional challenges. As shown in
Eq. (1), the superoperator £ acts on the density matrix in
a nontrivial way, rather than as a simple matrix-vector mul-
tiplication. Nevertheless, because L is a linear, completely
positive, and trace-preserving map, it can be recast as a matrix
acting on the vectorized space of operators—that is, as a linear
operator on the Liouville space. This representation allows the
use of standard linear algebra techniques, albeit in a space
whose dimension is the square of the Hilbert space dimension.

Importantly, while the spectrum of an NHH can be com-
puted using standard diagonalization techniques, it is often
advantageous to express the Hamiltonian in the superoperator
formalism. This facilitates a direct comparison with the Li-
ouvillian spectrum and provides a systematic way to identify
how quantum jumps influence the system’s dynamics.

Since the Liouvillian is a superoperator—acting on opera-
tors rather than vectors—it can be viewed as an operator on
an extended space, where elements are vectorized represen-
tations of d x d matrices. Here, d denotes the dimension of
the system’s Hilbert space. Crucially, the action of the Liou-
villian is not restricted to physical density matrices, which

033187-3



MAREK KOPCIUCH AND ADAM MIRANOWICZ

PHYSICAL REVIEW RESEARCH 7, 033187 (2025)

are Hermitian, positive semidefinite, and trace-one. As a re-
sult, its eigenvectors often correspond to matrices that do not
represent valid physical states—they may be non-Hermitian
or have nonunit trace. Nevertheless, these eigenvectors of a
nonsingular Liouvillian (so except LEPs) span the space of all
d x d matrices, forming a complete basis. This enables one
to decompose any physical density matrix in terms of these
eigenvectors, with each component evolving independently
according to the corresponding eigenvalue of the Liouvillian.
This decomposition mirrors the role played by the Hamilto-
nian eigenbasis in the unitary evolution of closed quantum
systems, offering a powerful tool for analyzing open-system
dynamics.

One can classify the behavior of Liouvillian eigenvectors
based on their associated eigenvalues as follows (see, e.g.,
Refs. [62,95,96]): (1) If an eigenvalue of the Liouvillian is
zero, the corresponding eigenvector represents a stationary
state of the system, remaining unchanged under the Liou-
villian evolution. (2) If an eigenvalue is purely imaginary,
the corresponding eigenvector undergoes periodic, undamped
evolution. (3) If an eigenvalue is real and negative, the cor-
responding eigenvector exhibits simple exponential damping.
(4) If an eigenvalue is complex with a negative real part,
the corresponding eigenvector undergoes damped oscillatory
evolution, where the imaginary part determines the oscillation
frequency and the real part sets the decay rate.

III. EFFECTIVE NON-HERMITIAN HAMILTONIAN
FOR THE MODEL

We analyze the theoretical model presented in Ref. [49].
The system consists of a ground state with total angular mo-
mentum f = 1 and an excited state with ' = 0. The system is
subject to two magnetic fields: a static leading field along the 7
axis, characterized by an effective Larmor frequency €2;, and
a perpendicular oscillating field of the form Bgrg cos(wggt )X,
which induces coupling with an effective RF Rabi frequency
J = ygBre/~/2, where yj is the gyromagnetic ratio of the
given state. Additionally, the system interacts with linearly po-
larized light with polarization 5. This results in the following
Hamiltonian:

QL JC, 0 0
A | Ja 0 Jec; —Qpg cos(wt)
Ho=1" Jer —Q 0 > (6
0 —Qgcos(wt) 0 o

where ¢, = cos(wrpt),  is the laser frequency, wy is the
transition frequency between the ground and excited states,
and Qp is the Rabi frequency of the optical transition.

To eliminate the time dependence from the Hamiltonian,
the authors of Ref. [49] first apply the standard optical
rotating-wave approximation (RWA), followed by a secondary
transformation at the magnetic Larmor frequency associated
with the ground state. Alternatively, a generalized RWA can be
used to obtain a compact form of this transformation (for de-
tails, see Appendix A 3). The transformed Hamiltonian takes

the form
) J 0 0
N I A R o
H=1o 7 s o | )
0 —Qr 0 -=A

where § = wrp — 21, A = w — wy, and wq is the excited-
state energy. For convenience, we adopt the rescaling J/2 —
J and Qg/2 — Q.

To simplify the analysis of the four-level system, we re-
duce it to an effective three-level system that captures only
the slow ground-state dynamics. This reduction is performed
using the effective operator formalism, which was introduced
in Ref. [94], while the detailed calculations are provided in
Appendix A. The essential components of the Hamiltonian
relevant to this effective description are identified as follows:

H, = —8F, + JV2F,, ®)
Vi = (V)" = —¢[00)(10], )
H, = —A|00)(00], (10

where Hy, is the ground (excited) state Hamiltonian and F;
is the angular momentum operator along the i axis. Next, the
spontaneous-emission Lindblad operator for polarization ¢, as
defined in Eq. (A9), takes the following form:

.. r _
iy = z\/;ls)(om. (11)

Using Eqgs. (A2), (A10), and (A11), we obtain the NHH for
the excited state and its inverse:

N 2A + il
eNH = —T|00>(00|,
. 4A-—2iT
H |00)(00]. (12)

eNH = T2 A2
From Egs. (A3) and (A4), it follows that
. A 4AQR

HeffZHg"i‘m“O)(]OL (13)
. 2JTQ
=~ —[1E)(10]. (14)
V3 = 2iA)

Substituting these results into Eq. (2), we obtain the effective
NHH:

)
, . 2iQ% igz 0
Hy, = Hy — mﬂo)(lm =|J 55 7
0 J 8

5)
Finally, by assuming the light is resonant with the transition
(A — 0), we recover Eq. (2) from Ref. [49].

IV. RF TUNED REGIME OF THE MODEL

Here, we present both analytical and numerical analyses of
the simplified NHH model described by Eq. (15), assuming
that the RF magnetic field is tuned to the Larmor frequency
(6 = 0). In the case of the NHH alone, our results are consis-
tent with the reasoning presented in Ref. [49]. However, the
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5°P3 —_ F=3
- — |495.8 MHz
_— };:0 |00) A A
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780.2 nm Q R r
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— =2 -=r==10)
5281/2 6 834.7 MHz f 5t [QL
(a) — =1 (b) 1)

FIG. 1. (a) Energy-level diagram of the D, transition in ¥'Rb,
relevant for a potential experimental implementation of the stud-
ied system due to the presence of the f =1 — F = 0 transition.
(b) Schematic of the relevant subspace spanned by the Zeeman
sublevels. The red arrow indicates the optical transition, driven by
a field with Rabi frequency Q5 and detuning A. Blue wavy arrows
represent spontaneous-emission channels associated with different
photon polarizations, occurring at rate I". Green arrows depict radio-
frequency (RF) magnetic coupling of strength J, detuned by § from
the Larmor frequency €2;.

inclusion of quantum jumps significantly alters the spectral
properties, even in this simplified scenario.

A. Validation of the effective three-level model

At the beginning, we slightly depart from chronological
order by first analyzing the Liouvillian of the full four-level
system, obtained using the Liouville-Fock basis (see Ap-
pendix B 2), as well as that of the effective three-level system
described by Eq. (27). This analysis is intended to demonstrate
that the subsequent use of the effective model is fully justified
within the parameter regime relevant for atomic vapor sys-
tems.

