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Programmable state switching
based on higher-order exceptional
points in anti-parity-time
symmetric microcavity systems

Arnab Laha'™, Dinesh Beniwal?, Somnath Ghosh?* & Adam Miranowicz*

Diverging from traditional parity-time (PT)-symmetric paradigms, anti-PT (APT) symmetry provides an
intriguing framework for harnessing non-Hermitian physics, offering the immense potential to control
light-matter interactions in artificial photonic systems reliant on negative-index materials, typically
realized with metamaterials. We report a specially configured Fabry-Pérot-type microcavity system
by harnessing the unique anti-PT-symmetric constraints with negative-indexed background materials
and meticulously balanced gain-loss distributions. We unveil the intriguing topological properties

of a parametrically encircled third-order EP (EP3), emerging from two connected second-order EPs
(EP2s) among three cavity states. We present a programmable adiabatic state-switching process

and highlight the nuanced behaviors of second and third-order branch points by winding around
embedded EPs within a 2D gain-loss parameter space. This work explores the theoretical foundations
of the topological properties of EPs in negative-indexed media, paving the way for a novel class of
metamaterial-based artificial photonic devices.

The integration of non-Hermitian physics into photonic systems has garnered significant interest, particularly
within the realm of wave propagation in gain-loss media'~’. Non-Hermitian systems typically exhibit complex
eigenvalues. However, the distinctive aspect of a particular class of non-Hermitian systems showing parity-time
(PT)-symmetry lies in their possession of real eigenvalues in a specific phase’~!!. A fascinating non-Hermitian
phenomenon, the emergence of an exceptional point (EP) singularity, occurs in PT-symmetric systems during
the phase transition from an unbroken PT phase (with real eigenvalues) to a broken PT phase (with complex
eigenvalues) as control parameters are tuned. An EP of the order n (say, EPn) is encountered as a topological
singularity in the system’s parameter plane when n number of underlying eigenvalues and their corresponding
eigenvectors coalesce simultaneously'?. The diverse scientific and technological influence of EPs at the forefront
of ongoing research in the fields of photonics facilitate a versatile range of intriguing applications®”’, such as
controlled lasing with asymmetric state-switching!*~!%, topological state-flipping?*~2* antilasing?*%5, slow-light
engineering?, enhanced nonreciprocity’’? and ultrasensitive detection®*-32. Moreover, in quantum optics, the
intriguing properties of quantum EPs*~38 have extensively been studied in the context of quantum state® and
process’® tomography, quantum heat engines*!*2, exceptional refrigeration*?, and many other applications of
cutting-edge quantum state engineering. Beyond photonics and quantum optics, the fascinating properties of
EPs have also been investigated in atomic***, molecular*, microwave?” as well as electronic systems*®.

Beyond the conventional link between PT-symmetry and EPs, anti-PT (APT) symmetry**->! has recently
garnered significant attention in the study of photonic systems utilizing artificial materials. This emerging
paradigm presents new opportunities to harness non-Hermitian properties. In an APT-symmetric photonic
system with gain and loss, the defining characteristic is the anti-commutation relation between the PT operator
and the system’s Hamiltonian. This necessitates a precisely balanced gain-loss distribution embedded within a
carefully engineered background composed of both positive and negative refractive index materials (a detailed
mathematical framework of an APT-symmetric non-Hermitian Hamiltonian is provided in the next section)®.
This structural requirement makes APT symmetry different from conventional PT-symmetric systems, where
a negative-index background is not essential. The realization of such negative-indexed materials is typically
achieved through metamaterials, characterized by negative permittivity and/or negative permeability. Therefore,
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the integration of EPs within an APT-symmetric system holds substantial promise to unveil novel perspectives
in understanding the EP-induced light dynamics®>~°, particularly influenced by the distinctive attributes of
negative-indexed materials.

A recent surge of interest in exploring EP-induced phenomena in APT-symmetric systems has primarily
focused on various coupled waveguide configurations with complex coupling®*->>. However, these studies have
mainly addressed second-order EPs (EP2s). The topological nature of EP2s, stemming from their branch point
structure in complex parameter spaces, has attracted significant attention, particularly due to the robust, path-
independent eigenvalue permutation phenomena that arise during their parametric encirclement, enabling
controlled state switching processes. This phenomenon has been widely explored both theoretically*44>->¢
and experimentally?”57-%0, Furthermore, state exchange phenomena driven by the parametric encirclement of
higher-order EPs have been investigated in waveguide!>*! and microcavity systems?!. However, research on the
topological properties of higher-order EPs in APT-symmetric systems, particularly in the context of parametric
encirclement, remains lacking. Most of the previous studies have primarily focused on PT-symmetric systems at
the transition between exact and broken symmetry regimes. In contrast, systems incorporating negative-index
materials, such as metamaterials, lack PT-symmetry and instead exhibit APT-symmetry. A growing interest in
this field can be observed in a recent study on APT-symmetric coupled ring resonators for lasing applications®2.
In this article, we leverage the unique characteristics of APT-symmetry to investigate the operation of a Fabry-
Pérot-type microcavity system, focusing on its potential for programmable mode-switching applications.

