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Quasi-probability distribution Q(a, a,*) versus
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The generation of discrete superpositions of coherent states in the anharmonic oscillator model is discussed
from the point of view of their quasi-probability distribution Q(a, a*) and phase probability distribution P(O). It
is shown that for the superposition with well-distinguishable states both distributions show the same rotational
symmetry. The maximum number of well-distinguishable states is estimated. The two functions are illus-
trated graphically to show explicitly their symmetry and the influence of the interference terms. The similar-
ity between the Q function integrated over the amplitude and the phase distribution P(0) is shown to exist for
the anharmonic oscillator states.

1. INTRODUCTION
Generalized coherent states that differ from coherent
states by the presence of extra phase factors appearing in
the decomposition of such states into a superposition of
the Fock states were introduced by Titulaer and Glauber'
and discussed by Stoler.2 Bialynicka-Birula3 showed
that, under appropriate periodic conditions, generalized
coherent states become discrete superpositions of coher-
ent states. Yurke and Stoler4 and Tombesi and Mecozzi5

discussed the possibility of generating quantum-
mechanical superpositions of macroscopically distinguish-
able states in the course of evolution of the anharmonic
oscillator. The anharmonic oscillator model was earlier
used by Tanag6 to show a high degree of squeezing in the
model for large numbers of photons. The two-mode ver-
sion of the model was used by Tanag and Kielich7 to de-
scribe nonlinear propagation of light in a Kerr medium,
predicting a high degree of what was called self-squeezing
of strong light. A comparison of quantum and classical
Liouville dynamics of the anharmonic oscillator was made
by Milburn' and Milburn and Holmes. 9 Kitagawa and
Yamamoto 0 used the model in their discussion of the
number-phase minimum-uncertainty state that can be ob-
tained in a nonlinear Mach-Zehnder interferometer with
a Kerr medium. They introduced the term crescent
squeezing for squeezing obtained in the model, in contrast
to elliptic squeezing of an ordinary squeezed state. The
terms crescent and elliptic stem from the shapes of the
corresponding contours of the quasi-probability distribu-
tion Q(a, a* t). The anharmonic oscillator model was also
discussed, by Pefinova and Luk5,"1 from the point of view
of photon statistics and squeezing. Miranowicz et al. 2

recently showed that superpositions with not only even
but also odd numbers of components can be obtained.
They also showed that the maximum number of well-
distinguishable states is proportional to the field am-
plitude laol and that the quasi-probability distribution
Q(a, a* t) indicates such superpositions in a spectacular
fashion. Recently Gantsog and Tanag" discussed phase

properties of self-squeezed states generated by the anhar-
monic oscillator, using the Hermitian phase formalism
introduced recently by Pegg and Barnett. 4 -6 Gantsog
and Tanag showed that in cases in which a discrete super-
position of coherent states appears, the phase probability
distribution splits into separate peaks. If this distribu-
tion is plotted in a polar coordinate system, the rotational
symmetry of the phase distribution is clearly visible, and
it can be compared with the symmetry of the quasi-
probability distribution function Q(a, a* t). So the phase
distribution function P(O) can be considered as an alterna-
tive with respect to the Q(a, a* t) representation of the
quantum state of the field, which clearly indicates super-
positions of coherent states.

In this paper we compare two descriptions of the field
that are a discrete superposition of coherent states. Ana-
lytical formulas for the two distributions are obtained for
the states generated in the anharmonic oscillator model.
It is shown that the two functions show the same rota-
tional symmetry when the superposition states are well
separated. The graphs of the two functions show explic-
itly their rotational symmetry when the states are well
separated, as well as the growing contribution of the in-
terference terms, which breaks down the symmetry for a
large number of components in the superposition. The
maximum number of well-distinguishable states is esti-
mated. It is shown that, in the case of anharmonic oscil-
lator states, there is a close similarity between the Q
function integrated over the amplitude and the phase
probability distribution P(O).

2. ANHARMONIC OSCILLATOR
EVOLUTION AND DISCRETE
SUPERPOSITIONS OF COHERENT STATES
The model is defined by the Hamiltonian

H = hcoa'a + HI, (1)

with
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HI = 1 hKa2a2 = 1 lc(h - 1) (2)
2 2

where a and a' are the annihilation and creation opera-
tors of the field mode and K is the coupling constant, which
is real and can be related to the nonlinear susceptibility
X(3) of the medium when the model is used to describe non-
linear propagation of light in a Kerr medium.6 7 We as-
sume that the medium is lossless.

