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Diverging from traditional parity-time (PT)-symmetric paradigms, anti-PT (APT) symmetry provides an 
intriguing framework for harnessing non-Hermitian physics, offering the immense potential to control 
light-matter interactions in artificial photonic systems reliant on negative-index materials, typically 
realized with metamaterials. We report a specially configured Fabry-Pérot-type microcavity system 
by harnessing the unique anti-PT-symmetric constraints with negative-indexed background materials 
and meticulously balanced gain-loss distributions. We unveil the intriguing topological properties 
of a parametrically encircled third-order EP (EP3), emerging from two connected second-order EPs 
(EP2s) among three cavity states. We present a programmable adiabatic state-switching process 
and highlight the nuanced behaviors of second and third-order branch points by winding around 
embedded EPs within a 2D gain-loss parameter space. This work explores the theoretical foundations 
of the topological properties of EPs in negative-indexed media, paving the way for a novel class of 
metamaterial-based artificial photonic devices.

The integration of non-Hermitian physics into photonic systems has garnered significant interest, particularly 
within the realm of wave propagation in gain-loss media1–7. Non-Hermitian systems typically exhibit complex 
eigenvalues. However, the distinctive aspect of a particular class of non-Hermitian systems showing parity-time 
(PT)-symmetry lies in their possession of real eigenvalues in a specific phase7–11. A fascinating non-Hermitian 
phenomenon, the emergence of an exceptional point (EP) singularity, occurs in PT-symmetric systems during 
the phase transition from an unbroken PT phase (with real eigenvalues) to a broken PT phase (with complex 
eigenvalues) as control parameters are tuned. An EP of the order n (say, EPn) is encountered as a topological 
singularity in the system’s parameter plane when n number of underlying eigenvalues and their corresponding 
eigenvectors coalesce simultaneously12. The diverse scientific and technological influence of EPs at the forefront 
of ongoing research in the fields of photonics facilitate a versatile range of intriguing applications2–7, such as 
controlled lasing with asymmetric state-switching13–19, topological state-flipping20–23 antilasing24,25, slow-light 
engineering26, enhanced nonreciprocity27–29 and ultrasensitive detection30–32. Moreover, in quantum optics, the 
intriguing properties of quantum EPs33–38 have extensively been studied in the context of quantum state39 and 
process40 tomography, quantum heat engines41,42, exceptional refrigeration43, and many other applications of 
cutting-edge quantum state engineering. Beyond photonics and quantum optics, the fascinating properties of 
EPs have also been investigated in atomic44,45, molecular46, microwave47 as well as electronic systems48.

Beyond the conventional link between PT-symmetry and EPs, anti-PT (APT) symmetry49–51 has recently 
garnered significant attention in the study of photonic systems utilizing artificial materials. This emerging 
paradigm presents new opportunities to harness non-Hermitian properties. In an APT-symmetric photonic 
system with gain and loss, the defining characteristic is the anti-commutation relation between the PT operator 
and the system’s Hamiltonian. This necessitates a precisely balanced gain-loss distribution embedded within a 
carefully engineered background composed of both positive and negative refractive index materials (a detailed 
mathematical framework of an APT-symmetric non-Hermitian Hamiltonian is provided in the next section)49. 
This structural requirement makes APT symmetry different from conventional PT-symmetric systems, where 
a negative-index background is not essential. The realization of such negative-indexed materials is typically 
achieved through metamaterials, characterized by negative permittivity and/or negative permeability. Therefore, 
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the integration of EPs within an APT-symmetric system holds substantial promise to unveil novel perspectives 
in understanding the EP-induced light dynamics52–55, particularly influenced by the distinctive attributes of 
negative-indexed materials.

A recent surge of interest in exploring EP-induced phenomena in APT-symmetric systems has primarily 
focused on various coupled waveguide configurations with complex coupling53–55. However, these studies have 
mainly addressed second-order EPs (EP2s). The topological nature of EP2s, stemming from their branch point 
structure in complex parameter spaces, has attracted significant attention, particularly due to the robust, path-
independent eigenvalue permutation phenomena that arise during their parametric encirclement, enabling 
controlled state switching processes. This phenomenon has been widely explored both theoretically44,45,56 
and experimentally47,57–60. Furthermore, state exchange phenomena driven by the parametric encirclement of 
higher-order EPs have been investigated in waveguide13,61 and microcavity systems21. However, research on the 
topological properties of higher-order EPs in APT-symmetric systems, particularly in the context of parametric 
encirclement, remains lacking. Most of the previous studies have primarily focused on PT-symmetric systems at 
the transition between exact and broken symmetry regimes. In contrast, systems incorporating negative-index 
materials, such as metamaterials, lack PT-symmetry and instead exhibit APT-symmetry. A growing interest in 
this field can be observed in a recent study on APT-symmetric coupled ring resonators for lasing applications62. 
In this article, we leverage the unique characteristics of APT-symmetry to investigate the operation of a Fabry-
Pérot-type microcavity system, focusing on its potential for programmable mode-switching applications.