To rigorously compare the spectra, we performed nu-
merical simulations using system parameters chosen within
experimentally accessible ranges. In all cases, the spectra
are governed by two parameters: the coupling strength of
the oscillatory magnetic field (i.e., the magnetic field Rabi
frequency, J) and the reduced optical Rabi frequency—=2.
The parameter 2 can be tuned by varying the coupling light
intensity within the range from 1 uW to 10 mW, allowing for
values in the range 10 < < 1000.

It is important to note that the Liouvillian superoperator

L depends on an additional parameter, I', which represents
the natural linewidth (i.e., relaxation rate) of the excited state.
For the experimentally employed D, transition (see the F =
1 — F = 0 transition shown in Fig. 1) of 8’Rb, this parameter
is given by I' = 2w x 5.746 MHz. One might also consider
the F = 1 — F =1 transition present in the D; line, where
I' =2 x 6.065 MHz. However, as shown in the figures, this
difference does not qualitatively affect the spectrum and has
negligible quantitative impact on the part of the spectrum
corresponding to the effective system.

An examination of Fig. 2(a) reveals a clear grouping of
eigenvalues, which can be classified as A; ~ 0, I'/2, or T.
Specifically, the first group contains nine eigenvalues, the
second group six, and the third group a single eigenvalue.
This classification enables a straightforward physical interpre-

0 Ground state manifold
[j2k = = = = - - - Optical coherences | ______.
Excited state (a)
r‘ [ — - — — — - — - — —— E— E— — e —— . — = — -
0
=
o —40r
~
)/' b
_80 (b)
60F=~="gsz -"--"--T-SS-sssssss==-
\\ S~ ~
L |- - - - - ———
7 N
’, \
.- \
oF—— ¥
P
1
L 4
4
—-60r1 .- -7
I ()
0 20 40 60 80 100
J

FIG. 2. Real part of the Liouvillian spectrum for the full four-
level atomic system as a function of the coupling strength J
calculated from Eq. (1) with Egs. (7) and (11). Panel (a) presents
the complete spectrum, while panels (b) and (c) provide magnified
views of two spectrally distinct regions. These regions are identi-
fied based on their separation by characteristic spectral gaps: Panel
(b) corresponds to the ground-state manifold and panel (c) to optical
coherences. The excited-state contribution, consisting of a single
level, is not magnified but remains visible in panel (a) as a green
dash-dotted line. The color coding in panels (b) and (c) is consistent
with that used in panel (a). The only distinction is that black dashed
lines in panel (b) represent the spectrum of the effective ground-
state Liouvillian as described by Eq. (27), illustrating the excellent
agreement with the full system, with deviations not visible at the
displayed scale. Note that the horizontal axis is shifted by I"'/2 in
panel (b) and by I" in panel (c) to better center the respective spectral
regions. Assumed parameters: I' = 27 x 5.7 x 10°, Q = 30.

tation: The first group corresponds to ground-state evolution,
the second to ground-excited-state optical coherences, and the
third to the excited state itself.

This also explains why small variations in I" have little
effect on the spectrum: The energy separation between these
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groups is large compared to the internal dynamics within each
group, rendering the system robust to minor changes in I".

B. Spectrum of the non-Hermitian Hamiltonian operator

Following the approach in Ref. [49], one can demonstrate
that by setting both the optical field detuning A and the oscil-
lating magnetic field detuning § to zero, while also introducing
the reduced Rabi frequency 2 = Q% /T, the Hamiltonian from
Eq. (15) can be expressed as:

o J 0
H,=1|J =2Q J|. (16)
o J 0

Its eigenvalues are readily obtained as

Ey = —iQ 4272 — Q2, (17)

with the corresponding eigenvectors given by

Ey =0,

Eg) = —[11) + |11), (18)
Q-+ V22— 2 _
|Ey) = |11>—+|10)+|11>. (19)

From this expression, it becomes evident that when 2J 2 =Q2,
the system exhibits a second-order HEP, characterized by the
coalescence of both eigenvalues E, and E_, as well as their
corresponding eigenvectors. The reduced Rabi frequency was
introduced to simplify the calculations; however, it is worth
noting that it has a straightforward relation to, often used
experimental parameter, the fine and hyperfine saturation pa-
rameters: k] = Q/I" and kp = Q/y.

C. Additional isotropic relaxation

It is important to note that, up to this point, hyperfine
isotropic relaxation has not been incorporated into our anal-
ysis. This aspect was likewise omitted in Ref. [49], where
the authors acknowledged its relevance but did not explicitly
include it in the NHH formulation. In our approach, this
hyperfine relaxation is introduced in the form

Iig—uifnn:\/gum)(lm, m,n = {£1, 0}, (20)

where y is the rate of ground-state isotropic relaxation. This
collection of relaxation channels results in isotropic relax-
ation [49]. To confirm this, we evaluate the corresponding
effective relaxation operator (see Appendix A 4)

f= Z (£8,)'L8, = gz 11n)(Im||1m)(1n] = y1 (1)

m,n

and the effective repopulation term (see Appendix A 4)
Ay =" L5,0(L5,)
14
=3 2 [im)(inlplin)(im|

14 Aa_ Vs
== il = =1. 22
3anp 3 (22)

By incorporating these relaxation effects into Eq. (15), in
accordance with Eq. (2) and under the previously stated as-
sumptions, we arrive at the modified NHH:

w
s =f,—il=|J -ily+4 J |. @3
0 J Y

2

This modification slightly alters the system’s eigenenergies
but does not affect its eigenstates. The resultant eigenvalues
are

i
Ey=—7. (24)
E. = —%(y 4 20) + /207 — 2. (25)

Since such isotropic relaxation does not significantly alter the
spectral characteristics—producing only an overall isotropic
shift—we omit it in the subsequent analysis. (The details of
how isotropic relaxation modifies the superoperator spectrum
are shown in Appendix C). Finally, we emphasize a subtle but
important difference between the relaxation model assumed
in our approach and that presented in the primary formulation
of Ref. [49]. Specifically, in our treatment, only the ground
state is subject to isotropic relaxation, whereas the authors of
Ref. [49] include relaxation of the excited state as well. It is
worth noting, however, that this distinction is negligible for
experimentally relevant parameters, since the spontaneous-
emission rate I" typically exceeds the hyperfine relaxation rate
y by 4-6 orders of magnitude.

D. Spectrum of the hybrid Liouvillian

In the next stage of analyzing the model without RF
detuning, we present calculations for the hybrid-Liouvillian
model, which enables a fully quantum description of the sys-
tem’s evolution by explicitly incorporating quantum jumps,
as described in Eq. (5). As a first step, we neglect hyperfine
relaxation (see Appendix C), leading to

L(q) = —iHxn + qAyp, (26)
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where [\sp represents the quantum jumps induced by spontaneous emission. As a result, the Liouvillian takes the following

matrix form:

—2Q 0 0 0
0 29 —2J —J
0 2J -2Q 0
0 J 0 0
A, | =7 0 0 0
Lo=1 0 0 0
0 0 J J
2Q
0 0 % 0
0 0 -2/3Q@-1) 0

Noting that the only distinction between the NHH and the
L10uv1111an lies in the parameter ¢, it can be observed that

E closely resembles HNH The only difference appears in the
last row. This is expected, as the last row corresponds to the
decay of the ninth component of the vectorized density ma-
trix, which is proportional to identity. Since quantum jumps
serve as a repopulation mechanism that ensures probability
conservation during the evolution, the vanishing last row of
the Liouvillian reflects this property.