Since the number of photons, h = aa, is a constant of
motion, the Heisenberg equations of motion for the field
operators can be solved exactly, which allows for deriva-
tion of exact analytical solutions for the field variances
and prediction of a high degree of squeezing6 7 in
the model.

For the purposes of this paper we need the state evolu-
tion rather than the operator evolution. Since the inter-
action Hamiltonian (2) commutes with the free part of the
Hamiltonian (1), the free evolution of the state can be fac-
tored out (we will drop it altogether below), and the state
evolution of the system is described by the Schrodinger
equation

dtih tiU(t) = H. U(t), (3)

where U(t) is the time evolution operator and HI is the
interaction Hamiltonian (2). In the propagation problem,
when the light propagates in a Kerr medium, one can
make the substitution t = -z/v to describe the spatial
evolution of the field instead of the time evolution. After
this substitution the solution to Eq. (3) is given by'"

U(T) = exp[i(T/2)A(h - 1)], (4)

where

T = KZ/V (5)

is the dimensionless length of the nonlinear medium (or
time in the time domain). If the state of the incoming
beam is a coherent state ao), the resulting state of the
outgoing beam is given by

|q/(T)) = U(T) Iao)

( 2e)xpjj exp[i n(n-1)]In). (6)

The state (6) has an additional phase factor with respect
to the coherent state lao), and because of the quadratic
dependence on n this extra phase cannot be simply added
to the phase of the coherent state. So the state (6) differs
essentially from the coherent state lao). It is known6-"1
that such states lead to squeezing, and they have been re-
ferred to as self-squeezed.6'7 On introducing the notation

a 0 = aolexp(ipo), (7)

state (9) belongs to a class of generalized coherent states. 2

It was shown by Bialynicka-Birula' that under periodic
conditions the generalized coherent states, like Eq. (9),
become a discrete superposition of N coherent states and
that the superposition coefficients can be found by the
solution of a system of N algebraic equations. Such a
system of equations was solved for several N values by
Miranowicz et al.,12 who obtained analytical formulas for
the superposition with both even and odd numbers of com-
ponents. Averbukh and Perelman 7 recently considered
the problem of evolution of wave packets formed by highly
excited states of quantum systems, showing the possibility
of fractional revivals of the initial wave packet. Their cal-
culations effectively lead to an anharmonic oscillator
model similar to that considered here. They showed that
owing to periodicity the superposition coefficients for ar-
bitrary N can be written down explicitly. We take advan-
tage of this possibility in this paper.

First, it is easy to note that 1('r + T)) = Ifl(r)) forT = 2r
because n(n - 1) is an even number. This means that
the evolution is periodic in time (or length of the medium)
with period T = 2. Moreover, we have

exp[i(r/2) (n + 2N) (n + 2N - 1)]

= exp[i(r/2)n(n - 1)]exp[iTN(2N + 2n - 1)], (10)

which means that for

= (M/N)2w = (M/N)T (11)

the exponential becomes periodic with period 2N. We as-
sume that M and N are mutually prime integers. When 
is taken as a fraction of the period, according to Eq. (11),
then the state (9) becomes a superposition of coherent
states3 :

| M )) 2N-1
(12)

where lao) is the initial coherent state. The phases Pk are
given by

Pk = (/N)k, k = 0,1, .. ,2N - 1, (13)

and the coefficients ck are given by the set of 2N equations

2 Ck exp(inspk) = exp[i7-n(n - 1)],

n = 0,1,...,2N - 1. (14)

Equation (14) can be rewritten as

2N-1 [N

Ck exp i-[4nk - Mn(n - 1)] = 1,
k=0 NI

(15)

which, after a summation over n and a minor rearrange-
ment, gives

bn = exp(-laol2 /2) (laol /\H) 

we can rewrite Eq. (6) as

|ow) = bn exp i[npo + 2 n(n - )]}ln).