As compered to EP2s in two-level photonic systems, the extended platform to host higher-order EPs 
in multilevel systems present greater challenges, requiring enhanced complexity in the parameter space 
with multiple tunable parameters63. It has been predicted that the coalescence of n coupled states requires 
(n2 + n − 2)/2 control parameters64, which showcases the complexity of the system’s parameter space in 
terms of number of control parameters. An alternative approach has been developed65–67 based on a concurrent 
influence of (n − 1) EP2s to achieve the topological branch-point behavior inherent to an EPn, which has 
numerically been implemented in waveguide13 and microcavity21 systems. This alternative approach offers the 
advantage of reducing the number of required control parameters, simplifying the experimental or numerical 
handling of the system.

In this paper, we report a specially configured gain-loss assisted APT-symmetric optical microcavity to host 
parametrically encircled EPs up to order three. Diverging from the conventional paradigm of PT-symmetry, 
our optimization aims to present the topological features of higher-order EPs under the APT-symmetric 
constraints using the simplest possible platform. We exclusively design a specialty Fabry-Pérot-type microcavity 
system incorporating negative-index background materials and a precisely tuned gain-loss profile. Leveraging 
the interaction of three coupled cavity states in the proximity of two connected EP2s, our proposed system 
facilitates the exploration of the intriguing topological properties of a third-order EP (EP3). Through appropriate 
customization of the gain-loss parameter space to accommodate various EP encirclement schemes under APT-
symmetric constraints, we reveal the chiral characteristics of both second- and third-order branch points, 
particularly within the framework of a programmable adiabatic state-switching process. The intertwining aspects 
of APT-symmetry and exceptional points not only deepen the understanding of fundamental non-Hermitian 
physics, but also unlock possibilities for designing novel devices with tailored functionalities, spanning the fields 
of photonics and quantum optics.

Formation of higher-order EPs in an APT-symmetric system: analytical insights
While, a PT-symmetric Hamiltonian (say, HPT) adheres to the commutation relation [PT, HPT] = 0 [given 
that PT : {x, t, i} → {−x, −t, −i}], APT-symmetric Hamiltonian (say, HAPT) endorses an anti-commutation 
relation, i.e., {PT, HAPT} = 0. Here, HPT and HAPT adheres an inherent relation HAPT = ±iHPT. An 
analytical interpretation of the occurrence of an EP3 in an APT-symmetric system can be perceived by analyzing 
a 3 × 3 non-Hermitian Hamiltonian. We consider a general matrix form of a Hamiltonian H and a parity 
operator P as

	
H =

(
a1 − ib1 iα −iβ

iα a2 − ib2 iα
−iβ iα a3 − ib3

)
and P =

(
0 0 1
0 1 0
1 0 0

)
,� (1)

where H would be APT-symmetric with respect to P under the conditions:

	 a3 = −a1, a2 = 0, and b1 = b3.� (2)

In H, the diagonal terms (aj − ibj  with j = 1, 2, 3) represent three unperturbed eigenvalues, where the off-
diagonal terms characterized by α and β represent complex coupling.

The eigenvalues of H, say λj (j = 1, 2, 3), are determined by solving the roots of the cubic equation:

	 ε3 + c1ε2 + c2ε + c3 = 0.� (3)

Under the APT-symmetric conditions given by Eq. (2), the coefficients of Eq. (3) can be expressed as 

	 c1 = i(2b1 + b2), � (4a)

	 c2 = −(a2
1 + b2

1) − 2(b1b2 − α2) + β2 � (4b)
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	 c3 = −i
{

(a2
1 + b2

1)b2 − 2α2(b1 − β) − β2b2
}

. � (4c)

 The eigenvalues can be determined using Cardano’s method 68, yielding the following expressions: 

	 ε1 = ωε+ + ω̄ε− − ξ, � (5a)

	 ε2 = ε+ + ε− − ξ, � (5b)

	 ε3 = ω̄ε+ + ωε− − ξ. � (5c)

 Here, ω3 = 1, featuring ω as a cube root of unity, and ω̄ is the complex conjugate of ω. ε± and ξ are given by

	
ε± =

(
g ±

√
g2 + h3

)1/3
and ξ = c1

3 ,� (6)

where

	
g = − c2

1

27 + c1c2

6 − c3

6 and h = − c2
1

9 + c2

3 .� (7)

Now, under different settings of the overall perturbation, controlling the interaction among eigenvalues leads 
to various scenarios involving the emergence of multiple EP2s (pairwise) or an EP3. These scenarios can be 
understood based on the following conditions:

	 ε+ = ε−, ωε+ = ε−, and ω̄ε+ = ε−.� (8)

Each of the conditions in Eq.  (8) corresponds to the coalescence of a distinct pair of eigenvalues, resulting 
in three possible EP2s. Specifically, the condition ε+ = ε− implies ε1 = ε3, while ε2 remains distinct. 
This indicates the presence of an EP2 between the eigenvalue pair {ε1, ε3}. Similarly, ωε+ = ε− leads to 
ε1 = ε2 ̸= ε3, corresponding to an EP2 between {ε1, ε2}. Likewise, ω̄ε+ = ε− yields ε2 = ε3 ̸= ε1, signifying 
an EP2 between {ε2, ε3}.