The spectral analysis of this operator is particularly in-
teresting, as its limits at ¢ = 0 and ¢ = 1 correspond to the
spectra of the NHH superoperator and the Liouvillian, respec-
tively:

£0) = —ifhu L) =L, 28)
We obtain the following spectrum of 2’(4]):
{07 _297 _aikv _a;k5 -, —dq,
— L L+ 0q-9). s, ﬂ_} (29)
Ve
where
¢ 1+iv/3  ~1FiV3
=—— " - J————+ Qg —-9), 30
Br= = Ve—— 42209, (G0)

and a, =Q+inv2J2—Q2? and ¢ =/V2+¢3 +v, to-
gether with ¢ = 54J% + Q*(—4¢g*> +18¢ —27) and v =
Qq[324J% + Q*(8¢> — 54g + 81)]. A key observation is that
the first six eigenvalues remain independent of the parameter
g, demonstrating an exact correspondence between the NHH
and the full Liouvillian. Furthermore, for ¢ = 0, the expres-
sion simplifies to ¢ = (54J% — 27Q%)3/2. This leads to the
following spectrum of the NHH:

{0, —2Q, —af, —of, —ai, —ai, —2ay, —2af, =22}, (31

which reveals the emergence of a third-order exceptional point
(EP3) in the NHH (see Fig. 3), marked by the coalescence of
the three highest eigenvalues and their associated eigenvectors
at J ~ 21.1. At first glance, it may appear counterintuitive
that transitioning to the superoperator formalism enhances
the order of the EP from second to third. Although this be-
havior is not universal, it is well justified. The superoperator

0 0 0 0
0 0 0 0
2Q 8
o - 7 Jie
0 —J 0 0
2Q 0 0 0
0 29 —J37 0
0 V3J -2Q —-3V2¢Q
0 0 3V2ag-D ieg-1)

representation effectively enlarges the dimensionality of the
system’s state space, which can lead to higher-order spectral
degeneracies. A detailed discussion of the relationship be-
tween the spectra of non-Hermitian Hamiltonians and their
corresponding superoperators is provided in Appendix B 5.

E. The spectral role of quantum jumps

Analysis of the results shown in Fig. 4 suggests that the
inclusion of quantum jumps effectively lifts degeneracies, re-

FIG. 3. Representative examples of the full spectra of the NHH
superoperator (blue dashed curves) compared with those of the Li-
ouvillian (red solid curves) as a function of J, obtained in the limits
g =0 and 1 of Eq. (27), respectively. Note that the NHH super-
operator corresponds to the hybrid Liouvillian in the limit of zero
quantum-jump parameter (¢ = 0). Panels (a) and (b) display the real
and imaginary parts of the spectrum, respectively. We set 2 = 30.
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FIG. 4. Real part of the hybrid-Liouvillian spectra as a function of J, calculated from Eq. (27) for various values of the quantum-jump
parameter g. The displayed eigenvalues correspond to those that form EP3 in the NHH limit. The plots illustrate how increasing g gradually
lifts the spectral degeneracy, thereby modifying the spectrum. Different panels show results for g ranging from O (purely non-Hermitian case)

to 1 (full Liouvillian case). We set = 30.

ducing the third-order HEP to a second-order LEP. To confirm
this, one can calculate the quasienergy splitting of the eigen-
values as

AEf =Re(A;— 1)), AE[ =Im(]—1)). (32)

Since the spectra of both the Liouvillian and hybrid Liou-
villian are generally complex—reflecting the non-Hermitian
nature of these superoperators—it is essential to analyze the
real and imaginary parts of the quasienergy splitting sepa-
rately.

Particularly interesting is the analysis of the three eigen-
values A7g ¢ that form the EP3. From Fig. 5, it is evident that
AEgg(I) reaches zero sharply around J & 21.1. In contrast, the
behavior of AE%(I ) and AE7RQ(1 ) is less clear, as these appear
to approach zero asymptotically. To confirm this trend, we
evaluate the limit of AES as J — +-o0:

: R _ 1 R _ 4
Jln}rloo AE; = 111111 AE7y = 3Qq, (33)
lim AE§ = 0. 4
oo B 0 34)

20 21 22 23

FIG. 5. Real and imaginary parts of the quasienergy splittings
between the eigenvalues that originally formed the EP3 at ¢ = 0,
calculated from Eq. (27). The splittings shown are AL (green
dot-dashed curve), AAK) (red solid curve), and AAE; (blue dashed
curve). The chosen value g = 0.001 demonstrates how even a small
quantum-jump contribution lifts the degeneracy and reduces the EP
order. The inset displays the real part of the splitting over a wider
range of J, highlighting the asymptotic behavior. We set 2 = 30.

This result confirms that even a small contribution of quantum
jumps lifts the degeneracy of the third-order HEP. For the
parameters used in Fig. 5, the asymptotic splitting is approxi-
mately 0.04.

F. Interpretation of the quantum-jump parameter

While the quantum-jump parameter g serves as a valu-
able mathematical tool that enables a smooth interpolation
between the spectra of an NHH and the full Liouvillian
superoperator, it also possesses a clear physical interpre-
tation [35,56,97]. In the context of atomic vapors, this
interpretation becomes evident from Fig. 6 and the structure
of the master equation (1). As detailed in Appendix A4, in
atomic, molecular, and optical (AMO) physics, the final term
in the master equation—associated with quantum jumps—is
commonly referred to as the repopulation term, which ensures
the preservation of the normalization of the reduced system’s
density matrix during open-system evolution.

From this perspective, the factor (1 — ¢g) quantifies the
leakage of probability current into unobserved subspaces of
the system. In the example shown in Fig. 6, this corresponds
to population decay into the second spin manifold (f = 2),
which remains unmonitored during the measurement process.

vkl /=2
1-q I-¢
q
N Y _
—_ W =1

FIG. 6. Schematic illustration of the physical interpretation of
the parameter ¢ in the dynamics of atomic systems. (a) The full
atomic level structure, where g denotes the fraction of the excited-
state population that decays into the monitored manifold (f = 1),
while the remaining fraction (1 —¢) decays into an unobserved
manifold (f = 2). (b) An effective model in which the monitored
manifold (f = 1) is treated as a reduced system. Here, (1 — q)
characterizes an effective population loss rate into the unobserved
manifold (f = 2).
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An analogous interpretation of g arises in quantum cir-
cuit dynamics experiments, where non-Hermitian evolution is
typically engineered through postselection on quantum trajec-
tories. In such settings, the parameter g effectively captures
the detection efficiency—i.e., the likelihood of successfully
monitoring quantum jumps. A value of ¢ < 1 thus reflects
imperfect detection or deliberate disregard of transitions into
certain states considered as unobserved.

V. RF DETUNING REGIME OF THE MODEL

We consider a natural extension of the model of Ref. [49]
for the f =1 — F =0 transition, now assuming that the
RF field is slightly detuned from exact resonance with the
Larmor frequency. In any case, we continue to assume zero
optical detuning. Since the physical system remains the same
as described in Sec. III, we can directly apply Eq. (15) with
A = 0. Thus, we have

B J 0
H,=|J -2 J|, (35)
0o J -8

where § denotes the detuning of the RF field from the Larmor
frequency, introducing an additional degree of freedom for
controlling and manipulating the system.