(8)

(9)

2N-1 1 2N-1 fw

2 Ck 2N Y exp i-[nk - Mn(n - 1)] = 1.
k~=O 2N n=0 NI 

In view of the condition

2N-1

> CkCk = 1,
k =O

(16)

(17)
On account of the presence of the extra phase factor, the
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we immediately obtain

1 2N-1 [nk - Mn(n - 1)]} (18)
Ck = -_ exp1 ijn i

2N =o 1 

Equation (18) gives the coefficients ck of the super-
position (12) for arbitrary M and N. Because of the sym-
metry of the system, only one half of the coefficients ck
are different from zero,'2 and the superposition (12) has
only N components although the summation contains 2N
terms. Anticipating this, we have extended the summa-
tions twice in order to preserve N for the number of com-
ponents. Thus the denominator of the fraction M/N in
Eq. (11) determines the number of components that appear
in the superposition (12), which will contain the compo-
nents with even (or odd) index only. Examples of such
states are given in Ref. 12. Coefficients (18) can be
rewritten in a different form,

1 + (._l)k-M(N-1)
Ck= 2N

X exp -i [nk - Mn(n - 1)]), (19)

which explicitly shows that all Ck for which k - M(N - 1)
is an odd number are equal to zero. That is, for
M(N - 1) odd (even), only the coefficients with odd (even)
k survive. The coefficients of the superposition have
their modules equal to 1/VN, and thus they can be
written as

Ck = (1/VN)exp(iyk), (20)

where the phases k can be formally found from the
relation

7k = -i ln(Nck), (21)

with ck given by Eq. (19). The sums (18) defining the co-
efficients k are examples of trigonometric sums, which
for some special cases can be summed exactly. It is not
difficult, however, to calculate ck numerically according to
Eq. (19) and then to find yk from Eq. (21). This enables
us to write down the superposition states explicitly for
given M and N. Examples of such states will be illus-
trated graphically in Section 3 with plots of their quasi-
probability distribution function Q(a, a*) as well as their
phase distribution function P(O).

3. QUASI-PR6JBABILITY DISTRIBUTION
Q(a, ark) VERSUS PHASE DISTRIBUTION
P(O) AS A REPRESENTATION
OF THE SUPERPOSITION STATES
The quasi-probability distribution Q(a, a*) is considered
as a good representation of the quantum state of the field,
and it has been used by several authors8 "2 to describe the
anharmonic oscillator states. Miranowicz et al. 2 showed
that this function reveals in a spectacular way the super-
positions of coherent states that appear in the course of
evolution of the anharmonic oscillator whenever the com-
ponent states of the superposition are well separated.
Recently Gantsog and Tanas' 3 showed that, as an alterna-
tive to the quasi-probability distribution Q(a, a*), the

phase distribution P(6) can be applied as a good indicator
of the superpositions of coherent states. Although there
is no direct simple relation between the two functions,
they nevertheless have much in common in a description
of the superpositions of coherent states. It is the aim of
this paper to show explicitly the similarities.

The quasi-probability distribution Q(a, a*) is defined as8

Q(a,a* ) = Tr[(r)la)(al] = (alp(r) la),

and it satisfies the relations

Q(a, a) - = 1,
f < Q~a~aX) < .IT

0 • Q (a, a*,r) • 1 .

(22)

(23)

(24)

The properties of this function for the anharmonic oscilla-
tor states were discussed by Milburn' and Milburn and
Holmes.9

For the initial coherent state lao) the Q function has
the form

Q(a,a*0) = exp(-la - ao12), (25)

which represents a Gaussian bell centered on ao.
For T • 0 the state of the field is given by Eq. (9), and

the corresponding quasi-probability distribution is given
by8

10

Q(aa*T) = (alqP(T))(q1(T) a)

= exp_,(Ja,) lal bn
n=O 2 n

X exp i[n(go - g) + 2n(n - ]} , (26)

where the b are given by Eq. (8) and we have used the
relation

a = lalexp(ig). (27)

It is evident from Eq. (26) that the quasi-probability dis-
tribution is periodic in T; i.e.,

Q(a,a*T + T) = Q(aa*T) (28)

with period T = 2.
For the values of X given by Eq. (11) the state of the field

becomes the superposition of coherent states given by
Eq. (12), and in this case the quasi-probability distribution
can be alternatively written as

= | al T = M T) 