As compered to EP2s in two-level photonic systems, the extended platform to host higher-order EPs
in multilevel systems present greater challenges, requiring enhanced complexity in the parameter space
with multiple tunable parameters®. It has been predicted that the coalescence of #n coupled states requires
(n? +n —2)/2 control parameters®, which showcases the complexity of the system’s parameter space in
terms of number of control parameters. An alternative approach has been developed®>~%7 based on a concurrent
influence of (n — 1) EP2s to achieve the topological branch-point behavior inherent to an EP#n, which has
numerically been implemented in waveguide!> and microcavity?! systems. This alternative approach offers the
advantage of reducing the number of required control parameters, simplifying the experimental or numerical
handling of the system.

In this paper, we report a specially configured gain-loss assisted APT-symmetric optical microcavity to host
parametrically encircled EPs up to order three. Diverging from the conventional paradigm of PT-symmetry,
our optimization aims to present the topological features of higher-order EPs under the APT-symmetric
constraints using the simplest possible platform. We exclusively design a specialty Fabry-Pérot-type microcavity
system incorporating negative-index background materials and a precisely tuned gain-loss profile. Leveraging
the interaction of three coupled cavity states in the proximity of two connected EP2s, our proposed system
facilitates the exploration of the intriguing topological properties of a third-order EP (EP3). Through appropriate
customization of the gain-loss parameter space to accommodate various EP encirclement schemes under APT-
symmetric constraints, we reveal the chiral characteristics of both second- and third-order branch points,
particularly within the framework of a programmable adiabatic state-switching process. The intertwining aspects
of APT-symmetry and exceptional points not only deepen the understanding of fundamental non-Hermitian
physics, but also unlock possibilities for designing novel devices with tailored functionalities, spanning the fields
of photonics and quantum optics.

Formation of higher-order EPs in an APT-symmetric system: analytical insights

While, a PT-symmetric Hamiltonian (say, Hpr) adheres to the commutation relation [PT, Hpr| = 0 [given
that PT : {z,¢,i} — {—z, —t, —i}], APT-symmetric Hamiltonian (say, HapT) endorses an anti-commutation
relation, ie., {PT, Hapr} = 0. Here, Hpr and Hapr adheres an inherent relation Haptr = +iHpt. An
analytical interpretation of the occurrence of an EP3 in an APT-symmetric system can be perceived by analyzing
a 3 x 3 non-Hermitian Hamiltonian. We consider a general matrix form of a Hamiltonian H and a parity
operator P as

a1 — tb 1" —if3 0 0 1
H = 1o az — iba ixe% and P=|1 0 1 0 |, (1)
—ip i as—ibs 1 0 0
where H would be APT-symmetric with respect to P under the conditions:
az = —ai1, a2 =0, and b1 = bs. (2)

In H, the diagonal terms (a; — ¢b; with j = 1,2, 3) represent three unperturbed eigenvalues, where the off-
diagonal terms characterized by « and f3 represent complex coupling.
The eigenvalues of H, say \; (j = 1,2, 3), are determined by solving the roots of the cubic equation:

e® + c1e? + cae 4¢3 = 0. (3)
Under the APT-symmetric conditions given by Eq. (2), the coeflicients of Eq. (3) can be expressed as
c1 = i(2b1 + bz), (4a)

ca = —(al +b3) — 2(b1by — o) + 32 (4b)
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ca = —i {(a} +b})b2 — 20 (br — ) — B2} . (49

The eigenvalues can be determined using Cardano’s method %, yielding the following expressions:

€1 =wet +we_ — &, (5a)
e2=ep e — (5b)
€3 = wey +we_ —E&. (5¢)

Here, w? = 1, featuring w as a cube root of unity, and & is the complex conjugate of w. £+ and £ are given by

1/3
£r = (gi \/g2+h3) and 5:6—31, (6)
where

2 2
Ccy C1C2 C3 c1 C2

_ _ = _ =1 =, 7
57 5 5 and h 9 + 3 (7)

Now, under different settings of the overall perturbation, controlling the interaction among eigenvalues leads
to various scenarios involving the emergence of multiple EP2s (pairwise) or an EP3. These scenarios can be
understood based on the following conditions:

e =e—, wey=¢c_, and wey =¢€_. (8)

Each of the conditions in Eq. (8) corresponds to the coalescence of a distinct pair of eigenvalues, resulting
in three possible EP2s. Specifically, the condition €, = e_ implies €1 = €3, while 2 remains distinct.
This indicates the presence of an EP2 between the eigenvalue pair {e1,&3}. Similarly, we; = e_ leads to
€1 = €2 # €3, corresponding to an EP2 between {e1, £2}. Likewise, we = e_ yields g2 = €3 # €1, signifying
an EP2 between {e2,¢3}.