A. Spectrum of the Hamiltonian operator

A straightforward spectral analysis shows that the eigen-
values of the NHH are given by the roots of the characteristic
polynomial:

x> 4 2iQx% — (217 4 8%)x — 2iQ28 = 0. (36)

Analytical solutions to this cubic equation are generally not
straightforward. However, with three adjustable parameters
(K2, J, and §), one can tailor the system to exhibit specific
spectral features. Notably, it is possible to realize a third-order
degeneracy, where all three eigenvalues coalesce at a single
point. To identify such a point, we assume the characteristic
polynomial factorizes as (x — ixg)®> = 0. Given that the con-
stant and quadratic terms in Eq. (36) are purely imaginary, the
eigenvalues at this degeneracy must also be purely imaginary.
This assumption leads to the following set of conditions:

X = —3Q, (37)
X = 3@+ 8%, (38)
xp = —2Q8% (39)

Solving this system of equations yields four solutions sharing
the same quasienergy, given by Ey, = ixo = —2i€2/3. Assum-
ing J > 0 (since J represents the RF Rabi frequency), we also
obtain two symmetric solutions for the detuning parameter:
S—iZQ J = 452 (40)
NV - W
This symmetry reflects the system’s invariance under reversal
of the magnetic field, which corresponds to changing the sign
of the detuning or, equivalently, exchanging the states |0) <>
|2) [see Fig. 1 and Eqgs. (6) and (7)].

Re(A)

FIG. 7. Hamiltonian spectra of the three-level system as a func-
tion of the RF-field detuning § from the Larmor frequency 2. (a)
and (b): |§] < §p = 2&2/(3«/§); (c) and (d): |8| > d¢; and (e) and (f):
At the critical point § = §,. Red curves show the spectra of the NHH
superoperator [obtained from Eq. (27) in the limit ¢ = 0], while blue
dashed curves correspond to the spectra of the associated operator
[calculated from Eq. (35)]. The left column presents the real part of
the spectra, and the right column shows the imaginary part. Assumed
parameters: 2 = 30, with § ~ 4.62, 11.55, and 14, respectively.

Furthermore, it can be shown that within the detuning
range |8] < (2/3+/3)R, there exist two distinct values of J
at which second-order degeneracy occurs, corresponding to
a HEP, as discussed in detail in the next section. Outside this
interval, no degeneracies are observed. This behavior demon-
strates that by varying the RF-field detuning, it is possible
to completely transform the system’s characteristics—from
having two second-order EPs (EP2), through a single third-
order EP (EP3), to a regime where no exceptional points are
observed (see Fig. 7).

An analysis of the eigenvector orthogonality confirms that
all observed degeneracies correspond to EPs. In particular,
at an EP3, all eigenstates coalesce into a single, parameter-
independent eigenvector:

|Etp>=g<¢§+3i)|1i>+g(\/_—3i)|10>+%|11>. 1)

B. Physical interpretation of the spectral regions

To elucidate the physical significance of these three
regions, we examine the asymptotic behavior of the Hamil-
tonian in Eq. (35) and its influence on the real part of
the spectrum. The regime |§| < 29/(3\/§) is particularly
revealing, as it features three distinct intervals in J, each
corresponding to a different dominant dynamical behavior.

As shown in Fig. 8(a), for small values of J, the spectrum
approaches that of the Hamiltonian H;_ o = §Fz, where F;
is the angular momentum operator along the i axis. This
indicates that the detuning term is dominant. In this regime,
optical pumping (characterized by €2) primarily influences
the imaginary part of the spectrum, while the real part re-
mains nearly unaffected. In the opposite limit (J — 00), the
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FIG. 8. (a) Real and (b) imaginary parts of the spectrum of the
NHH operator (red solid curves), calculated from Eq. (27), illus-
trating the asymptotic behavior. The blue-shaded region (J — 0)
corresponds to the dynamics dominated by the §F, term, where F; is
the angular momentum operator along the i axis, with the associated
asymptote shown as a blue dashed line in panel (a). The green-shaded
region (J — 00) reflects the dynamics governed by the JF, term,
with the corresponding asymptotes shown by green dot-dashed lines
in panel (b). We set Q2 = 30 and § = 4.62.

-2Q = 0 0o J

s —2Q —2J -J 0

0 2J —2Q 0 0
0 J 0 0 -2

Lip=| 7 0 0 260
0 0 0 [

0 0 J J 0

2Q
0 0 2 0 0
0 0 2\@9@ -1 0 0

where a similar pattern of changes can be observed as in the
previous case, particularly in the modification of the last row,
which ensures the conservation of state normalization.

As in the case of the standard form of the detuned Hamil-
tonian, the general expressions for the quasienergies and
eigenvectors are rather complicated and do not offer sig-
nificant physical insight. However, as shown in previous
section the standard form of the NHH reveals the existence of
a particularly notable singularity within the three-dimensional

spectrum converges to that of H;_, ., = JF,, signifying that
the RF field governs the system’s dynamics.

The intermediate regime is more intricate. Previous anal-
ysis at 6 =0 shows that a bifurcation emerges when
J > Q/+/2, marking the transition from optical-pumping-
dominated behavior to RF-field dominance. Furthermore,
the coupling parameter J links the dark states (]11) and
[11)) to the optically active state, thereby enhancing the
influence of light and enabling it to affect not only the imag-
inary but also the real part of the spectrum. Finally, in the
regime where the light-induced non-Hermitian component
dominates, the eigenvalues are expected to be predominantly
imaginary.

In summary, we conjecture that the three observed re-
gions correspond to (1) a detuning-dominated regime, where
6 exceeds the influence of both J and €; (2) a light-
dominated regime, where J is small enough for optical
effects to dominate over §, yet not strong enough to suppress
them; and (3) an RF-dominated regime, where J becomes
sufficiently large to overpower both optical and detuning
effects.

This framework also explains the absence of EPs in
Fig. 7(c): The optical field is too weak relative to §, and while
a large J is needed to induce eigenvalue coalescence, such
a value simultaneously suppresses all competing effects—
including the optical ones.

C. Superoperator representation

The results presented here constitute a natural gener-
alization of those in Sec. IV. As before, to facilitate a
straightforward comparison between the full Liouvillian spec-
trum and that of the non-Hermitian Hamiltonian, we adopt the
same hybrid-Liouvillian technique. Specifically, the hybrid
Liouvillian introduced in Eq. (27) generalizes to

0 0 0 0
0 0 0 0
2Q 2

0o —J = 2\@9

0 —J 0 0

J 0 0 0 , 42)
—2Q =8 0 0

s 20 —V/3J 0

0 3J -3Q -2/2Q

0 0 —3V2Q¢-1) —iQ@-1)

parameter space €2, §, and J [see Eq. (40)], in which the EP3
arises. This point serves as a natural candidate for probing
discrepancies between the NHH and the full Liouvillian de-
scriptions, as the NHH superoperator is expected to inherit
certain features from the standard-form dynamics. For these
parameter values, the corresponding spectra are shown in
Fig. 9. It can be observed that within the NHH superoperator
description, the entire NHH spectrum collapses, with all nine
eigenvalues becoming degenerate. Furthermore, the analysis
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FIG. 9. (a) Real and (b) imaginary parts of the spectra of the
Liouvillian (red solid curves) and the NHH (blue dashed curves) as
a function of the coupling strength J, shown for parameters corre-
sponding to the emergence of the EP3. The spectra correspond to
the limits ¢ = 1 and ¢ = 0 of Eq. (42), respectively. This figure il-
lustrates how the inclusion of quantum jumps modifies the spectrum
and lifts the eigenvalue degeneracies. We set 2 = 30 and § ~ 11.55.

of the Jordan chain reveals the presence of only three lin-
early independent eigenvectors, indicating the existence of
at least two HEPs of orders 3 and 5. Introducing quantum
jumps reduces the degeneracy order at this point significantly,
demonstrating a marked decrease in the degree of degeneracy.