Together, these conditions indicate that the system can support three distinct pairwise EP2s depending on 
how the perturbation parameters are tuned. For complete coalescence of all three eigenvalues, i.e., the occurrence 
of an EP3 (where ε1 = ε2 = ε3), all three conditions in Eq.  (8) must simultaneously hold. This is achieved 
under the more restrictive requirement that ε+ = ε− = 0, corresponding to the vanishing of both cube roots 
in Cardano’s formalism. However, here we focus on exploring the topological branch-point behavior of an EP3 
by winding around any of the two connected EP2s, where the fulfillment of any two of the three conditions in 
Eq. (8) is mandatory.

Moreover, the validation of the equalities in Eq. (8) indicates that the square root term in ε± [given by Eq. (6)] 
vanishes, leading to the cube-root dependence of ε± directly. It is important to highlight that when we focus on 
a single EP2, the analytical problem simplifies to a 2 × 2 Hamiltonian, where two associated eigenvalues feature 
square-root terms56. Hence, the sensitivity of such a system follows a square-root dependence on perturbation 
at an individual EP2. But when we consider a 3 × 3 Hamiltonian, the eigenvalues consists cube root terms, and 
hence the sensitivity exhibits a cube-root dependence on perturbation, like the case of an EP3.

Now, we implement such a coupling scheme in an APT-symmetric photonic system, where the complex 
potential is represented by the complex refractive index profile n(x). Here the adherence to APT-symmetry 
is contingent upon the condition n(x) = −n∗(−x) [unlike a PT-symmetric system with n(x) = n∗(−x)
]. This requirement results in the real part of the refractive index behaving as an odd function, while the 
imaginary part exhibits characteristics of an even function; i.e., nR(x) = −nR(−x) and nI(x) = nI(−x) 
with n(x) = nR(x) + inI(x). In this context, the variable nI is fundamentally tied to the interplay of gain 
and loss within an optical system. Therefore, the implementation of APT-symmetry demands a balanced and 
symmetrical distribution of gain and loss across a structured background index profile (like a PT-symmetric 
system). However, the odd function characteristics of nR introduce an additional condition for an APT-
symmetric system, mandating the use of negative-indexed background materials alongside a precisely balanced 
gain-loss distribution49. This fundamental engineering difference distinguishes an APT-symmetric system from 
PT-symmetric systems.

Therefore, we implement such a complex coupling scheme, as mathematically demonstrated by the 
Hamiltonian in Eq. (1), in a gain-loss assisted multiplayer microcavity system with a combination of positive 
and negative refractive indexed materials. A carefully engineered layer-by-layer gain–loss modulation, based 
on a chosen set of parameters, introduces imaginary components into the effective permittivity, which is 
manifested as complex-valued couplings in the corresponding Hamiltonian. Moreover, the asymmetry in the 
coupling strengths (i.e., distinct values of α and β, as in the Hamiltonian) can be precisely tuned by adjusting 
the thickness and refractive index contrast of the individual layers, as well as by independently detuning the real 
and imaginary parts of the refractive index across the structure. Therefore, the interplay among index contrast, 
gain-loss modulation, and layer thickness governs the complex mode coupling in the system, effectively giving 
rise to the off-diagonal complex terms in the effective non-Hermitian Hamiltonian.

To analyze our microcavity system, we implement scattering (S) matrix formalism method, where the 
physical eigenvalues can be calculated in terms of the poles of the associated S-matrix. Here, an EP3 emerges 
from the interplay between two interconnected EP2s. Instead of directly encountering an EP3, which requires 
a complex coupling structure with many variables, we focus on its topological properties. This is achieved by 
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encircling two interconnected EP2s within a 2D parameter space based on gain-loss profile, as delineated in the 
following sections.

Results and discussion
Designing an APT-symmetric microcavity
We engineer a 1D Fabry-Pérot type optical microcavity with a blend of positive and negative indexed [say, 
nR(x)] background materials, featuring a length of L = 8 µm (0 ≤ x ≤ L). Here, non-Hermiticity is achieved 
through a tailored gain-loss profile, typically represented by the imaginary part of the refractive index [say, 
nI(x)], where negative nI(x) corresponds to gain and positive nI(x) corresponds to loss. In this configuration, 
the overall cavity system consists of six layers [designated as L1 to L6 from left to right side, as in Eq. (9)] 
distinguished by two passive index parameters, ±n1 = 3.48 and ±n2 = 1.46, along with two gain-loss control 
parameters, γ (a gain-loss coefficient) and τ  (a loss-to-gain ratio). The overall refractive index profile n(x), 
expressed as n(x) = nR(x) + inI(x), operates according to the functional form:

	
n(x) =

{
± n1
± n2 − iγ
∓ n2 + iτγ

: |x − l0| ∈ [0, l1] → L4 and L3 ,
: |x − l0| ∈ [l1, l2] → L5 and L2 ,
: |x − l0| ∈ [l2, l3] → L6 and L1 .