Together, these conditions indicate that the system can support three distinct pairwise EP2s depending on
how the perturbation parameters are tuned. For complete coalescence of all three eigenvalues, i.e., the occurrence
of an EP3 (where €1 = €2 = €3), all three conditions in Eq. (8) must simultaneously hold. This is achieved
under the more restrictive requirement that e; = e_ = 0, corresponding to the vanishing of both cube roots
in Cardano’s formalism. However, here we focus on exploring the topological branch-point behavior of an EP3
by winding around any of the two connected EP2s, where the fulfillment of any two of the three conditions in
Eq. (8) is mandatory.

Moreover, the validation of the equalities in Eq. (8) indicates that the square root term in £+ [given by Eq. (6)]
vanishes, leading to the cube-root dependence of e+ directly. It is important to highlight that when we focus on
a single EP2, the analytical problem simplifies to a 2 x 2 Hamiltonian, where two associated eigenvalues feature
square-root terms®®. Hence, the sensitivity of such a system follows a square-root dependence on perturbation
at an individual EP2. But when we consider a 3 X 3 Hamiltonian, the eigenvalues consists cube root terms, and
hence the sensitivity exhibits a cube-root dependence on perturbation, like the case of an EP3.

Now, we implement such a coupling scheme in an APT-symmetric photonic system, where the complex
potential is represented by the complex refractive index profile n(x). Here the adherence to APT-symmetry

is contingent upon the condition n(x) = —n*(—z) [unlike a PT-symmetric system with n(z) = n"(—x)
]. This requirement results in the real part of the refractive index behaving as an odd function, while the
imaginary part exhibits characteristics of an even function; i.e, nr(z) = —nr(—z) and ni(z) = ni(—x)

with n(z) = nr(z) + ini(x). In this context, the variable n1 is fundamentally tied to the interplay of gain
and loss within an optical system. Therefore, the implementation of APT-symmetry demands a balanced and
symmetrical distribution of gain and loss across a structured background index profile (like a PT-symmetric
system). However, the odd function characteristics of ng introduce an additional condition for an APT-
symmetric system, mandating the use of negative-indexed background materials alongside a precisely balanced
gain-loss distribution®’. This fundamental engineering difference distinguishes an APT-symmetric system from
PT-symmetric systems.

Therefore, we implement such a complex coupling scheme, as mathematically demonstrated by the
Hamiltonian in Eq. (1), in a gain-loss assisted multiplayer microcavity system with a combination of positive
and negative refractive indexed materials. A carefully engineered layer-by-layer gain-loss modulation, based
on a chosen set of parameters, introduces imaginary components into the effective permittivity, which is
manifested as complex-valued couplings in the corresponding Hamiltonian. Moreover, the asymmetry in the
coupling strengths (i.e., distinct values of o and /3, as in the Hamiltonian) can be precisely tuned by adjusting
the thickness and refractive index contrast of the individual layers, as well as by independently detuning the real
and imaginary parts of the refractive index across the structure. Therefore, the interplay among index contrast,
gain-loss modulation, and layer thickness governs the complex mode coupling in the system, effectively giving
rise to the off-diagonal complex terms in the effective non-Hermitian Hamiltonian.

To analyze our microcavity system, we implement scattering (S) matrix formalism method, where the
physical eigenvalues can be calculated in terms of the poles of the associated S-matrix. Here, an EP3 emerges
from the interplay between two interconnected EP2s. Instead of directly encountering an EP3, which requires
a complex coupling structure with many variables, we focus on its topological properties. This is achieved by
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encircling two interconnected EP2s within a 2D parameter space based on gain-loss profile, as delineated in the
following sections.

Results and discussion

Designing an APT-symmetric microcavity

We engineer a 1D Fabry-Pérot type optical microcavity with a blend of positive and negative indexed [say,
nr ()] background materials, featuring a length of L = 8 um (0 < < L). Here, non-Hermiticity is achieved
through a tailored gain-loss profile, typically represented by the imaginary part of the refractive index [say,
n1(z)], where negative ni(z) corresponds to gain and positive ni(x) corresponds to loss. In this configuration,
the overall cavity system consists of six layers [designated as L1 to L6 from left to right side, as in Eq. (9)]
distinguished by two passive index parameters, £n1 = 3.48 and +nz = 1.46, along with two gain-loss control
parameters, 7y (a gain-loss coefficient) and 7 (a loss-to-gain ratio). The overall refractive index profile n(x),
expressed as n(z) = nr(z) + in1(x), operates according to the functional form:

+n t|le—1lol €0, 1] = L4 and L3,
n(z) =< E*na—iy :|z—1Io| €[li, 2] > L5 and L2, )
Fng + 1Ty :‘x—lo‘E[lz,lp,]—) L6 and L1 .

