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We construct, according to Glauber’s definition, the coherent states in a univocally specified
ﬁmte—dlmensmnal Hilbert space, Their analytical form is obtained as an analytical solution of the

problem raised by Buzek et al. [Phys

Rev. A 45, 8079 (1992)].

The phase properties of the

coherent states are studied within the Pegg-Barnett formalism.

PACS number(s): 42.50.Dv

Recently, Buzek et al. [1] discussed the analog of
Glauber’s coherent states in a finite-dimensional Hilbert
space. The problem turned out to be difficult. A general
analytical form of the finite-dimensional coherent states
(FDCS), i.e., states of a harmonic oscillator in the finite-
dimensional Hilbert space H, spanned by (s+ 1) number
states [2], was not found in Ref. [1]. Nevertheless, they
proposed a numerical analysis of the FDCS differing es-
sentially from the ordinary Glauber coherent states, i.e.,
those defined in infinite-dimensional Hilbert space. In
this paper we present a method enabling us to obtain

the FDCS in closed analytical form, as the solution of

the problem proposed by Buzek et al. [1].

Glauber [3] defined a coherent state in infinite-
dimensional Hilbert space H applying a displacement op-
erator D(a,a*) on the vacuum state |0):

l@) = D(a, o)), o
where
D(e,a*) = exp(adt — E) (2)

The definition (1) is usually applied to construct coherent
states in various finite-dimensional state spaces [1,4],
e.g., the FDCS here discussed.

Formally, a coherent state |a), spanned by (s + 1)
number-state vectors, can be expressed as follows:

)@y = D CPIn), (3)
n=0
with the normalization condition
@lala)y =S [C¥P? =1 (4)
n=0 .

strictly fulfilled for arbitrary s. Hence the main task re-
gides in finding the coefficients C,(;') . The Baker-Hausdorf
formula cannot be used to solve this problem because the
commutator of the annihilation & and creation &' opera-
tors is not a ¢ number. A numerical procedure, leading
to the coefficients C',(,'), was proposed by BuzZek et al. [1].

In order to solve this problem analytically, it is of ad-

vantage to express the coherent state |a) in number-state
representation in a different manner:
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o) = Z (oal—oTa)")y)

n=0
oo [["/2]] / — 1
=y > ——(n'—zk)'dmn_zk(—a*)ka"_ﬂn — 2k),
n!
n=0 k=0
(5)
where
dupe =7 = (7) =k —1)1, (6)

and [z] denotes integer < z. In the s-dimensional Hilbert
space, the condition

&”‘|n) =

should be fulfilled. Thus the equation ( 5) for the FDCS

can be rewritten as

Yoy = ZZ ——d(’

k=0n==k

for n+k > s, (7

)(n—k)/za(n—f—k)/z ]k). (8)

The problem reduces to the derivation of the coeflicients

d(’ze in the (s + 1)-dimensional space satisfying the limit
condition

s oo n
bm d) = d) = du = () (A-k-11  (9)

8300

We obtained the following simple recurrence formula for
dnk (more details in [5]):

d(‘) = ekd( )1 k—1 T (k + 1)9k+1d )1 k41 (10)

with the boundary conditions for arbitrary s:
di(J:J) =1,

d{) =0 fork >0, (11)

where the Heaviside function ,, is defined as
1 for s>n
0, = —n)= - 12
6(s —n) {0 for s < mn. (12)

We arrive at the followmg solution of the recurrence for-
mula (12):
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(s) _ sl Heg(z1)
W WD g FerlwdP
where z; = x§'+1) are the roots of the modified Hermite
polynomial of order (s + 1),

He,41(z1) =0. (14)
A solution similar to ours (13), with the roots zp (14),
was found by Figurny et al. [6] in their analysis of
the eigenvalues of the truncated (i.e., finite-dimensjonal)
quadrature operators.

Our procedure provides the coefficients cl® of (3) in
the closed analytical form
]

@) 1) = cos |e][0) + €% sin|a|1),

[y

jad(2) =3 [COS (\/glal) + 2] [0) + — \/?_’

ladsy =

— L e%%0 [cos (a4]af) — cos (z3]a)] [2) ~ 1 ¢3i%o [El-l-sin(mllan— ;};sin(mz]an] 13),
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(13)

&i%o gin (\/_lal) 1) + — \/_ elido [ — cos (\/5[0:])] 2),

1/3 Z exp {i[n(do — 7/2) + T |o]}

k=0

xHe,, (z+.) [He, (zx)] 2, (15)
after performing summation in (5) with the coefficients

dw® % given by (13)

The expression (15) is the solution of the problem for-
mulated by BuZek et al. [1]. Some properties of these
states and more details concerning our procedure will be

published shortly [5].
The FDCS (3), with the coefficients c{ (15), take the

following simple forms in the special cases for s =1,2,3:

(16)

(17)

171 1 1 [1 1.
5 ["321’ cos (z1|el) + ;7? cos (azglal)] |0} + 3¢ [z sin (z1]e|) + - sin (wglal)} |1)

(18)