� (9)

The entire setup is designed to maintain APT-symmetry, which can be understood by the distributions of 
nR(x) and nI(x) based on precisely chosen length parameters lj  (j = 0, 1, 2, 3; lj < L) with l0 = 4 µm = l3, 
l1 = 3.4 µm, and l2 = 3.5 µm. Figure 1a shows a schematic design of the entire cavity system, accompanied by 
the chosen profile of complex n(x), where the corresponding nR(x) and nI(x) follow the features of odd and 
even functions, respectively. The chosen configuration allows us to uphold APT-symmetry consistently for any 
specified values of γ and τ  throughout our investigation. Figure 1b illustrates the positions of three complex 
eigenvalues, which are analyzed to explore their interactions in the presence of gain-loss. These eigenvalues are 
determined based on the poles of the S-matrix associated with the microcavity, as explained in the following 
methods section.

With a universal approach, our optimization aims to simplify the system’s geometry, making it easier for 
practical realization. We choose the Fabry-Pérot geometry due to its straightforward practical design and 
broad material availability. Moreover, the length of a Fabry-Pérot-type cavity has precise control on the spacing 
between corresponding resonance states over a particular frequency range. Such a configuration offers seamless 
integration into existing optical systems and allows for axial output coupling, which is infeasible in toroidal 
resonators without proper phase matching. Our proposed design offers an ease of scalability to different sizes 
(including miniaturization) and frequencies. Notably, there are no active components in the two inner layers 
that span the majority of our designed cavity (0.6 µm ≤ x ≤ 7.4 µm from the total cavity-length of 8 µm). 
Instead, the gain-loss profile confined to the four thin outer layers exclusively controls the entire coupling and 
subsequent interactions within the cavity. Such a configuration provides a convenient platform for practical 
implementations.

Using state-of-the-art fabrication techniques, a similar scalable prototype can be achieved with silica-
silicon-based materials for the positive-indexed layers, while optical metamaterials can be manipulated69 to 
achieve the desired negative refractive index for the negative-indexed layers under the operating conditions. The 
customized gain-loss profile can be integrated via a controlled nonuniform pumping scheme or by doping of 
lossy and gain elements using a standard lithography technique. In this context, the effect of material dispersion 
can be controlled by careful engineering of both the material properties and the microcavity geometry based 
on chosen frequency range. Due to precise control of the Fabry-Pérot-type cavity geometry on the spacing 

Fig. 1.  (a) A schematic representation of the proposed APT-symmetric microcavity consists of six layers 
[labeled as L1 to L6 from left to right, as mentioned in Eq. (9)], along with the corresponding complex 
refractive index profile n(x). In the schematic, ψ+

l(r) and ψ−
l(r) represent the forward and backward propagating 

fields, respectively, from the left (right) side of the cavity. In the refractive index profile, the variations of the 
nR(x) and nI(x) are illustrated by solid blue and dotted red lines, respectively (labeled along the left and right 
y-axes). (b) The coordinates of three chosen S-matrix poles, indicated as εr , εb, and εg , situated within the 
complex k-plane, while considering the passive cavity with γ = 0. Two arrows show the anticipated interaction 
scheme among them in the proximity of two connected EP2s.
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between resonance states, the proposed multilayered structure, incorporating custom-engineered materials and 
metamaterials, offers enhanced control over material dispersion while operating within the selected narrow 
frequency range (from 15.5 µm−1 to 16.5 µm−1; even after considering the movement of poles under proposed 
encirclement conditions, as exhibited later).

Method: scattering matrix formulation
Here, we manifest the physical eigenvalues in terms of the resonance states of the designed microcavity, which 
are numerically estimated by the scattering (S) matrix formalism21,70. The S-matrix relates these incoming and 
outgoing field amplitudes from the both sides. For a 1D multilayer microcavity system, the S-matrix can be derived 
by combining the transfer matrices of individual layers (based on the scattering theory of electromagnetism). 
Figure 2 schematically represents a 1D multilayer microcavity system composed of N layers, which is structurally 
analogous to our proposed system. The field amplitudes at the extreme left and right ends of the system are 
denoted by {A+

1 , A−
2 } and {A+

3 , A−
4 }.