The entire setup is designed to maintain APT-symmetry, which can be understood by the distributions of
ngr(z) and n1(x) based on precisely chosen length parametersl; (j = 0, 1,2, 3; I; < L) withlo = 4 pm = I3,
l1 = 3.4 pm, and l2 = 3.5 um. Figure la shows a schematic design of the entire cavity system, accompanied by
the chosen profile of complex n(x), where the corresponding ngr (z) and ni(z) follow the features of odd and
even functions, respectively. The chosen configuration allows us to uphold APT-symmetry consistently for any
specified values of v and 7 throughout our investigation. Figure 1b illustrates the positions of three complex
eigenvalues, which are analyzed to explore their interactions in the presence of gain-loss. These eigenvalues are
determined based on the poles of the S-matrix associated with the microcavity, as explained in the following
methods section.

With a universal approach, our optimization aims to simplify the system’s geometry, making it easier for
practical realization. We choose the Fabry-Pérot geometry due to its straightforward practical design and
broad material availability. Moreover, the length of a Fabry-Pérot-type cavity has precise control on the spacing
between corresponding resonance states over a particular frequency range. Such a configuration offers seamless
integration into existing optical systems and allows for axial output coupling, which is infeasible in toroidal
resonators without proper phase matching. Our proposed design offers an ease of scalability to different sizes
(including miniaturization) and frequencies. Notably, there are no active components in the two inner layers
that span the majority of our designed cavity (0.6 um < x < 7.4 um from the total cavity-length of 8 um).
Instead, the gain-loss profile confined to the four thin outer layers exclusively controls the entire coupling and
subsequent interactions within the cavity. Such a configuration provides a convenient platform for practical
implementations.

Using state-of-the-art fabrication techniques, a similar scalable prototype can be achieved with silica-
silicon-based materials for the positive-indexed layers, while optical metamaterials can be manipulated® to
achieve the desired negative refractive index for the negative-indexed layers under the operating conditions. The
customized gain-loss profile can be integrated via a controlled nonuniform pumping scheme or by doping of
lossy and gain elements using a standard lithography technique. In this context, the effect of material dispersion
can be controlled by careful engineering of both the material properties and the microcavity geometry based
on chosen frequency range. Due to precise control of the Fabry-Pérot-type cavity geometry on the spacing

(a)
v

0
APT-symmetric cavity O O
_ & &y
Y, g g
=
£ \ /
-0.5 0
4 x (um) 8 16.02 Re(k) 16.25

Fig. 1. (a) A schematic representation of the proposed APT-symmetric microcavity consists of six layers
[labeled as L1 to L6 from left to right, as mentioned in Eq. (9)], along with the corresponding complex
refractive index profile 7n(x). In the schematic, zleET) and ¢, represent the forward and backward propagating

fields, respectively, from the left (right) side of the cavity. In the refractive index profile, the variations of the
ngr(z) and ni(z) are illustrated by solid blue and dotted red lines, respectively (labeled along the left and right
y-axes). (b) The coordinates of three chosen S-matrix poles, indicated as €., €3, and €, situated within the
complex k-plane, while considering the passive cavity with v = 0. Two arrows show the anticipated interaction
scheme among them in the proximity of two connected EP2s.
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between resonance states, the proposed multilayered structure, incorporating custom-engineered materials and
metamaterials, offers enhanced control over material dispersion while operating within the selected narrow
frequency range (from 15.5 um ™" to 16.5 um ™ '; even after considering the movement of poles under proposed
encirclement conditions, as exhibited later).

Method: scattering matrix formulation
Here, we manifest the physical eigenvalues in terms of the resonance states of the designed microcavity, which
are numerically estimated by the scattering (S) matrix formalism?"7°. The S-matrix relates these incoming and
outgoing field amplitudes from the both sides. For a 1D multilayer microcavity system, the S-matrix can be derived
by combining the transfer matrices of individual layers (based on the scattering theory of electromagnetism).
Figure 2 schematically represents a 1D multilayer microcavity system composed of N layers, which is structurally
analogous to our proposed system. The field amplitudes at the extreme left and right ends of the system are
denoted by { A, A5 }and {A], AJ}.