VI. PROPOSAL FOR EXPERIMENTAL OBSERVATION OF
LIOUVILLIAN EXCEPTIONAL POINTS

In this subsection, we briefly outline possible methods for
the experimental observation of the key results of our work—
namely, the LEPs and their generalized forms, g-dependent
LEPs, in the studied system.

Since LEPs correspond to singularities in the Liouvillian
spectrum, the most natural and complete method for detect-
ing them is to perform full quantum process tomography
(QPT), which enables reconstruction of the entire Liouvillian
superoperator. For systems with a few qubits implemented
in superconducting quantum circuits, such a QPT-based ap-
proach was recently employed on the IBMQ platform to reveal
single-qubit LEPs [62].

In our case, however, we consider atomic vapor systems
and a qutrit (rather than a qubit). While the general concept
remains the same, we propose to adopt a QPT method adapted
to atomic vapors, based on quantum state tomography (QST)
as introduced in Ref. [98] and experimentally implemented

FIG. 10. Conceptual schematic of the experimental setup used
for QPT in room-temperature atomic vapors, enabling the observa-
tion of LEPs and hybrid LEPs. Three laser beams—Ilabeled Pump,
Repump, and Probe—are used to implement the tomography pro-
tocol described in Refs. [99,102], which relies on FID-based state
reconstruction [99]. An additional laser beam, denoted by Q2g, pro-
vides the optical coupling required by the theoretical model. Optical
components include Pol, a crystalline polarizer; A/4, a quarter-wave
plate; Wol, a Wollaston prism; and BPD, a balanced photodetector.
The Rb cell refers to a paraffin-coated glass vapor cell containing
rubidium-87, enclosed within a magnetically shielded environment.

in Ref. [99]. Figure 10 shows a simplified scheme of the
experimental setup used for QST in Ref. [99].

To extend this QST protocol to full QPT, it is sufficient
to apply QST to a complete set of input basis states. The
experimental setup can remain unchanged from that in Fig. 10.
For example, in the case of a qutrit, the basis states can be
taken as eigenstates of the eight Gell-Mann matrices, which
span the SU(3) algebra [100]. By performing QST on the
output states corresponding to each of these basis inputs, full
reconstruction of the Liouvillian becomes possible. One can
then extract its eigenvalues and search for degeneracies using
the same strategy as in Ref. [62].

Regarding the observation of hybrid Liouvillians, we note
that several variants of QPT exist, including so-called Lind-
blad tomography, which enables separate reconstruction of the
coherent (Hamiltonian) and incoherent (dissipator) parts of
the dynamics. This method was demonstrated experimentally
for reconstructing single- and two-qubit Lindbladians on a
superconducting quantum processor in Ref. [101]. Through
appropriate postprocessing of QPT data, it is possible to iso-
late the Lindblad dissipator and Hamiltonian contributions.
By adjusting the statistical weight parameter ¢ between them,
hybrid Liouvillians can be constructed and analyzed.

An alternative, more direct route to observing system
dynamics for a specific value of ¢ is to engineer postse-
lected trajectories. In optical systems, this is often simulated
by adjusting detection efficiency using beam splitters or at-
tenuators [56,97]. Another method is to monitor a specific
dissipative channel via an ancillary detector and postselect
only those measurement runs with a specified number of de-
tected quantum jumps [35].

In the case of atomic vapors, where the measured signal
contains ensemble-averaged information from many atoms,
these jumps manifest as a reduction in the free-induction de-
cay (FID) signal, including observable changes in absorption
or polarization rotation. This becomes more intuitive upon
realizing that the amplitude of the FID signal is proportional
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to the number of atoms actively interacting with the light
field [98]. Referring to Fig. 6, one can observe that jumps
into the unobserved subspace reduce the number of atoms
contributing to the measurable signal, thereby decreasing the
FID amplitude in a detectable manner.

We propose applying a similar approach to our atomic
vapor system by embedding the qutrit dynamics within a
four-level (quartit) system. As illustrated in Fig. 6(b), the
three lower levels—magnetic sublevels of the f = 1 hyperfine
state—encode the qutrit states under investigation, while the
fourth level serves as an effective decay channel.

To simulate the hybrid Liouvillian with ¢ = 0 (correspond-
ing to purely non-Hermitian dynamics), the experiment must
be designed such that the excited state, to which the qutrit
is optically coupled, cannot decay into the unobserved part
of the system. A relevant example is the f=1— F =0
transition, where subsequent spontaneous decay from F = 0
to f = 2 is forbidden by selection rules. Intermediate values
of g can be obtained by tuning the system to a different excited
state, effectively modifying the relative transition strengths
between the qutrit subspace (f = 1) and the auxiliary mani-
fold (f = 2).

This approach enables the implementation of a conditional
QPT protocol tailored for reconstructing hybrid Liouvillians.
The experimental setup illustrated in Fig. 10 allows QPT to be
performed across a tunable range of ¢ values, with the atomic
dynamics confined to the appropriate regime [see Fig. 1(b)].
In doing so, the methodology developed in Ref. [35] for
superconducting quantum circuits is effectively adapted to
room-temperature atomic vapor systems, paving the way for
experimental exploration of both standard and hybrid LEPs in
a qutrit.

VII. CONCLUSIONS

In this work, motivated by the theoretical and experimental
results of Ref. [49], we have explored spectral singularities of
their alkali-metal atomic vapor system (as shown in Fig. 1),
modeled using four and effectively three hyperfine states, to
investigate the nature of EPs in open quantum dynamics. By
systematically comparing the spectra of NHHs and quantum
Liouvillian superoperators, we identified significant discrep-
ancies between semiclassical and fully quantum descriptions
of dissipation, especially in the detuned system.

Our results demonstrate that while NHHs can approxi-
mate the system’s behavior in limited regimes—particularly in
the absence of quantum fluctuations—their predictive power
breaks down when quantum-jump processes become signifi-
cant. These jumps, intrinsic to the Lindblad framework, are
responsible for state repopulation and fundamentally reshape
the system’s spectral features. This is particularly important
for atomic systems with particle number conservation, where
repopulation terms are unavoidable for an accurate descrip-
tion of the system. These terms give rise to many important
phenomena, such as optical pumping [55].

We have presented concrete examples in which the pres-
ence or absence of EPs, their precise location in parameter
space, or their algebraic multiplicity differ markedly between
the NHH and Liouvillian approaches. These findings highlight
that quantum jumps do not merely perturb the spectrum but

may induce or destroy the order of degeneracies, altering the
qualitative structure of the dynamics.

To bridge the gap between these two approaches, we
employed the hybrid-Liouvillian formalism, which enables
a controlled interpolation between the jump-free and fully
stochastic regimes. This framework clarifies how spectral
features predicted by NHHs evolve under the inclusion of
quantum jumps, ultimately converging to the Liouvillian spec-
trum that governs fully quantum dynamics.

Regarding the experimental verification of the predicted
Liouvillian EPs, this can be achieved indirectly by generaliz-
ing the approach of Ref. [49] or directly and comprehensively
through quantum process tomography. The latter approach
follows the method recently demonstrated in a circuit QED
experiment [62]. In particular, the quantum state [98,99] and
process [102] tomography techniques developed for alkali-
metal atomic vapors could, in principle, be adapted to the
system studied in Ref. [49].