Each of the layers can be described by a transfer matrix T, which relates the field amplitudes at the right side 
of the layer to those at the left side. Considering a specific jth-layer that occupies the region x = xj−1 to x = xj , 
the transfer matrix equation can be written as

	

[
a+

3
a−

4

]

x = xj

= Tj

[
a+

1
a−

2

]

x = xj−1

,� (10)

where, {a+
1 , a−

2 } and {a+
3 , a−

4 } are the modified field amplitudes at left (x = xj−1) and right (x = xj) sides of 
the layer (as shown in Fig. 2). Tj  represents the 2 × 2 transfer matrix of the jth-layer. The overall transfer matrix 
T of the multilayer system is the product of the transfer matrices of the individual layers:

	 T = T1.T2.T3 . . . Tj . . . TN ,� (11)

where N represents the total number of layers. Here, the order of multiplication corresponds to the physical 
sequence of layers in the cavity. The matrix elements of the overall transfer matrix

	
T =

[
T11 T12
T21 T22

]
� (12)

are the functions of frequency and chosen refractive index.
Now, the S-matrix that relates incoming and outgoing field amplitudes [as described by Eq. (15)] can be 

written as

	
S {n(x), k} =

[
S11 S12
S21 S22

]
=

[
R(l) T (r)

T (l) R(r)

]
.� (13)

Here, R and T represent the reflection and transmission coefficients from left (l) and right (r) side of the cavity, 
respectively. The S-matrix elements can be computed in terms of the T-matrix elements as follows:

	

S11 = R(l) = −T21

T22
, S12 = T (r) = 1

T22
,

S21 = T (1) = det (T )
T22

, S22 = R(r) = T12

T22
.

� (14)

Therefore, the S-matrix equation for the overall microcavity system can be written as

	

[
A−

2
A+

3

]
= S {n(x), k}

[
A+

1
A−

4

]
.� (15)

Fig. 2.  Schematic diagram of a 1D two-port open multilayer microcavity system composed of N layers with 
refractive indices n1, n2, . . . , nN. The field amplitudes at the extreme left and right ends of the system are 
denoted by {A+

1 , A−
2 } and {A+

3 , A−
4 }, respectively. The modified field amplitudes at positions x = xj−1 and 

x = xj , corresponding to the jth layer, are given by {a+
1 , a−

2 } and {a+
3 , a−

4 }.
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We implement this process numerically to analyze our cavity. Equation (15) essentially represents the S-matrix 
equation for our proposed microcavity, where the field amplitudes {A+

1 , A−
4 } and {A−

2 , A+
3 } are associated 

with incoming fields {ψ+
l , ψ−

r } and outgoing fields {ψ−
l , ψ+

r }.
The matrix elements Sij{k, n(x)} are derived as functions of both frequency (k) and the chosen n(x). 

Adhering to the energy conservation and causality conditions, the complex poles of the S-matrix, residing 
in the fourth quadrant of the complex k-plane with Re(k) = mπ/(nRL) (where m denotes the order of the 
poles; m = 1, 2, 3 . . .), signify the physical resonance states within the cavity2170. These poles are determined by 
solving the equation

	
1

max |eig [S {n(x), k}]| = 0� (16)

through a numerical root-finding method. From a large number of poles appearing in the lower half of the complex 
k-plane, we meticulously choose a set of three poles within the frequency range 16.02 ≤ Re(k) ≤ 16.25 (in 
µm−1) to study our interaction schemes. These three chosen poles are denoted as εr , εb, and εg , where their 
distribution in the complex k-plane are shown in Fig. 1b (indicated by three diamond markers of red, blue, and 
green colors, respectively). It is noteworthy that we can also choose other frequency range to observe similar 
interaction phenomena. The initial distribution of these poles in the complex k-plane follows a nonlinear pattern, 
primarily resulting from the chosen nonuniform profile of nR(x). With the onset of non-Hermiticity through 
controlled adjustments of gain-loss parameters, γ and τ , these poles become mutually coupled. Such a coupling 
in response to changes in the control parameters stems from variations in the resonant frequencies (energies) 
and decay rates (lifetimes) [as indicated by Re(k) and Im(k), respectively] of the corresponding poles. We delve 
into their interactions, exhibiting avoided-crossing characteristics in the proximity of two second-order branch 
points.

Hosting EPs of different orders
We monitor the trajectories of εr , εb, and εg  in Fig. 3, while deviating from the passive condition through a 
gradual increase of γ, across various τ -values. In Fig. 3a, we depict two different topological configurations 