2N-1 2

= E ck(alexp(ispk)ao)
k=O

2N-1

= 2 ck exp -- lal2
k=O 2

- laol 2 + lallaol

x exp[i(gpk + Po (P)]} 2 (29)
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where the coefficients Ck are given by Eq. (19). After
minor rearrangement Eq. (29) takes the form

Q(a, a*r = T)
2N-1

= YE CkC* exp[-(laI - aol)2]
k,1=O

X exp{-2{allao1

x [1Cos ( 2 +o )D0-(

x cos( 2 ) cos( 2

+ (Po- (P )sin (Pk (P)I . (30)
SoS) ( 2 ) 4} ( 

It is clear from Eq. (30) that for aol > 1 the first exponen-
tial on the right-hand side is essentially different from
zero only for al = laol, which means that the maxima of
the Q function are located on the circle of radius laol. But
even for lal = aol the second exponential in Eq. (30) gives
nonnegligible values for definite phase relations only.
The maximum is obtained for (Pk = 9o and = o + qPk-
The condition (Pk = (pI refers to the contribution from the
kth coherent component only. Equation (30) can be geh-
erally separated into two parts,

Q(a, a = NT) = QO + Qint, (31)

If the number of components in the superposition satisfies
inequality (35), the quasi-probability distribution for such
states is described by Eq. (32) and has a quite regular
structure, which is clearly seen from Fig. 1, where con-
tours of the exact Q function given by Eq. (30) are com-
pared with contours of Qo given by Eq. (32). The
contours are obtained for the section at one half of the
maximum height of the exact Q function. The solid
curves are the contours of the exact Q function, and the
dashed curves are those of the Qo function. For the maxi-
mum number of well-distinguishable states, which accord-
ing to inequality (35) is in this case equal to 4, the
four-peak structure of the Q function is still clearly visi-
ble, although there are already some differences between
the contours of the exact Q function and those of their
Gaussian part Qo. This means that the interference
terms (33) start to play a role.

Another representation of the field state that nicely in-
dicates the superpositions of coherent states is the phase
probability distribution P(D), which is now available owing
to the Hermitian phase formalism of Pegg and Barnett.4 6

This formalism is based on the introduction of a finite
(s + 1)-dimensional subspace T spanned by the number
states 0), 1),..., s). The Hermitian phase operator acts
on this finite subspace, and after all necessary expecta-
tion values have been calculated in 'I, the value of s is per-
mitted to tend to infinity. A complete orthonormal basis
of (s + 1) states is defined on P as

where

2N-1

Qo = ICkI2 exp[-(al - aol)2]
k=O

x expl-21allao [ - COS(Pk + P - 0P)]

S

1Dm) (S + 1)-1/2 2 exp(inOm) In),
n=O

where

(32) Om 3 0 + 2rm/(s + 1), m = 0,1,...,s.

is the sum of the Gaussian quasi-probability distributions
for individual coherent states of the superposition and

2N-1 (
Qint I ckcl* exp[-(laI - IaoI)2]exp -21all aol

k,l=O

X [1-Cosf fk + 01 + - )0 k 2

x o( 2 ) o( 2)

x sin(Pk - Pi)} (33)

describes the interference terms. Whenever the interfer-
ence terms are negligible, the quasi-probability distribu-
tion splits into separate peaks representing individual
coherent states.' 2 The number of well-distinguishable
states in the superposition is proportional to laol. To esti-
mate this number, we require negligible values of the
interference terms for adjacent states. According to
Eq. (13), qk+1 - 'pk = 7/N, and the interference terms will
be negligible for

2laol2[1 - os2( )] > 1 (34)

or

The value of 00 is arbitrary and defines a particular basis
set of s + 1 mutually orthogonal phase states.
The Hermitian phase operator is defined as

(38)> D mj1m) (0m1 -
m=O

The phase states (36) are, of course, eigenstates of the
phase operator (38), with the eigenvalues Dm restricted to
lie within a phase window of 0 and 0 + 2r.

We are interested in phase properties of the anharmonic
oscillator states given by Eq. (9) or in the case when they
become a superposition of coherent states given by
Eq. (12). The probability amplitude for the phase taking
the value Dm is thus given by

(Dm/(T)) = (S + 1)-1/2

X : bn exp i[n(po - Dm) + 2 n(n - 1)

(39)

and for the phase probability we obtain

1(0 lq(,-))12 = 1 + 2
S +1 S+ 1

x Y_ bnbk cos{(n - k)o -D) 2
n>k(o

x [n(n - 1) - k(k - 1)]).