11
..... e o R
\ .’.‘.' )"\ \\ i *,
N\ F VAR "\ 4 -~ . -,
. S 3 ™. /" N\
\.".“./ ,I" \./'y\ \. - \\ /, \_\ / \.'€~.‘_
£ 7 \ A \ N ANY
s 2 - 0.0 \ S— ‘1 Y ; L n’ \:
r 4 foeg - . ¥ A Y . .
e U‘ \ ".{' ‘\‘ \i ! I/ \
4 \ 3 \ LI 4 ’ \
L4 / Y ) 7 \
,I \_/' ., ~ ﬂ'.o '{\/ ’ K
’ ; \ U
, s ~_ 7
’
" """"
= —= - =11
5 10 0 5 10
lad 3 ©) lod
- - B
./ \'\ /'/ \. ./ \
./ .\ o \. _/ - \
~ ' A \ .~ ./ ’/ by
\ \ N1 7 \|
\ 4 K \\\ /
- \ . N .
Ejﬂ 0.0 “ r 2na 7
\ ’ X /
v - AP
-1.1 .
0 5 10
la

FIG. 1. The coefficients C{* = |C(')[ (15) plotted versus the amplitude |a| for (a) n=0, (b) n=1, (c) n=3 in the Hilbert
spaces of different dimensionality: s = 1 (dotted lines), s = 2 (dotted-dashed lines), s = 3 (dashed lines), and s = co (solid
lines).
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FIG. 2. The dependence of the scalar product of FDCS [a),

and infinite-dimensional coherent states |a) on the amplitude
|| for various s.

where

a = |aje’?e, (19)

T2 = :z:g‘% = 3% V6.

The coherent state |a)) (16) in the two-dimensional
space H; spanned by {|0),|1)} was obtained and ana-
lyzed by BuZek et al. [1]. The simplicity of (16) comes

from the fact that the only nonvanishing coefficients dfllk)

(20)
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" ‘are equal to unity.

In Fig. 1 the coefficients C*) determining the photon-
number distribution are plotted as functions of the am-
plitude || = a. It is clearly seen that the differences

between CS and C, for a S /7, vanish with increas-
ing number of dimensions s. For s = 1,2 the coefficients
C’,(,’) are given by a single trigonometric function multi-
plied and shifted by appropriate factors. The coefficient
C’,(,?’), as depicted in Figs. 1(a)-1(c), is the superposition
of two trigonometric functions. In general, the coeffi-
cients for the s-dimensional space are superpositions of
[2£1] cosine functions.

In Fig. 2 we plot the squared absolute value of the
scalar product |(a|a)(s)|? versus the amplitude « for par-
ticular values of s. Obviously, there is hardly any differ-
ference between our FDCS (3) and the Glauber coherent
states (1) in the infinite-dimensional Hilbert space H for
afs < 1. However, for a/s > 1 the differences are sig-
nificant.

Using the explicit form (15) one can easily analyze the
phase properties of the FDCS within the Pegg-Barnett
formalism [7,8]. Some of these properties have been stud-

_ ied in [1]. Here, we calculate the Pegg-Barnett distribu-

tion for FDCS defined as

P(0m) = |0y (Bl -

The FDCS are examples of partial phase states [7]. In
this case it is convenient to choose the initial value 8y of
the phase window as

(21)
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8

9o=¢0‘8+1

T ) (22)
and renumber the dummy indices p = m — s/2, which
leads to

_ 2w _ 8
#—8+1ﬂ’ H = Paey

Thus the Pegg-Barnett phase distribution ( 21) can be
expressed in a form symmetrical with respect to u:

P(0,) = |y (Buloy

1 s n—1
— . (s) ()
_8+1{1+2ReZZ|Cn [1C|

n=1 k=0

. .(23)

X exp [t(n — k)H,‘]}. (24)

In the limit of s — oo the continuous phase variable 8
is introduced instead of 6, and 27 /(s + 1) is replaced
by df. Hence one obtains the continuous Pegg-Barnett
phase distribution in the following form:

s+1
2

lim P(6,) = lim *Z=P(0,) = P(6).

800

(25)
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In Fig. 3 the discrete function P(8,), i.e., the renormal-
ized phase distribution P(6,) with the scaling factor %2
is depicted for the FDCS |a)(,y with & =2 in the finite-
dimensional (s=5,...,50) Hilbert spaces. The normaliza-
tion condition

s/2

> PO.)=1

u=—3/2

(26)

implies that the maximum of distributions P(6,) con-
siderably decreases with increasing dimension s. This
property makes a direct comparison of the discrete and
continuous phase distributions difficult. To avoid this
difficulty we have used the scaling factor ‘;;r 1 justified by
the relation (25). It is clearly seen that the differences be-
tween the phase distributions P(6,) for FDCS and P(6)
for the coherent states in standard Hilbert space H van-
ish with increasing number s of dimensions of #,.

In conclusion, we have derived the analytical form of
the coherent states in the finite-dimensional Hilbert space
according to the general Glauber definition. We have
tested the essential differences between the ordinary co-
herent states and ours as revealed by the photon-number
and phase properties.
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