Fig. 3.  Trajectories of εr , εb, and εg  (depicted by dotted red, blue, and green curves) with an increasing γ, 
while considering different τ -values. (a) τ = 0.879 (upper panel): An anticrossing and a crossing in Re(k) and 
Im(k), respectively, associated with εr  and εb, occurring near γ = 0.1525. τ = 0.883 (lower panel): A crossing 
and an anticrossing in Re(k) and Im(k), respectively, associated with εr  and εb, occurring near γ = 0.1535. 
(b) τ = 0.881: Emergence of EP2(r,b) due to the coalescence of εr  and εb at γ = 0.153. εg  remains away 
from the strong interaction regime of εr  and εb in (a) and (b). (c) τ = 0.275 (upper panel): An anticrossing 
and a crossing in Re(k) and Im(k), respectively, associated with εb and εg , occurring near γ = 0.3305. 
τ = 0.279 (lower panel): A crossing and an anticrossing in Re(k) and Im(k), respectively, associated with εb 
and εg , occurring near γ = 0.3315. (d) τ = 0.277: Emergence of EP2(b,g) due to the coalescence of εb and εg  
at γ = 0.331. εr  remains away from the strong interaction regime of εb and εg  in (c) and (d). In (b) and (d), 
the diamond markers show the locations of εr , εb, and εg  at γ = 0. The unit of k is µm−1.
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of avoided-crossings among εr  and εb in the complex k-plane, where εg  deviates from the interaction regime. 
While considering τ = 0.879, Re(k) associated with εr  and εb undergo an anticrossing, and the corresponding 
Im(k)-values exhibit a crossing with an increasing γ (as shown in the upper panel). However, a slight increase 
in τ  to 0.883 unfolds an exactly opposite topological scenario (for the same variation of γ) with a crossing and 
an anticrossing in Re(k) and Im(k), respectively, linked with εr  and εb (as shown in the lower panel). Such a 
topological transition utterly validates the occurrence of a singularity, specifically an EP2. Here, we identify an 
EP2, say EP2(r,b), for an intermediary τ = 0.881, leading to coalescence of εr  and εb at γ ≈ 0.153. In this case, 
εg  remains unaffected. In a similar way, two topologically different avoided-crossings among εb and εg  with 
an anticrossing (a crossing) in Re(k) and a crossing (an anticrossing) in Im(k) can be observed in the upper 
panel (lower panel) of Fig. 3c, while varying γ for a chosen τ = 0.275 (τ = 0.279). This implies the emergence 
of another EP2, say EP2(b,g), as shown in Fig. 3d, where εb and εg  coalesce at γ ≈ 0.331 for an intermediary 
τ = 0.277, keeping εr  unaffected.

Therefore, we observe a unique scenario involving the three chosen poles, where εb becomes analytically 
connected to εr  and εg  through two interconnected EP2s, i.e., EP2(r,b) and EP2(b,g), positioned at coordinates 
(0.153, 0.881) and (0.331, 0.277), respectively, within the (γ, τ)-plane (2D parameter space). Notably, while a 
specific pair of poles coalesce at an EP2, the third pole remains unaffected. Such an intricate scenario occurring 
within a particular interaction regime leads to the emergence of a third-order branch point, specifically an 
EP3, where all three interacting poles are intricately linked21,65. The significance of our study lies in adopting 
a universal methodology that remains valid even when considering APT-symmetry. Our distinctive cavity 
configuration ensures the persistence of APT symmetry over the entire adjustable range of γ and τ . While the 
complex poles, typically in the broken PT phase, may enter an unbroken PT phase for specific values of γ and 
τ , this PT-phase transition is not associated with the occurrence of an EP. Without relying on any inherent 
connection between EPs and PT-phase transitions, our proposed approach is effective for identifying multiple 
connected EP2s, facilitating the exploration of the topological properties of higher-order EPs.

Parametrically encircling the encountered EPs
We investigate the branch-point behaviors of the embedded EP2s by driving the perturbation quasistatically in 
terms of a patterned gain-loss variation along a closed loop in the (γ, τ)-plane, subject to various conditions 
under the APT-symmetric constraints. When such a parametric loop encloses one or more EP2s, the associated 
eigenvalues undergo a cyclic permutation that remains invariant with respect to the specific shape or size of 
the loop, as long as the enclosed EP2s remain within the loop. Consequently, neither any deformations nor 
fluctuations in the loop trajectory affect the eigenvalue permutation. This robust behavior reflects the branch-
point topology of the eigenvalue planes and is thus referred to as topological in nature. It is worth noting, 
although not the focus of this manuscript, that encircling an EP can also induce a geometric phase57 (specifically, 
a Pancharatnam–Berry phase), even in the absence of dynamic evolution. This phase is linked to the holonomy 
(or nontrivial loop structure) in parameter space, which further reinforces the topological character of EP 
encirclement phenomena.

For our analysis, we consider a particular loop defined parametrically as

	 γ(ϕ) = γ0 sin(ϕ/2) and τ(ϕ) = τ0 − p sin ϕ.� (17)

Here, (γ0, τ0) and p, (< 1; ̸= 0) represent the characteristic parameters determining the number of EP2s to 
be encircled (γ0 must exceed the γ-coordinate of the respective EP2 to be encircled), where p > 0 (p < 0) 
characterizes an anticlockwise (a clockwise) encirclement scheme for 0 ≤ ϕ ≤ 2π. The chosen shape of the 
parametric loop ensures that the encirclement process begins (ϕ = 0) and ends (ϕ = 2π) at the passive cavity 
condition (γ = 0).