(36)

(37)
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In the limit as s tends to infinity the continuous phase
variable can be introduced,14 '16 and as a result the continu-
ous phase probability distribution given by the following
formula is obtained' 3 :

P(2) = ( 2 bnb, cos{(n - k) (o - 6)

+ -[n(n - 1) - k(k - 1)] (41)

with the normalization

the Q function in the complex a plane and the phase proba-
bility distribution P(O) versus 0 in the polar coordinate
system, each for several cases of the superpositions with
well-separated component states. The solid curves corre-
spond to the exact results, and the dashed curves corre-
spond to the results obtained according to the simplified
formulas (32) and (45). It is seen that the simplified for-
mulas reproduce quite well the exact results. The results
illustrated in Figs. 1 and 2 are obtained for laol =
2, and even for N = 4, i.e., for the upper limit of the

0+27r
f P(6)dO = 1.

o
(42)

For T =0 Eq. (41) describes the phase probability distri-
bution for a coherent state ao)-a member of partial
phase states. In this case the phase distribution P(6) is
peaked at = cpo, where o is the phase of ao. Phase
properties of the anharmonic oscillator states for 0
were discussed by Gantsog and Tanag.13 Here we are in-
terested only in cases of special T values given by Eq. (11),
namely, those for which discrete superpositions of coher-
ent states appear. In such cases the state of the field can
be written in the form (12), and the phase probability dis-
tribution takes the form

1 2N-1

P(O) - > CkCl* b: bnbn
2

r k,1=0 n, n'

x exp[in(9k + o - 0) - in'(S91 + po - 6)]. (43)

Similarly, as for the Q function, we can split
parts:

P(0) = P0(6) + Pint(0) I

P(6) into two

(44)

where

4

2

O Q
-2

T-=27r

14 -2 0 2 4

4

2 -

0

-20

_r2iT/3
4 A % A 0 )

4

2 Q

0 

-2 Q I

_14 -2 0 2 4

2-

00

-2 /0
T=27T/4

I4A .o A ') A
- 1* -4 I 11 I -w -~ v i

Fig. 1. Contours of the exact Q and Qo quasiprobability distribu-
tions in the complex a plane for the discrete superpositions
of coherent states with N = 1-4 components. The solid curves
correspond to the exact function Q, and the dashed curves corre-
spond to Qo. The phase qpo is taken to be zero everywhere.

i 2N-1

P00() = - - ICkl 1 + 2 > bbn
27 k=O n>n'

x cos[(n - ')(gPk + PO - 0)}

2N-1

= E |kkPk(j )
k=O

0.5

0.0 -

(45)

describes the sum of phase distributions of individual
coherent states forming the superposition and

1 2N-1

Pint(1 ) = - > ckcl* > bnbn,
2 k n,n'

X exp[in(qok + 'Po - 6) - in'(01 + Po - 6)] (46)

describes the interference terms contributing to the phase
distribution.

Comparing Eqs. (45) and (46) with Eqs. (32) and (33),
one easily finds that the maxima of the Q function appear
for 'P = 'k + 'o and the maxima of P(6) appear for
0 = 'k + 'o. This means that for well-separated states,
when the interference terms are negligible, the two func-
tions should have the same rotational symmetry. That
this is really so is convincingly seen by a comparison of
Figs. 1 and 2, where we plot, respectively, the contours of

-0.5 -
-0.5 0.0 0.5

0.6

0.0-

- 1.0 -_

0.0 

. -1.0 -
1.0 1.5 -0.2

0.4

0.0

0.2

-0.6- I -0.4 I
-0.6 0.0 0.6 -0.4 0.0 0.4

Fig. 2. Plots of the phase distribution P(6) in the polar coordi-
nates for the discrete superpositions of coherent states with
N = 1-4 components. The solid curves correspond to exact
results, and the dashed curves correspond to Po(0).

T=2Tr/3 T=2ir/4
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-0.4 -4
-0.4

0.0 -

-0.3 -
-0.3

Fig.

4

2

0 -

-2

7-=2-/6

4.4 -2 0 2 4

4

2-

0

-r=24/8
4-2 0 2 4

Fig. 3. Same as Fig. 1, but for N = 5-8.