Each of the layers can be described by a transfer matrix T, which relates the field amplitudes at the right side
of the layer to those at the left side. Considering a specific jth-layer that occupies the regionz = x; 1 tox = x;,
the transfer matrix equation can be written as

+ +
a3 —7. | &1
|: CLZ :l o J |: a; :| - ) (10)
T =x; T=Tj—1

where, {a], a; } and {a3, a] } are the modified field amplitudes at left (x = x;_1) and right (z = =) sides of
the layer (as shown in Fig. 2). T represents the 2 X 2 transfer matrix of the jth-layer. The overall transfer matrix
T of the multilayer system is the product of the transfer matrices of the individual layers:

T=T\Ty.Ts...T;... Tx, (11)

where N represents the total number of layers. Here, the order of multiplication corresponds to the physical
sequence of layers in the cavity. The matrix elements of the overall transfer matrix

[ T The
= { To1  To2 } (12)

are the functions of frequency and chosen refractive index.
Now, the S-matrix that relates incoming and outgoing field amplitudes [as described by Eq. (15)] can be
written as

S S RW 7™
st =[ & 82 ]| fo fo | 13

Here, R and T represent the reflection and transmission coefficients from left (I) and right (r) side of the cavity,
respectively. The S-matrix elements can be computed in terms of the T-matrix elements as follows:

T 1
S =RV =22 S12=T" = —,
T2 T2 (14)
det (T") Ti2
21 Ty 22 Toy
Therefore, the S-matrix equation for the overall microcavity system can be written as
Ay | Af

AT — o o> 5o o afoo sl al oo oo o — 4
ny n, N3 XX n]- XX nn_1| Nn

A5 —  dy | “—a;, | e He— 4

f
T
T
T
T
T

X = Xg X1 e xj—l x]- XN > X

Fig. 2. Schematic diagram of a 1D two-port open multilayer microcavity system composed of N layers with
refractive indices n1, no, . .., nx. The field amplitudes at the extreme left and right ends of the system are
denoted by { A, A5 } and {A7, A} }, respectively. The modified field amplitudes at positions x = z;_1 and
x = x;, corresponding to the jth layer, are given by {a], a5 } and {a], a; }.
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We implement this process numerically to analyze our cavity. Equation (15) essentially represents the S-matrix
equation for our proposed microcavity, where the field amplitudes { A, A; } and {A;, A} are associated
with incoming fields {1/}?', 1, } and outgoing fields {¢; ", 17} }.

The matrix elements S;;{k,n(z)} are derived as functions of both frequency (k) and the chosen n(x).
Adhering to the energy conservation and causality conditions, the complex poles of the S-matrix, residing
in the fourth quadrant of the complex k-plane with Re(k) = mn/(nrL) (where m denotes the order of the
poles;m = 1,2, 3. ..), signify the physical resonance states within the cavity*!”°. These poles are determined by
solving the equation

1
max |eig [S {n(z), k}]|

=0 (16)

through a numerical root-finding method. From alarge number of poles appearing in the lower half of the complex
k-plane, we meticulously choose a set of three poles within the frequency range 16.02 < Re(k) < 16.25 (in
pm 1) to study our interaction schemes. These three chosen poles are denoted as &, €5, and &4, where their
distribution in the complex k-plane are shown in Fig. 1b (indicated by three diamond markers of red, blue, and
green colors, respectively). It is noteworthy that we can also choose other frequency range to observe similar
interaction phenomena. The initial distribution of these poles in the complex k-plane follows a nonlinear pattern,
primarily resulting from the chosen nonuniform profile of ng (). With the onset of non-Hermiticity through
controlled adjustments of gain-loss parameters, v and 7, these poles become mutually coupled. Such a coupling
in response to changes in the control parameters stems from variations in the resonant frequencies (energies)
and decay rates (lifetimes) [as indicated by Re(k) and Im(k), respectively] of the corresponding poles. We delve
into their interactions, exhibiting avoided-crossing characteristics in the proximity of two second-order branch
points.

Hosting EPs of different orders
We monitor the trajectories of €, €3, and €4 in Fig. 3, while deviating from the passive condition through a
gradual increase of +y, across various T-values. In Fig. 3a, we depict two different topological configurations
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Fig. 3. Trajectories of €, €5, and €4 (depicted by dotted red, blue, and green curves) with an increasing +,
while considering different 7-values. (a) 7 = 0.879 (upper panel): An anticrossing and a crossing in Re(k) and
Im(k), respectively, associated with €, and €5, occurring near v = 0.1525. 7 = 0.883 (lower panel): A crossing
and an anticrossing in Re(k) and Im(k), respectively, associated with €, and €y, occurring near v = 0.1535.
(b) 7 = 0.881: Emergence of EP2(":P) due to the coalescence of €, and &5, at v = 0.153. €4 remains away
from the strong interaction regime of €, and ¢y in (a) and (b). (c) 7 = 0.275 (upper panel): An anticrossing
and a crossing in Re(k) and Im(k), respectively, associated with €5 and €, occurring near v = 0.3305.

