Coherent states in a finite-dimensional Hilbert space

A. Miranowicz, K. Piątek, and R. Tanaś

Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, 60-780 Poznań, Poland

(Received 22 April 1994)

We construct, according to Glauber's definition, the coherent states in a univocally specified finite-dimensional Hilbert space. Their analytical form is obtained as an analytical solution of the problem raised by Bužek *et al.* [Phys. Rev. A **45**, 8079 (1992)]. The phase properties of the coherent states are studied within the Pegg-Barnett formalism.

PACS number(s): 42.50.Dv

Recently, Bužek et al. [1] discussed the analog of Glauber's coherent states in a finite-dimensional Hilbert space. The problem turned out to be difficult. A general analytical form of the finite-dimensional coherent states (FDCS), i.e., states of a harmonic oscillator in the finite-dimensional Hilbert space \mathcal{H}_s spanned by (s+1) number states [2], was not found in Ref. [1]. Nevertheless, they proposed a numerical analysis of the FDCS differing essentially from the ordinary Glauber coherent states, i.e., those defined in infinite-dimensional Hilbert space. In this paper we present a method enabling us to obtain the FDCS in closed analytical form, as the solution of the problem proposed by Bužek et al. [1].

Glauber [3] defined a coherent state in infinitedimensional Hilbert space \mathcal{H} applying a displacement operator $\hat{D}(\alpha, \alpha^*)$ on the vacuum state $|0\rangle$:

$$|\alpha\rangle = \hat{D}(\alpha, \alpha^*)|0\rangle,\tag{1}$$

where

$$\hat{D}(\alpha, \alpha^*) = \exp(\alpha \hat{a}^{\dagger} - \alpha^* \hat{a}). \tag{2}$$

The definition (1) is usually applied to construct coherent states in various finite-dimensional state spaces [1,4], e.g., the FDCS here discussed.

Formally, a coherent state $|\alpha\rangle_s$ spanned by (s+1) number-state vectors, can be expressed as follows:

$$|\alpha\rangle_{(s)} = \sum_{n=0}^{s} C_n^{(s)} |n\rangle, \tag{3}$$

with the normalization condition

$$_{(s)}\langle \alpha | \alpha \rangle_{(s)} = \sum_{n=0}^{s} |C_n^{(s)}|^2 = 1$$
 (4)

strictly fulfilled for arbitrary s. Hence the main task resides in finding the coefficients $C_n^{(s)}$. The Baker-Hausdorf formula cannot be used to solve this problem because the commutator of the annihilation \hat{a} and creation \hat{a}^{\dagger} operators is not a c number. A numerical procedure, leading to the coefficients $C_n^{(s)}$, was proposed by Bužek $et\ al.\ [1]$.

In order to solve this problem analytically, it is of advantage to express the coherent state $|\alpha\rangle$ in number-state representation in a different manner:

$$|\alpha\rangle = \sum_{n=0}^{\infty} \frac{(\alpha a^{\dagger} - \alpha^* a)^n}{n!} |0\rangle$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{[[n/2]]} \frac{\sqrt{(n-2k)!}}{n!} d_{n,n-2k} (-\alpha^*)^k \alpha^{n-k} |n-2k\rangle,$$
(5)

where

$$d_{n,k} \equiv d_{n,k}^{(\infty)} = \binom{n}{k} (n-k-1)!!, \tag{6}$$

and [x] denotes integer $\leq x$. In the s-dimensional Hilbert space, the condition

$$\hat{a}^{\dagger k}|n\rangle = 0$$
 for $n+k>s$, (7)

should be fulfilled. Thus the equation (5) for the FDCS can be rewritten as

$$|\alpha\rangle_{(s)} = \sum_{k=0}^{s} \sum_{n=k}^{\infty} \frac{\sqrt{k!}}{n!} d_{nk}^{(s)} (-\alpha^*)^{(n-k)/2} \alpha^{(n+k)/2} |k\rangle.$$
 (8)

The problem reduces to the derivation of the coefficients $d_{n,k}^{(s)}$ in the (s+1)-dimensional space satisfying the limit condition

$$\lim_{s \to \infty} d_{nk}^{(s)} = d_{nk}^{(\infty)} \equiv d_{nk} = \binom{n}{k} (n-k-1)!! \tag{9}$$

We obtained the following simple recurrence formula for d_{nk} (more details in [5]):

$$d_{nk}^{(s)} = \theta_k d_{n-1,k-1}^{(s)} + (k+1)\theta_{k+1} d_{n-1,k+1}^{(s)}$$
(10)

with the boundary conditions for arbitrary s:

$$d_{00}^{(s)} = 1,$$

$$d_{n,n+k}^{(s)} = 0 \text{ for } k > 0,$$
(11)

where the Heaviside function θ_n is defined as

$$\theta_n \equiv \theta(s-n) = \begin{cases} 1 & \text{for } s \ge n \\ 0 & \text{for } s < n. \end{cases}$$
 (12)

We arrive at the following solution of the recurrence formula (12):

$$d_{nk}^{(s)} = \frac{s!}{k!(s+1)} \sum_{l=0}^{s} \frac{\text{He}_{k}(x_{l})}{[\text{He}_{s}(x_{l})]^{2}} x_{l}^{n}, \tag{13}$$

where $x_l \equiv x_l^{(s+1)}$ are the roots of the modified Hermite polynomial of order (s+1),

$$\operatorname{He}_{s+1}(x_l) = 0. \tag{14}$$

A solution similar to ours (13), with the roots x_k (14), was found by Figurny *et al.* [6] in their analysis of the eigenvalues of the truncated (i.e., finite-dimensional) quadrature operators.