Overall, our study reinforces the importance of Liouvillian-
based methods for accurately capturing the spectral singu-
larities of open quantum systems, particularly in effectively
low-dimensional atomic platforms where quantum noise can-
not be neglected. These insights are relevant for ongoing
experimental efforts in quantum optics, quantum thermody-
namics, and quantum sensing, where Liouvillian EPs offer
both fundamental and practical significance.
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APPENDIX A: EFFECTIVE SYSTEM DESCRIPTION

The calculation of effective dynamics can be challenging
in certain cases. Here, we apply the method introduced in
Ref. [94]. This formalism is valid under several key assump-
tions: (1) the system must exhibit Markovian dynamics, (2)
be described within a Liouvillian framework, (3) feature a
perturbative coupling between ground and excited states, and
(4) display a clear separation of timescales—specifically, the
relaxation of the excited state must occur much faster than the
evolution within the ground-state manifold.

While the original formulation does not explicitly include
the intrinsic, slow relaxation of the ground state, it can be
naturally extended to incorporate this effect. In our system,
we identify two distinct types of Lindblad operators. The
first, Li?, represents spontaneous emission from the excited
state with polarization ¢ € &1, 0. The second, I8, accounts
for the intrinsic, slow relaxation processes within the ground-
state manifold. Importantly, since lﬁ;‘: does not couple to the
excited state, it remains unaffected by the effective operator
formalism. In contrast, £..? must be modified to reflect the ef-
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fective dissipation in the ground state, arising from transitions
through the excited state followed by spontaneous emission.

We begin by decomposing the system Hamiltonian as

H=H,+H+V,+V_, (A1)

where Hye) = Pye)H Py represents the ground (excitiad) state
Hamiltonian, obtained via the projection operators P. Addi-
tionally, V,(_y = P.y)H Py, corresponds to the generalized
raising and lowering operators, respectively.

To formalize this approach, we introduce the effective non-
Hermitian Hamiltonian governing the dynamics within the
excited-state manifold as

Hony = ——Z ) i,

where, following Ref. [55], the Lindblad operators are pro-
portional to the electric-dipole-moment operator governing
transitions between the ground and excited states, while also
accounting for the directionality of the emission, since spon-
taneous emission cannot excite the atom—i.e., ;" o P,d.P,.
With this in mind, one can define the effective ground state
Hamiltonian and the effective spontaneous-emission Lindblad
operators as

Her = _%V [HeNH + (HeNH) ]V+ +Hy,

(A2)

(A3)

Ly = L eNHV+ (A4)
It is worth noting that, in contrast to other methods, such
an effective Hamiltonian does not require Hermitization to
describe unitary evolution, as it is Hermitian a przorz while
all effective dissipative processes are contained in LEff and L,L,
resulting in the effective master equation or effective Liouvil-

lian:

—i[Hefr, pgl

- Z ( (Lex) Aef‘f’ P} — i‘gf—fpg(i’gff)T)
¥
-2 (Gl '
I

pg = ‘Ceff(pg) =

ool = Eimn(E5)')
(A5)

where p, denotes the density matrix projected onto the Hilbert
space of the ground-state manifold.

1. Spontaneous emission

As mentioned in the previous section, in the system of
interest the only relaxation channel that couples the ex-
cited and ground states is spontaneous emission. Following
Ref. [55], the Lindblad operators describing this process are
proportional to the electric-dipole-moment operator govern-
ing transitions between the ground and excited states. They
must also account for d1rect10nal1ty, as spontaneous emission
cannot excite the atom—i.e., L o P d.B,. In the case of a
simple two-level system, the total relaxatlon rate ' can be
treated as an experimentally determined parameter, reducing
the problem to finding the relative coupling strengths between

different sublevels:

. JF .
P =Y ——(fm|d.|FM FM
: mZM (f||d||F)<fm| \FM)|fm)(FM|

-y (4,

where we adopt the convention that lowercase (uppercase)
letters denote ground (excited) states. In the first equation,
the relaxation rate is rescaled by the reduced matrix element
of the dipole operator, (f]| |d||F), which arises naturally from
the Wigner-Eckart theorem. This follows the convention in
Ref. [55] and is expressed using the Wigner 3j symbol.

Since the reduced matrix element of d is not guaranteed to
be positive, particular care must be taken when evaluating the
Hermitian conjugate of the corresponding Lindblad operator:

(L»)'

AZ)Ifm) (FMI. (A6)

F A
= ZW%WMMQ |fm)|FM)(fm|
m,M

= Md_,|fm)|FM
Z fIIdIIF Mid_|frm)|FM){fm]
~/F<F||d||f> F o1 g

- WZM(—M e m>|FM><fm|.

| (A7)

By applying Eq. (10.27) from Ref. [55] together with the
symmetry properties of the Wigner 3j symbol [103], we obtain

(L2)" = VT (=1~ fZ( : £>|FM)(fm|
— VT Y (jl fw) (FM){fm]
m,M
SNASIEDY (_fm AZ)lFM)(me
m,M
(A8)

This result introduces a subtle ambiguity because complex
conjugation can alter the sign of a real-valued operator. This
issue arises since the phase factor is effectively absorbed into
the experimentally determined value of I". Notably, due to se-
lection rules for optical transitions, Af = F — f takes values
of £1 or 0. To resolve this ambiguity, we redefine the jump
operators as follows:

o

m,M

AZ) Fm)(EMI. (A9

This allows for a straightforward derivation of (L)"LP,
which is useful, for example, in calculating the non-Hermitian
Hamiltonian. Note that the above expression involves only the
projection onto the excited state:

(L) fpp=r Z (

In the calculation of the non-Hermitian Hamiltonians Hy,
or Hengg, We are especially interested in the collective effect

F\2
M) |[FM)(FM|. (A10)
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obtained by summing over all polarization components &:

> (L) LSP—FZ<|FM FM|Z< " 61] A’;)z>

q q,m
= FM)(FM
e S
M
r .
= P, (A11)
2F +1

where we have used one of the summation rules for the
Wigner 3j symbol over magnetic sublevels [103].

2. Raising and lowering operators

It is important to note that, in the model under considera-
tion, the primary mechanism coupling the ground and excited
states is an external light beam. Mathematically, this coupling
closely resembles the spontaneous-emission jump operator,
as both processes are governed by the same electric-dipole-
moment operator, d,. Moreover, we treat the coupling light
beam as a classical field, which leads to the introduction of an
interaction term in the Hamiltonian, expressed as

Hy = —F - d cos(wt), (A12)

where E = Eé represents the electric field vector of the light
beam, with amplitude Ey and unit vector &, while w is the
carrier frequency.

Since the optical frequency is typically several orders of
magnitude higher than any other relevant frequency in the sys-
tem, the RWA naturally applies [55]. For a simple two-level
system, the transformation between the static and rotating

frames is given by
Uva = P, + Poe™™". (A13)

Under this transformation, the Hamiltonian takes the form

2 ni A A d A
H =0} AUy, — ihU}, — ” Upwa = U, ,HUpyy — BT
(Al4)
This results in a simplified form of Eq. (A12), which reads
A 1. 2 A E() A A
Hg = _EE -d — P,ho = -5 é.d, — P.hw. (A15)

&

For further details, see Ref. [55]. For simplicity, we omit the
tilde notation for transformed operators and refer to the RWA
only in the text.

To explicitly express this interaction, it is useful to apply
the Wigner-Eckart theorem. Moreover, since the dipole oper-
ator d is an odd operator, it couples only ground and excited
states without inducing additional energy shifts. By applying
V. = P,HgP,, we then obtain

R E R
=== Y (FM|Y_ ecd| fm)|[FM)(fm]
m,M £
Ey, . & _
=~ (Flld|lf) ZMéle*M @ ,{1)|FM> (fml
=Q ) @JFMG; ; ,{1>|FM><fm|, (A16)
e,mM

where €2 denotes the Rabi frequency, and for compactness,
we use the notation 1 = —1 and M = —M. This leads to the
total effect on the light beam being expressed as

Vo= Y i M( : ,{1)|FM><fm|,
&,m,M

~

H, — H, — Pho, (A17)

andV_ =V/.