It is important to note that although the gain–loss profile is externally modulated in accordance with the 
parametric loop, it is intrinsically tied to the underlying geometry (structure and complex refractive indices) 
of the system. The spatial distribution of gain and loss, realized through carefully engineered multilayer 
configurations, acts as the physical substrate through which the parametric variation is implemented. Thus, the 
control parameters (γ and τ ) trace out the loop by virtue of geometric and material design, ensuring a direct 
connection between the abstract parametric space and the actual physical structure. Moreover, while varying 
γ and τ  along a closed loop, the Kramers-Kronig relations play a crucial role, as these parameters are linked 
to nI(x) over the chosen nR(x). It is essential to maintain precise control over nI(x) to ensure that slight 
modifications in nR(x) do not cause the EP to shift outside the loop. In our proposed microcavity, the absence 
of gain-loss in majority of the structural geometry (0.6 µm ≤ x ≤ 7.4 µm), combined with the robustness of 
EP-induced topological properties against reasonable parametric tolerances20, ensures the persistence of the 
Kramers-Kronig relations for our study.

Here, the features of the second-order branch point of the embedded EP2s become evident when encircling 
them individually. However, an encirclement scheme enclosing both the EP2s simultaneously reveals the nature 
of a third-order branch point. Figure 4a illustrates the coordinates of EP2(r,b) and EP2(b,g), alongside three 
distinct encirclement schemes in the (γ, τ)-plane. The encirclement patterns are delineated as follows: Loop-1 
(the black loop), characterized by γ0 = 0.3, τ0 = 0.8, and p = 0.2, encloses only EP2(r,b); Loop-2 (the orange 
loop), governed by γ0 = 0.4, τ0 = 0.3, and p = 0.2, encloses EP2(b,g) solely; whereas Loop-3 (the violet loop), 
characterized by γ0 = 0.44, τ0 = 0.65, and p = 0.44, encircles both the connected EP2s, simultaneously. 
In this context, we note that the gain-loss variation along a chosen parametric loop does not significantly 
influence nearby poles (other than three interacting poles associated with the two connected EP2s), provided no 
additional EP2 involving any of the selected poles is enclosed by the loop. Moreover, from a practical standpoint, 
minimizing the loop size is preferable, since a larger loop demands a higher gain-loss modulation amplitude, 
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which may pose challenges for implementation due to increased pumping requirements. Therefore, a parametric 
loop must be carefully optimized to balance functional requirements with experimental feasibility.

The topological effects induced by the chosen encirclement schemes are investigated by tracing the trajectories 
of εr , εb, and εg , as portrayed in Figs. 4b–4g. Here, each point of evolution on the trajectory of a specific pole 
in the complex k-plane aligns with a corresponding point of evolution on a specific loop in the (γ, τ)-plane. In 
this context, the poles may undergo either unbroken or broken PT phases as the parameters γ and τ  are varied, 
in accordance with Eq. (17).

Now, while considering an anticlockwise encirclement by varying γ and τ  quasistatically along Loop-1 [that 
encircles only EP2(r,b), and keeps EP2(b,g) outside], the poles εr  and εb, which are connected through EP2(r,b), 
exchange their initial positions adiabatically in the complex k-plane. Upon completing a full 2π rotation along 
the loop, εr  and εb completely swap their frequencies, transitioning as εr → εb → εr , as depicted in Fig. 4b. 
Nevertheless, this structured perturbation around EP2(r,b) does not impact εg  [i.e., εg → εg , as can be observed 
in Fig. 4b, which remains at the same frequency level at the end of the encirclement process. In a similar fashion, 
a complete 2π anticlockwise parametric rotation along Loop-2 [that encircles only EP2(b,g), keeping EP2(r,b) 
outside] results in an adiabatic frequency-swapping between εb and εg  (like, εb → εg → εb), while leaving εr  

Fig. 4.  (a) The coordinates of EP2(r,b) and EP2(b,g), along with three chosen quasistatic encirclement 
schemes. Loop-1 and Loop-2 individually encircle EP2(r,b) and EP2(b,g), respectively, whereas Loop-3 
encircles both EP2s simultaneously. (b–g) Trajectories of εr , εb and εg  (depicted by dotted red, blue, and green 
curves, respectively) in the complex k-plane (k in µm−1), while considering the variations of γ and τ  under 
various conditions: (b) along Loop-1 in the anticlockwise direction, exhibiting the adiabatic permutations 
εr → εb → εr  and εg → εg ; (c) along Loop-2 in the anticlockwise direction, exhibiting the adiabatic 
permutations εb → εg → εb and εr → εr ; (d) along Loop-1 and (e) Loop-2 in the clockwise direction, where 
alteration of trajectories between the exchanging poles and reversed movement of the third pole compared to 
(b) and (c) are evident; (f) along Loop-3 in the anticlockwise direction, exhibiting the adiabatic permutation 
εr → εb → εg → εr ; (g) along Loop-3 in the clockwise direction, exhibiting the adiabatic permutation 
εr → εg → εb → εr . In (b–g), the diamond markers show the locations of εr , εb, and εg  at ϕ = 0.
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unaffected (i.e., εr → εr), as illustrated in Fig. 4c. The unconventional interactions, as observed among the 
three cavity states in Figs. 4b and 4c, showcasing distinct state-flipping characteristics within two corresponding 
pairs, unfold the individual second-order branch-point behavior of EP2(r,b) and EP2(b,g). In this context, a 2π 
clockwise rotation of γ and τ  along both Loop-1 and Loop-2 results in a similar permutation among the cavity-
states, as shown in Figs. 4d and 4e. It is notable that two exchanging poles alters their trajectories, where the 
third one moves along the opposite directions [as compared to the trajectories for anticlockwise encirclement 
schemes, as previously shown in Figs. 4b and 4c. Therefore, the trajectories of the poles (Figs. 4b–4e) under 
parametric encirclement around individual EP2s, in both clockwise and anticlockwise directions, convey the 
individual chiral property of both the embedded EP2s. Here, to restore the initial frequencies by the chosen 
cavity states, a complete 4π rotation is required for the encirclement schemes along Loop-1 and Loop-2 in any 
of the directions.