Our procedure provides the coefficients $C_n^{(s)}$ of (3) in the closed analytical form

$$C_n^{(s)} = \frac{s!}{s+1} (n!)^{-1/2} \sum_{k=0}^{s} \exp\left\{ \mathrm{i} [n(\phi_0 - \pi/2) + x_k |\alpha|] \right\}$$

$$\times \operatorname{He}_{n}(x_{k}) \left[\operatorname{He}_{s}(x_{k}) \right]^{-2}, \tag{15}$$

after performing summation in (5) with the coefficients $d_{nk}^{(s)}$ given by (13).

The expression (15) is the solution of the problem for-

The expression (15) is the solution of the problem formulated by Bužek *et al.* [1]. Some properties of these states and more details concerning our procedure will be published shortly [5].

The FDCS (3), with the coefficients $C_n^{(s)}$ (15), take the following simple forms in the special cases for s = 1,2,3:

$$|\alpha\rangle_{(1)} = \cos|\alpha||0\rangle + e^{i\phi_0}\sin|\alpha||1\rangle,\tag{16}$$

$$|\alpha\rangle_{(2)} = \frac{1}{3} \left[\cos\left(\sqrt{3}|\alpha|\right) + 2 \right] |0\rangle + \frac{1}{\sqrt{3}} e^{i\phi_0} \sin\left(\sqrt{3}|\alpha|\right) |1\rangle + \frac{\sqrt{2}}{3} e^{2i\phi_0} \left[1 - \cos\left(\sqrt{3}|\alpha|\right) \right] |2\rangle, \tag{17}$$

$$|\alpha\rangle_{(3)} = \frac{1}{2} \left[\frac{1}{x_1^2} \cos(x_1|\alpha|) + \frac{1}{x_2^2} \cos(x_2|\alpha|) \right] |0\rangle + \frac{1}{2} e^{i\phi_0} \left[\frac{1}{x_1} \sin(x_1|\alpha|) + \frac{1}{x_2} \sin(x_2|\alpha|) \right] |1\rangle - \frac{1}{2\sqrt{3}} e^{2i\phi_0} \left[\cos(x_1|\alpha|) - \cos(x_2|\alpha|) \right] |2\rangle - \frac{1}{2} e^{3i\phi_0} \left[\frac{1}{x_1} \sin(x_1|\alpha|) - \frac{1}{x_2} \sin(x_2|\alpha|) \right] |3\rangle,$$
 (18)

FIG. 1. The coefficients $C_n^{(s)} = |C_n^{(s)}|$ (15) plotted versus the amplitude $|\alpha|$ for (a) n=0, (b) n=1, (c) n=3 in the Hilbert spaces of different dimensionality: s=1 (dotted lines), s=2 (dotted-dashed lines), s=3 (dashed lines), and $s=\infty$ (solid lines).

FIG. 2. The dependence of the scalar product of FDCS $|\alpha\rangle_s$ and infinite-dimensional coherent states $|\alpha\rangle$ on the amplitude $|\alpha|$ for various s.

where

0.0 μ.... -²⁵/₂₆ π

$$\alpha = |\alpha|e^{i\phi_0},\tag{19}$$

$$x_{1,2} \equiv x_{1,2}^{(4)} = \sqrt{3 \pm \sqrt{6}}.$$
 (20)

The coherent state $|\alpha\rangle_{(1)}$ (16) in the two-dimensional space \mathcal{H}_1 spanned by $\{|0\rangle, |1\rangle\}$ was obtained and analyzed by Bužek *et al.* [1]. The simplicity of (16) comes from the fact that the only nonvanishing coefficients $d_{nk}^{(1)}$

are equal to unity.

 $\frac{50}{51}$ π

Θμ

In Fig. 1 the coefficients $C_n^{(s)}$ determining the photonnumber distribution are plotted as functions of the amplitude $|\alpha| = \alpha$. It is clearly seen that the differences between $C_n^{(s)}$ and $C_n^{(\infty)}$, for $\alpha \lesssim \sqrt{n}$, vanish with increasing number of dimensions s. For s=1,2 the coefficients $C_n^{(s)}$ are given by a single trigonometric function multiplied and shifted by appropriate factors. The coefficient $C_n^{(3)}$, as depicted in Figs. 1(a)-1(c), is the superposition of two trigonometric functions. In general, the coefficients for the s-dimensional space are superpositions of $\lceil \frac{s+1}{2} \rceil$ cosine functions.