3. Generalized rotating-wave approximation

As mentioned in Sec. III, when the system involves several
distinct time-dependent interactions, it is often more effective
to apply a generalized form of the RWA rather than a sequence
of standard RWAs. This generalized transformation can be
implemented using the following unitary operation:

Ugrwa = exp(—iGt), (A18)

where G is a time-independent generator of the transforma-
tion. The choice of G is not unique; however, a reasonable
approach is to identify the frequency differences between cou-
pled states and construct G as a diagonal operator encoding
these detunings. Importantly, applying a time-dependent basis
transformation induces an effective energy shift determined
by G:

(A19)

This implies that G should be chosen to simplify the sys-
tem’s energy structure while minimizing the introduction of
unnecessary scalar terms in the Hamiltonian. In our case, the
simplest choice—yielding the desired form of the Hamilto-
nian, as outlined in Ref. [49]—reads

WRF 0 0 0
N A oA A N 0 0 0 0
GZCURFng+CU [ 0 0 —awrg O (A20)
0 0 0 w
This leads to the transformation
’\ p leth +P e—la)f
e~ioret () 0 0
1 0 0
0 eiwkpt 0 (Azl)
() 0 e—la)t

Applying the above transformation and neglecting rapidly
oscillating terms at frequencies 2wgrp and 2w, the explicit time
dependence is eliminated from the Hamiltonian. This results
in effective energy-level shifts described by the diagonal ma-
trix: diag([—wgp, 0, wrp, —)).

4. Alternative forms of the master equation

It is important to note that different conventions exist for
formulating the quantum master equation—also known as
the quantum Liouville equation, also known as the Lindblad
or Gorini-Kossakowski-Lindblad-Sudarshan equation. In the
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context of this paper, two commonly used forms are partic-
ularly relevant: one prevalent in AMO physics and another
widely adopted in quantum information and quantum optics.

The most commonly used form of the master equation in
quantum optics is given in Eq. (1), where relaxation processes
are described by a set of independent jump operators ﬁ”.
This formulation is particularly convenient, as it allows for
a comprehensive characterization of the system’s dissipative
dynamics and facilitates further simplifications using the ef-
fective operator or superoperator formalisms.

In contrast, an alternative yet equivalent form of the master
equation is commonly employed in atomic physics:

dp

5 = L) =
where " and A(p) denote the relaxation and repopulation
operators, respectively [49,55]. These operators are usually
introduced phenomenologically, as they capture not only the
internal dynamics of the atomic system but also external
effects—such as atoms leaving the interaction region or being
replenished by new atoms entering the system.

Although the two forms differ in appearance, they
are mathematically equivalent under suitable identifications.
Their structural similarities are readily apparent, enabling
a direct correspondence between the jump-operator and
relaxation-repopulation representations:

=YLk,
%

Atp) =} LupL;,.
"

- 1 . "
—ilH, p]l = AT p} + Alp), (A22)

(A23)

(A24)

It is worth noting that although the transformation from jump
operators to relaxation and repopulation terms is relatively
straightforward, the inverse transformation is generally am-
biguous and not uniquely defined.

APPENDIX B: SUPEROPERATOR FORMALISM

As discussed in Sec. I, calculating LEPs usually requires
expressing the Liouvillian operator in a superoperator basis.
For easier comparison, it is also beneficial to represent the
NHH in the same basis. Since the choice of basis is not unique,
there are multiple possible implementations. Two common
approaches are vectorization into the Fock-Liouville space
using right- and left-hand-side operators, and expansion in the
generalized Gell-Mann basis [104].

1. Liouvillians in the generalized Gell-Mann basis

Here, we recall how the Liouvillian of a d-level system
can be represented in the basis formed by the generalized
Gell-Mann matrices, which are also commonly referred to
as generalized Pauli matrices, particularly in the context of
quantum information.

To begin, it is important to note that these matrices, to-
gether with the identity matrix—denoted as the set {6, : i <
d?}, where 6p X 1—form a basis for real-valued expansions
of Hermitian matrices [104]. Generally, such a basis can
be constructed following the method outlined in Ref. [104],
which reduces to the standard Pauli matrices for d = 2 and

the standard Gell-Mann matrices for d = 3. This property
makes the basis particularly well suited for standard Hermi-
tian Hamiltonians.

For NHHs, however, an additional complication arises:
Representing an arbitrary non-Hermitian d X d matrix re-
quires extending the basis. This issue can be addressed by
allowing the expansion coefficients to be complex.

Another crucial property of the generalized Gell-Mann ma-
trices is that they satisfy the standard orthogonality relation,
Ti(6;6;) = 26;;. This property enables the straightforward
vectorization of density matrices as follows:

dl
Z[ Tr(pd; } Zp,m = lp),

where |p)) represents the vectorized density matrix with el-
ements |p)); = Tr(p6;)/2. The next step is to express the
Liouvillian as a linear operator acting on this vectorized form:

(B

Lij = LTHLG)6:1. (B2)

To achieve this, Eq. (1) can be decomposed into three parts:
the Hamlltonlan component H the non- Hermltlan but coher-

ent part F and the quantum-jump term A. This separation
naturally leads to the 1ntr0duct10n of the NHH superoperator

defined as HNH = H + zF

L(p) — LIp) = (=Bl + T+ A)lp) = (=i + A)lp).

(B3)
The first term expands as
<
[H, p] = Z A, 6iloi = Y STe(UH, 6:16,)pi6;
i=1 i,j= l
d ~ ~
Z iHilo)i = Hlp). (B4)
where / is a matrix with elements given by
Hij = iTe([H, 6;16)). (B5)
Analogously, the second term in Eq. (1) expands as
1 1 &
PN EEEDY ZTr( WL, 61167 | pi6
I i,j=1
d ~ A~
= > 6;Lilp)i =Tlp). (B6)
i,j=1
where [ is given by
f (B7)

1 N
i=-7 E Tr({L} L. 6,}6)).
w
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The last term, describing quantum jumps, reads

d2
f‘;plzﬂ = Z - ZTr(I:;(%,I:,L&J)p,c?J
n ij=1" n
d2
=) 6ihjilp)i = Alp)). (B8)
i,j=1
where A is given by
2 1 “ “
Ay =3 > T 6L,6). (B9)
"

2. Liouvillians in the Liouville-Fock basis

Expanding a Liouvillian of d-level system in the gen-
eralized Gell-Mann basis is a natural choice, especially
from the perspective of experimentally implemented pro-
cess tomography. However, this approach can initially seem
counterintuitive when the system of interest is not simply a
single-spin system—for example, a two-level system where
the excited state is explicitly retained rather than eliminated.
Despite this, such impressions are generally misleading, as
the generalized Gell-Mann basis can represent any finite-
dimensional system.