7 = 0.279 (lower panel): A crossing and an anticrossing in Re(k) and Im(k), respectively, associated with ey
and €4, occurring near y = 0.3315. (d) 7 = 0.277: Emergence of EP2(":2) due to the coalescence of £, and g4
aty = 0.331. ,- remains away from the strong interaction regime of €5 and €, in (¢) and (d). In (b) and (d),
the diamond markers show the locations of €., €, and €4 at ¥ = 0. The unit of k is umil.
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of avoided-crossings among ¢, and €3 in the complex k-plane, where €4 deviates from the interaction regime.
While considering 7 = 0.879, Re(k) associated with ¢, and €5 undergo an anticrossing, and the corresponding
Im(k)-values exhibit a crossing with an increasing 7y (as shown in the upper panel). However, a slight increase
in 7 to 0.883 unfolds an exactly opposite topological scenario (for the same variation of ) with a crossing and
an anticrossing in Re(k) and Im(k), respectively, linked with €, and €, (as shown in the lower panel). Such a
topological transition utterly validates the occurrence of a singularity, specifically an EP2. Here, we identify an
EP2, say EP2(rb) for an intermediary 7 = 0.881, leading to coalescence of €, and € at v =~ 0.153. In this case,
€4 remains unaffected. In a similar way, two topologically different avoided-crossings among ¢, and €, with
an anticrossing (a crossing) in Re(k) and a crossing (an anticrossing) in Im(k) can be observed in the upper
panel (lower panel) of Fig. 3¢, while varying « for a chosen 7 = 0.275 (7 = 0.279). This implies the emergence
of another EP2, say EP2("#), as shown in Fig. 3d, where £, and €4 coalesce at v ~ 0.331 for an intermediary
T = 0.277, keeping ¢, unaffected.

Therefore, we observe a unique scenario involving the three chosen poles, where €; becomes analytically
connected to &, and €4 through two interconnected EP2s, i.e., EP2(":P) and EP2(":#), positioned at coordinates
(0.153, 0.881) and (0.331, 0.277), respectively, within the (v, 7)-plane (2D parameter space). Notably, while a
specific pair of poles coalesce at an EP2, the third pole remains unaffected. Such an intricate scenario occurring
within a particular interaction regime leads to the emergence of a third-order branch point, specifically an
EP3, where all three interacting poles are intricately linked?:%. The significance of our study lies in adopting
a universal methodology that remains valid even when considering APT-symmetry. Our distinctive cavity
configuration ensures the persistence of APT symmetry over the entire adjustable range of v and 7. While the
complex poles, typically in the broken PT phase, may enter an unbroken PT phase for specific values of v and
7, this PT-phase transition is not associated with the occurrence of an EP. Without relying on any inherent
connection between EPs and PT-phase transitions, our proposed approach is effective for identifying multiple
connected EP2s, facilitating the exploration of the topological properties of higher-order EPs.

Parametrically encircling the encountered EPs

We investigate the branch-point behaviors of the embedded EP2s by driving the perturbation quasistatically in
terms of a patterned gain-loss variation along a closed loop in the (-, 7)-plane, subject to various conditions
under the APT-symmetric constraints. When such a parametric loop encloses one or more EP2s, the associated
eigenvalues undergo a cyclic permutation that remains invariant with respect to the specific shape or size of
the loop, as long as the enclosed EP2s remain within the loop. Consequently, neither any deformations nor
fluctuations in the loop trajectory affect the eigenvalue permutation. This robust behavior reflects the branch-
point topology of the eigenvalue planes and is thus referred to as topological in nature. It is worth noting,
although not the focus of this manuscript, that encircling an EP can also induce a geometric phase®” (specifically,
a Pancharatnam-Berry phase), even in the absence of dynamic evolution. This phase is linked to the holonomy
(or nontrivial loop structure) in parameter space, which further reinforces the topological character of EP
encirclement phenomena.

For our analysis, we consider a particular loop defined parametrically as

7(#) = v0sin(¢/2) and 7T(¢) =70 — psing. (17)

Here, (70, 70) and p, (< 1; # 0) represent the characteristic parameters determining the number of EP2s to
be encircled (7o must exceed the y-coordinate of the respective EP2 to be encircled), where p > 0 (p < 0)
characterizes an anticlockwise (a clockwise) encirclement scheme for 0 < ¢ < 27. The chosen shape of the
parametric loop ensures that the encirclement process begins (¢ = 0) and ends (¢ = 2m) at the passive cavity
condition (y = 0).