In Fig. 2 we plot the squared absolute value of the scalar product $|\langle \alpha | \alpha \rangle_{(s)}|^2$ versus the amplitude α for particular values of s. Obviously, there is hardly any differference between our FDCS (3) and the Glauber coherent states (1) in the infinite-dimensional Hilbert space \mathcal{H} for $\alpha/s \ll 1$. However, for $\alpha/s > 1$ the differences are significant.

Using the explicit form (15) one can easily analyze the phase properties of the FDCS within the Pegg-Barnett formalism [7,8]. Some of these properties have been studied in [1]. Here, we calculate the Pegg-Barnett distribution for FDCS defined as

$$P(\theta_m) \equiv \left| {}_{(s)} \langle \theta_m | \alpha \rangle_{(s)} \right|^2. \tag{21}$$

The FDCS are examples of partial phase states [7]. In this case it is convenient to choose the initial value θ_0 of the phase window as

 $\frac{25}{26}\pi$

⁰ Θ_μ

-50/₅₁ π

FIG. 3. The Pegg-Barnett distributions with discrete $\bar{P}(\theta_{\mu})$ and continuous $P(\theta)$ phase dependence for s=5,...,50.

$$\theta_0 = \phi_0 - \frac{s}{s+1}\pi \tag{22}$$

and renumber the dummy indices $\mu = m - s/2$, which leads to

$$\theta_{\mu} = \frac{2\pi}{s+1}\mu, \quad \mu = -\frac{s}{2}, \dots, \frac{s}{2}.$$
 (23)

Thus the Pegg-Barnett phase distribution (21) can be expressed in a form symmetrical with respect to μ :

$$P(\theta_{\mu}) = |_{(s)} \langle \theta_{\mu} | \alpha \rangle_{(s)}|^{2}$$

$$= \frac{1}{s+1} \left\{ 1 + 2 \operatorname{Re} \sum_{n=1}^{s} \sum_{k=0}^{n-1} |C_{n}^{(s)}| |C_{k}^{(s)}| \times \exp\left[i(n-k)\theta_{\mu}\right] \right\}. \tag{24}$$

In the limit of $s\mapsto\infty$ the continuous phase variable θ is introduced instead of θ_{μ} and $2\pi/(s+1)$ is replaced by $d\theta$. Hence one obtains the continuous Pegg-Barnett phase distribution in the following form:

$$\lim_{s \to \infty} \bar{P}(\theta_{\mu}) \equiv \lim_{s \to \infty} \frac{s+1}{2\pi} P(\theta_{\mu}) = P(\theta). \tag{25}$$

In Fig. 3 the discrete function $\bar{P}(\theta_{\mu})$, i.e., the renormalized phase distribution $P(\theta_{\mu})$ with the scaling factor $\frac{s+1}{2\pi}$ is depicted for the FDCS $|\alpha\rangle_{(s)}$ with $\alpha=2$ in the finite-dimensional (s=5,...,50) Hilbert spaces. The normalization condition

$$\sum_{\mu = -s/2}^{s/2} P(\theta_{\mu}) = 1 \tag{26}$$

implies that the maximum of distributions $P(\theta_{\mu})$ considerably decreases with increasing dimension s. This property makes a direct comparison of the discrete and continuous phase distributions difficult. To avoid this difficulty we have used the scaling factor $\frac{s+1}{2\pi}$ justified by the relation (25). It is clearly seen that the differences between the phase distributions $P(\theta_{\mu})$ for FDCS and $P(\theta)$ for the coherent states in standard Hilbert space \mathcal{H} vanish with increasing number s of dimensions of \mathcal{H}_s .

In conclusion, we have derived the analytical form of the coherent states in the finite-dimensional Hilbert space according to the general Glauber definition. We have tested the essential differences between the ordinary coherent states and ours as revealed by the photon-number and phase properties.

- V. Bužek, A. D. Wilson-Gordon, P. L. Knight, and W. K. Lai, Phys. Rev. A 45, 8079 (1992).
- [2] We treat the Hilbert space as a vector space which is complete and unitary. Nonetheless, some authors include infinite dimensionality as a third condition in the definition.
- [3] R. J. Glauber, Phys. Rev. A 131, 2766 (1963).
- [4] Wei-Min Zhang, D. H. Feng, and R. Gilmore, Rev. Mod.

Phys. 62, 867 (1990).

- [5] A. Miranowicz, K. Piątek, and R. Tanaś (unpublished).
- [6] P. Figurny, A. Orłowski, and K. Wódkiewicz, Phys. Rev. A 47, 5151 (1993).
- [7] D. T. Pegg and S. M. Barnett, Phys. Rev. A 39, 1665 (1989).
- [8] S. M. Barnett and D. T. Pegg, J. Mod. Opt. 36, 7 (1989).