Alternatively, this opens the door to a different approach
based on expansion in the Liouville-Fock basis. This method
inherently vectorizes the density matrix [62], transforming it

as follows:
=Y ol ® 1j")
i,J

p=>_ pilid(jl — Ip)
ij
In this formalism, the density matrix is transformed into a vec-
tor by sequentially stacking its elements column by column.
To complete the framework, it is necessary to define the
right- hand side and left hand-side acting superoperators, de-

(B10)

noted as R [A] and L[F] respectively. These superoperators
can be expressed as

A,

Lifley = @@ Dipy =D (Pl @ 1)

i,j
— > pifli)(jl = Fp.
iJ

RIPe) = ( ® IT)|p) —> of. (B11)

By adopting this convention, the Liouvillian (1) in the master
equation can be expressed as

L=-iAoi-19A")
- N 1,4 T A
* T T
+y [L,L ®L, — (Ll ®l+1 ®LMLM)}. (B12)
I
3. Properties of the Hamiltonian superoperator

Following the definition of the superoperator I:}i j in
Eq. (B5), we establish two key properties: It is represented
by an antisymmetric and purely imaginary matrix.

First, we demonstrate the antisymmetry property:

N
A

H;; = %Tr([l—?, 6;161)
= HTr(H6,6:) — Tr(6;H6))}

= 2{Tr(Héjé-,) —Tr(H6:6;)} = —H;:. (B13)
This shows that A is antisymmetric. Importantly, this result
relies only on the cyclic property of the trace and thus holds
regardless of the chosen basis.

Next, we demonstrate that the elements H; ; are purely
imaginary by computing the complex conjugate of its matrix
elements:

(B = LTr(A, 6716))"
= 1Tr({[H, 6,161}")

= 1Tr(6]14,6,1"). (B14)

Since both &; and A are Hermitian, we can use the property

A A

= (A& —-&H) =6/A" - A'6] =[6,, Al.

(B15)

Substituting this into our previous expression and applying the
cyclic property of the trace, we obtain

A
A

Atroy ~ At ATA Y
Hj = §Tr(6[H,6/1) = 3Tr(6,(6;, H])

= Tr([6;, H16;) = —Tr(IH, 6;16;) = —H;;.  (B16)

This confirms that I-?, ;s purely imaginary.

4. Properties of the non-Hermitian coherent part in Liouvillians
Analogously, we now establish the key properties of the

superoperator I'; ;j defined in Eq. (B7). In particular, we show
that it is symmetric and real-valued.
The symmetry property follows by an argument similar to

the antisymmetry of H:

I = —1Tr({l", 6,161

—HTr(16,6:) + Tr(6;1'6)]

—HTr(06;6) + Tr(F'6:6)] = T'j;. (B17)
This confirms that " is a §ymmetric matrix.

To demonstrate that I" is real-valued, we first note that
although the jump operators I:M may be non-Hermitian, the
operator [' = I:LI:M is always Hermitian. This observation
allows us to write

(0.6 = (07, 67y = (I, 6. (B18)

Using similar reasoning as in the previous case, we compute
the complex conjugate:

=

;kj = AllTI'({F, 6’1}5})* = _%Tr(éj{f‘, Aj} )
= —%Tr(&i{f‘, 6;) =Te({l", 6;}6:) =T, (B19)

This confirms that [ is a real-valued matrix.
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5. Correspondence between operator and superoperator spectra

It is straightforward to observe that a superoperator, repre-
sented by a d* x d? matrix, has d? eigenvalues, whereas the
underlying Hamiltonian operator from which it is derived pos-
sesses only d eigenvalues. This discrepancy implies that the
superoperator spectrum must exhibit a degree of redundancy
or degeneracy, as it cannot encode more information than
the original operator’s spectrum. Consequently, one expects
a direct and structured relationship between the spectra of the
operator and its associated superoperator.

To investigate this relationship, we first observe that for any
linear operator, the right and left eigenvalue problems yield
identical eigenvalues, even though the corresponding eigen-
vectors are generally distinct. This equivalence arises because
both formulations are governed by the same characteristic
equation:

Hyulu) = Elu), (v|Hxg = E (v],

(Hxu — 1E)lu) =0, (v|(Hwu — 1E) =0. (B20)

Thus, the characteristic equation in both cases takes the form
det(Axu — 1E) = 0. (B21)

To analyze the eigenvalue problem of the corresponding su-
peroperator Hyy, we proceed as follows:

Axulr) = AA) = AxuX — XA, = AR, (B22)

where the superoperator is expressed in operator form, as
given in Eq. (3), and X denotes the operator whose vectorized
form is |A)) [see, e.g., Eq. (B1) or (B10)].

Since X must be preserved under the action of Hyy from
both the left and the right, it is natural to construct X from the
right and left eigenvectors of Hyu, such that X; i = lui){vjl.

Substituting this form into the eigenvalue equation yields
ﬁNHP»ij)) = HxuXij — Xijlfl;m
= Hnlu) (0] — i) (v | Ay

= (E; — E})lui){v;l. (B23)

This derivation demonstrates that the spectrum of the non-

Hermitian superoperator Hyy is fully determined by the
eigenvalues of the underlying operator Hyy. However, the
superoperator spectrum is not merely a subset of the oper-
ator spectrum; instead, it exhibits a richer structure formed
from all possible pairwise differences between the operator’s
eigenvalues and their complex conjugates.

The structure of Eq. (B23) reveals that spectral degen-
eracies in the NHH operator, i.e., when E; = E;, directly
translate into degeneracies in the corresponding superopera-
tor spectrum. Specifically, the eigenvalues A; = A;; = Aj; =
Ajj = 2Im(E;) become degenerate.

This observation can be generalized: An n-fold degeneracy
in the spectrum of an NHH operator induces at least an n>-fold

degeneracy in the spectrum of the corresponding superoper-
ator. It is important to emphasize that this represents only
a lower bound on the degeneracy order in the superoperator
spectrum—additional degeneracies may emerge depending on
the specific structure of the operator and the relationships
between its left and right eigenvectors.

APPENDIX C: ADDITIONAL ISOTROPIC RELAXATION
IN THE SUPEROPERATOR DESCRIPTION

Following the approach outlined in Sec. IV B, we incorpo-
rate isotropic relaxation within the superoperator framework.
To enable a direct comparison with the results obtained for
LEPs, we introduce the following modified form of the hybrid
Liouvillian:

Lo(q) = L(q)+ Ty + A, 1)

where ﬁ(q) is the hybrid Liouvillian defined in Eq. (27).

The operators f‘g and A ¢ represent, respectively, the hyperfine
relaxation and repopulation (quantum jump) contributions in
the superoperator basis. As a result, the matrix representation
of the modified hybrid Liouvillian becomes

['g(Q)

1 0000 0 0 O0 0
0O 1 000 0 0 O0 0
001 00 0 0O O
. 0001 00 00 0
=L@-y|0O 0 0 0O 1 0 0 0 O
00000 1 0 O0 0
00000 0O 1 0 0
00000 OO0 1 0

00000 0O 0 0 I—g

(€2)

In general, this modification substantially affects the super-
operator spectrum. However, in the limiting cases of ¢ =0
(corresponding to the NHH limit) and ¢ = 1 (representing
the pure Liouvillian case), the resulting spectral changes are
notably simple and analytically tractable.

For the pure NHH limit (¢ = 0), the original spectrum [see
Eq. (31)] is modified to

Y, —af —y, - — ¥,
y,—2Q -y}, (C3)

{—y. 2Q—y, —af —
—a—y, =20 —y, —2a; —

which corresponds to a uniform shift of the real part of the
spectrum by —y. This aligns with the nature of isotropic re-
laxation, which imposes uniform damping on all eigenmodes.

Similarly, in the ¢ = 1 case (the fully trace-preserving
Liouvillian regime), all eigenvalues are uniformly shifted
by —y, with the exception of the stationary state at 1 = 0.
This behavior highlights the isotropic nature of the relaxation
process while ensuring the trace preservation of the density
matrix.
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