It is important to note that although the gain-loss profile is externally modulated in accordance with the
parametric loop, it is intrinsically tied to the underlying geometry (structure and complex refractive indices)
of the system. The spatial distribution of gain and loss, realized through carefully engineered multilayer
configurations, acts as the physical substrate through which the parametric variation is implemented. Thus, the
control parameters (v and 7) trace out the loop by virtue of geometric and material design, ensuring a direct
connection between the abstract parametric space and the actual physical structure. Moreover, while varying
~ and 7 along a closed loop, the Kramers-Kronig relations play a crucial role, as these parameters are linked
to ni(x) over the chosen ng(z). It is essential to maintain precise control over ni(z) to ensure that slight
modifications in ng (z) do not cause the EP to shift outside the loop. In our proposed microcavity, the absence
of gain-loss in majority of the structural geometry (0.6 um < x < 7.4 um), combined with the robustness of
EP-induced topological properties against reasonable parametric tolerances®, ensures the persistence of the
Kramers-Kronig relations for our study.

Here, the features of the second-order branch point of the embedded EP2s become evident when encircling
them individually. However, an encirclement scheme enclosing both the EP2s simultaneously reveals the nature
of a third-order branch point. Figure 4a illustrates the coordinates of EP2(*:*) and EP2("#), alongside three
distinct encirclement schemes in the (v, 7)-plane. The encirclement patterns are delineated as follows: Loop-1
(the black loop), characterized by 7o = 0.3, 7o = 0.8, and p = 0.2, encloses only EP2(x:b); Loop-2 (the orange
loop), governed by yo = 0.4, 70 = 0.3, and p = 0.2, encloses EP2(":2) solely; whereas Loop-3 (the violet loop),
characterized by 7o = 0.44, 70 = 0.65, and p = 0.44, encircles both the connected EP2s, simultaneously.
In this context, we note that the gain-loss variation along a chosen parametric loop does not significantly
influence nearby poles (other than three interacting poles associated with the two connected EP2s), provided no
additional EP2 involving any of the selected poles is enclosed by the loop. Moreover, from a practical standpoint,
minimizing the loop size is preferable, since a larger loop demands a higher gain-loss modulation amplitude,
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Fig. 4. (a) The coordinates of EP2(":P) and EP2(b-8), along with three chosen quasistatic encirclement
schemes. Loop-1 and Loop-2 individually encircle EP2(*:P) and EP2(":2), respectively, whereas Loop-3
encircles both EP2s simultaneously. (b-g) Trajectories of ., € and €4 (depicted by dotted red, blue, and green
curves, respectively) in the complex k-plane (k in um '), while considering the variations of v and 7 under
various conditions: (b) along Loop-1 in the anticlockwise direction, exhibiting the adiabatic permutations

er — €p — €7 and €4 — €4; (¢) along Loop-2 in the anticlockwise direction, exhibiting the adiabatic
permutations €, — €4 — € and €, — &,; (d) along Loop-1 and (e) Loop-2 in the clockwise direction, where
alteration of trajectories between the exchanging poles and reversed movement of the third pole compared to
(b) and (c) are evident; (f) along Loop-3 in the anticlockwise direction, exhibiting the adiabatic permutation
er — €y — €9 — €r; (g) along Loop-3 in the clockwise direction, exhibiting the adiabatic permutation

Er — €g — €b — €r. In (b-g), the diamond markers show the locations of €, €5, and €4 at ¢ = 0.

which may pose challenges for implementation due to increased pumping requirements. Therefore, a parametric
loop must be carefully optimized to balance functional requirements with experimental feasibility.

The topological effects induced by the chosen encirclement schemes are investigated by tracing the trajectories
of er, €p, and &g, as portrayed in Figs. 4b-4g. Here, each point of evolution on the trajectory of a specific pole
in the complex k-plane aligns with a corresponding point of evolution on a specific loop in the (-, 7)-plane. In
this context, the poles may undergo either unbroken or broken PT phases as the parameters v and 7 are varied,
in accordance with Eq. (17).