To delve into the intriguing properties of an EP3 as a third-order branch point, we consider a quasistatic 
variation of γ and τ  along Loop-3, encompassing both EP2(r,b) and EP2(b,g) simultaneously. Such a patterned 
perturbation interestingly facilitates a topological switching among all three interacting poles interconnected 
via EP2(r,b) and EP2(b,g). Notably, a complete 2π rotation in the anticlockwise direction results in a successive 
and adiabatic exchange of frequencies among εr , εb and εg , following the sequence εr → εb → εg → εr  within 
the complex k-plane, as shown in Fig. 4f. This manifestation vividly showcases the third-order branch point 
behavior of an EP3 in the presence of interconnected EP2s. Furthermore, the effect of a complete 2π rotation 
in the clockwise direction along Loop-3 can be distinguished from the sequence of the resulting successive 
state exchange phenomena, as illustrated in Fig. 4g. Here, we can observe a successive and adiabatic frequency 
switching phenomenon such as εr → εg → εb → εr , unlike the case for the anticlockwise encirclement process. 
This disparity underscores a breakdown of the chiral property alongside the presence of a third-order branch 
point, i.e., an EP3. Such a breakdown of chirality offers a promising avenue for implementing a programmable 
state-switching mechanism in the proximity of an EP3 (i.e., along the violet loop enclosing both the connected 
EP2s), as depicted in Table 1. This table outlines the required rotations, either clockwise or anticlockwise, for 
the transition between states. Notably, a full 6π rotation (in any of the directions) is necessary to revert to the 
initial cavity states.

Conclusions
In conclusion, this research delves into the intricate characteristics of higher-order EPs within a specialty gain-
loss assisted optical microcavity adhering to APT-symmetry. Beyond the widely explored connection between 
EPs and PT-symmetry, the inclusion of APT-symmetry adds a new dimension to the physics dealing with the 
topological interplay of gain-loss and negative refractive indexed synthetic materials and expands the repertoire 
of platforms available for manipulating light. We specifically focus on exploring the topological properties of 
an EP3 associated with two connected EP2s among three cavity states. We investigate various state-exchange 
mechanisms driven by the topological characteristics of these second- and third-order branch points, while 
examining different encirclement schemes in the gain-loss parameter space. A successive and adiabatic 
switching process is revealed among up to three cavity states. It is important to note that our chosen APT-
symmetric microcavity configuration allows for the encounter of EPs without being tied to PT-phase transitions. 
Furthermore, leveraging the intriguing chiral aspects uncovered, we explore a programmable state-switching 
scheme as a potential application of the designed APT-symmetric microcavity. These findings contribute 
significantly to our comprehension of integrating non-Hermitian physics into classical wave-based systems 
reliant on metamaterials, thereby advancing the development of artificial devices for all-photonic applications. 
Implementation of our proposed scheme has significant importance in achieving multi-state chiral dynamics for 
device applications, where the central idea can be translated into other scalable metamaterial-based multicore 
fiber or multimode planar waveguide structures with gain and loss, enabling unconventional light guidance 
schemes with mode conversion and one-way transmission.

Data availability
Data sets generated during the current study are available from the corresponding author on reasonable request.
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Initial states

Final states

εr εb εg

εr 3 ⟲    or    3 ⟳ 1 ⟲    or    2 ⟳ 2 ⟲    or    1 ⟳
εb 2 ⟲    or    1 ⟳ 3 ⟲    or    3 ⟳ 1 ⟲    or    2 ⟳
εg 1 ⟲    or    2 ⟳ 2 ⟲    or    1 ⟳ 3 ⟲    or    3 ⟳

Table 1.  Programmable state-switching process induced by gain-loss distribution described by Loop-3 (in the 
proximity of an EP3 associated with two interconnected EP2s). Here, n ⟲ and n ⟳ mean 2nπ anticlockwise 
and clockwise rotations, respectively.
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