0.4 -_

-~a,5 0.0

r=27n/5
-0.4 -

0.0 0.4 -0.4

0.3-

- 0.0 X

T=2i/7

-0.3
0.0 0.3 -0.3 0.0

4. Same as Fig. 2, but for N = 5-8.

0.0 0.4

0.3

estimate (35) the states are well separated. So the limit
Nmax 2laol can be considered as a good estimate of the
maximal number of the well-separated states in the super-
position. The estimate (35) agrees with the earlier esti-
mates,' 2 which were based on a different idea.

In Figs. 3 and 4 the increasing role of the interference
terms in both the Q and P functions is illustrated. Solid
curves again are used to plot the two functions according
to the exact formulas [Eq. (26) with = (M/N)T for the Q
function and Eq. (41) for the P function]. The phase poo of
the initial coherent state is taken everywhere as zero. It
is evident from Figs. 3 and 4 that as the number of compo-
nents in the superposition becomes larger than the maxi-
mal number of well-separated states (Nmax = 4 in this
case), the interference terms play an increasing role and
the symmetry of both the Q and P functions is destroyed.

Since the contours of the Q and Q0 functions are obtained
for the section at one half of the maximum height of the
exact Q function for both Q and Qo contours, and since the
peaks of the Qo function are proportional to 1/N, the con-
tours of the Q0 function with regular N-fold symmetry
become smaller as N increases, and they disappear
for N = 8 because they are already below the section
plane. For N = 8 the crescent shape of the contour1 is
recovered.

The same rotational symmetry of the Q and P functions
for the well-separated states comes from the fact that the
phases f k of the component states given by Eq. (13) take
values that are a fraction k/N of , where k and N are
integers. Because every second coefficient Ck is equal to
zero, they in fact divide 2 into N parts, forming the
N-fold symmetry of both the Q and P functions. The simi-
larity of the phase dependence of the Q function and the
phase distribution P(O) in the case of the anharmonic
oscillator model can be shown in the following way. Let
us make the transition to polar coordinates r and o
[a = r exp(i s)] in the Q function defined by Eq. (26) and
integrate it over r. This gives

Q(5P) =- fQ(r,qp)rdr
TT o

= exp(-laoi 2 > exp - i(n - k)r( I ol )n,k=O n!! (

X [ - _T (n + k - 1)]}

= 1 (1 + 2 E bb f(n+k/ 2 +l)

x cos{(n - k)(spo - p)

+ 2[n(n - 1) - k(k - 1)]
2

(47)

Expression (47) shows a striking similarity to the phase
probability distribution (41). The only difference is the
presence in Eq. (47) of the factor F(n + k/2 + 1)//Hi~k.
This expression is valid for any r values, not only for r =
(M/N)T, i.e., for the superposition states. The function
Q(tp), which is properly normalized, could be considered as
a phase distribution, but it differs from the true phase
distribution (41). The differences may not be substantial
in practice, so, at least for the anharmonic oscillator
states, there is a deeper relation between the Q and P
functions.

4. CONCLUSION

In this paper we have compared two representations of
quantum states of the field. The quasi-probability distri-
bution Q(a, a*) and the phase probability distribution P(O)
have been analyzed for the quantum states generated in
the anharmonic oscillator model. For special choices of
the evolution time the anharmonic oscillator states be-
come superpositions of coherent states. It has been shown
that for the superpositions with well-distinguishable states

4

2

-2

2 _ T=r/5

4.4 -2 6 2

4

2 

0 1-.'

-2.

7-2Tir/7
_4n 4 - 0 2

1.=2Tr/6

X,)

T=21r/13
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the Q and P functions have the same rotational symmetry.
Both functions split into the sums of their counterparts
for the individual components of the superposition, which
may be of value for detecting the superposition states.
The maximum number of well-distinguishable states in
the superposition is estimated to be proportional to laol.
The results were illustrated graphically, showing explicitly
the rotational symmetry of the two functions for well-
separated states and the growing influence of the inter-
ference terms when the number of components becomes
larger than Nmax. The more fundamental relation be-
tween the phase dependence of the Q function and the
phase probability distribution P(O) was shown to exist for
the anharmonic oscillator states.
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