Now, while considering an anticlockwise encirclement by varying v and 7 quasistatically along Loop-1 [that
encircles only EP2(rb) and keeps EP2(b:8) outside], the poles €, and ey, which are connected through EP2(r:b),
exchange their initial positions adiabatically in the complex k-plane. Upon completing a full 2 rotation along
the loop, €, and €5 completely swap their frequencies, transitioning as €, — €5 — €, as depicted in Fig. 4b.
Nevertheless, this structured perturbation around EP2(>P) does not impact &4 [i.e., £, — €4, as can be observed
in Fig. 4b, which remains at the same frequency level at the end of the encirclement process. In a similar fashion,
a complete 27 anticlockwise parametric rotation along Loop-2 [that encircles only EP2(?-2), keeping EP2(*:P)
outside] results in an adiabatic frequency-swapping between € and €4 (like, €, — €4 — €3), while leaving €,
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Final states
Initial states | g,. £p &g
er 30 or 30|10 or 20 (20 or 10
€p 20 or 10|30 or 30|10 or 20
[ 10 or 20|20 or 10|30 or 30

Table 1. Programmable state-switching process induced by gain-loss distribution described by Loop-3 (in the
proximity of an EP3 associated with two interconnected EP2s). Here, n O and n O mean 2n7 anticlockwise
and clockwise rotations, respectively.

unaffected (ie., e, — €,), as illustrated in Fig. 4c. The unconventional interactions, as observed among the
three cavity states in Figs. 4b and 4c, showcasing distinct state-flipping characteristics within two corresponding
pairs, unfold the individual second-order branch-point behavior of EP2(mb) and EP2(P-8). In this context, a 27
clockwise rotation of y and 7 along both Loop-1 and Loop-2 results in a similar permutation among the cavity-
states, as shown in Figs. 4d and 4e. It is notable that two exchanging poles alters their trajectories, where the
third one moves along the opposite directions [as compared to the trajectories for anticlockwise encirclement
schemes, as previously shown in Figs. 4b and 4c. Therefore, the trajectories of the poles (Figs. 4b-4e) under
parametric encirclement around individual EP2s, in both clockwise and anticlockwise directions, convey the
individual chiral property of both the embedded EP2s. Here, to restore the initial frequencies by the chosen
cavity states, a complete 47 rotation is required for the encirclement schemes along Loop-1 and Loop-2 in any
of the directions.

To delve into the intriguing properties of an EP3 as a third-order branch point, we consider a quasistatic
variation of y and 7 along Loop-3, encompassing both EP2(*:P) and EP2(*2) simultaneously. Such a patterned
perturbation interestingly facilitates a topological switching among all three interacting poles interconnected
via EP2("P) and EP2(b-2), Notably, a complete 27 rotation in the anticlockwise direction results in a successive
and adiabatic exchange of frequencies among €, €5 and €4, following the sequence €, — €, — €4 — €, within
the complex k-plane, as shown in Fig. 4f. This manifestation vividly showcases the third-order branch point
behavior of an EP3 in the presence of interconnected EP2s. Furthermore, the effect of a complete 27 rotation
in the clockwise direction along Loop-3 can be distinguished from the sequence of the resulting successive
state exchange phenomena, as illustrated in Fig. 4g. Here, we can observe a successive and adiabatic frequency
switching phenomenon suchase, — €4 — €, — €, unlike the case for the anticlockwise encirclement process.
This disparity underscores a breakdown of the chiral property alongside the presence of a third-order branch
point, i.e., an EP3. Such a breakdown of chirality offers a promising avenue for implementing a programmable
state-switching mechanism in the proximity of an EP3 (i.e., along the violet loop enclosing both the connected
EP2s), as depicted in Table 1. This table outlines the required rotations, either clockwise or anticlockwise, for
the transition between states. Notably, a full 67 rotation (in any of the directions) is necessary to revert to the
initial cavity states.

Conclusions

In conclusion, this research delves into the intricate characteristics of higher-order EPs within a specialty gain-
loss assisted optical microcavity adhering to APT-symmetry. Beyond the widely explored connection between
EPs and PT-symmetry, the inclusion of APT-symmetry adds a new dimension to the physics dealing with the
topological interplay of gain-loss and negative refractive indexed synthetic materials and expands the repertoire
of platforms available for manipulating light. We specifically focus on exploring the topological properties of
an EP3 associated with two connected EP2s among three cavity states. We investigate various state-exchange
mechanisms driven by the topological characteristics of these second- and third-order branch points, while
examining different encirclement schemes in the gain-loss parameter space. A successive and adiabatic
switching process is revealed among up to three cavity states. It is important to note that our chosen APT-
symmetric microcavity configuration allows for the encounter of EPs without being tied to PT-phase transitions.
Furthermore, leveraging the intriguing chiral aspects uncovered, we explore a programmable state-switching
scheme as a potential application of the designed APT-symmetric microcavity. These findings contribute
significantly to our comprehension of integrating non-Hermitian physics into classical wave-based systems
reliant on metamaterials, thereby advancing the development of artificial devices for all-photonic applications.
Implementation of our proposed scheme has significant importance in achieving multi-state chiral dynamics for
device applications, where the central idea can be translated into other scalable metamaterial-based multicore
fiber or multimode planar waveguide structures with gain and loss, enabling unconventional light guidance
schemes with mode conversion and one-way transmission.
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