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I. INTRODUCTION: HISTORICAL DEVELOPMENTS

Almost simultaneously in 1928 Raman and Krishnan" ? and Landsberg
and Mandel’stamm? observed a new kind of scattering, now referred to as
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(spontaneous) Raman scattering. For the last 65 years Raman scattering
has unceasingly been in the forefront of both scientific and experimental
investigations, particularly after the first observation of stimulated Raman
scattering by Woodbury and Ng* (see also Ref. 5). Without exaggeration
one can say that Raman scattering and spectroscopy constitute a com-
pletely autonomous discipline.

The literature on Raman scattering is quite prodigious. The theoretical
principles and milestone experiments describing the Raman effect are
summarized in a number of excellent monographs and reviews, for in-
stance, by Bloembergen,® Kaiser and Maier,” Koningstein,® Grasyuk,” '
Wang,'" 12 Cardona,® Long,'* Hayes and Loudon,'> Penzkofer et al.,'®
Kielich,'’"!° Shen,?® D’yakov and Nikitin,?! and the most recent reviews
by Raymer and Walmsley,?? Pefina,”® and Mostowski and Raymer.”* We
also refer the reader to the special issue of the Journal of the Optical
Society of America B, which is devoted entirely to Raman scattering.
Although an extensive literature has accumulated dealing with Raman
scattering, it should be emphasized that the understanding of the funda-
mental principles that govern the process is still incomplete.

There are several major groups of theories treating the Raman effect in
the semiclassical and quantum approaches, and theories for standing
waves and spatially propagating waves. Here, we discuss in detail the
quantum theory of Raman scattering for several radiation modes only; this
implies that the theory is the best suited for scattering in a tuned cavity.
Nevertheless, some predictions from the standing wave model also can be
applied for traveling wave models.?6~%

Various methods have been applied to the Raman effect in each of the
above theories. Taking into account the equation of motion as the basis
for classification, we can distinguish the following approaches, based on
the photon rate equation, the Schridinger equation, the Heisenberg
equation (Heisenberg-Langevin equation), the master equation (gener-
alized Fokker-Planck equation), and the Maxwell-Heisenberg equation
(Maxwell-Block equation); we refer to Refs. 22, 23, 30, 31. The above
classification is obviously oversimplified. Firstly, there are many relations
bridging these approaches. For instance, we shall apply the master equa-
tion approach from which we shall derive the Fokker-Planck equation and
the photon rate equation. Secondly, there exist other alternative methods,
which do not fit into our classification. Let us mention, for example, those
developed by Mavroyannis®?>~3* and Freedhoff.*® Thirdly, one can classify
the Raman effect theories in many other ways (see, e.g., Ref. 22).

We shall be considering the incident laser photons to be scattered by
chaotic phonons or quantized chaotic vibrations in a crystal. The process
leads to Stokes and anti-Stokes photons. To the description of Raman
scattering, we use two trilinear Hamiltonians coupled via an infinite
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number of phonon modes; one Hamiltonian describes Stokes radiation,
and the other describes anti-Stokes radiation. The problem of coupled
Stokes and anti-Stokes modes were studied previously by Bloembergen
and Shen,*~** who applied the coupled wave theory of nonlinear optics
formulated by Armstrong et al.* Later, Mishkin and Walls® quantized
the Stokes and anti-Stokes modes, but dealt with the laser mode as a
constant amplitude (so-called the parametric approximation). In fact, they
considered two bilinear Hamiltonians, coupled by way of a phonon mode.
Stokes scattering was treated as a parametric amplifier, whereas anti-Stokes
scattering was treated as a parametric frequency converter. A detailed
study of quantum statistics of the bilinear Hamiltonians, proposed by
Louisell et al.,* has been extensively carried out (e.g., Refs. 42-50)
and applied to Raman scattering, in particular by Mishkin and Walls,*
Walls,>" 52 Pefina,**~%> Karsk4 and Pefina,*® and others. Walls®” (see also
Ref. 44) has extended the bilinear Hamiltonian to a trilinear form to
describe Raman scattering. The dynamics of Raman processes with trilin-
ear Hamiltonian has been studied by Szlachetka et al.,¥~%° Szlachetka and
Kielich,*! Szlachetka,? Trung and Schiitte,2 Tinzler and Schiitte,** Reis
and Sharma,* Pefina et al.,®> % Pefina and Kiepelka,®” ® Levenson et
al.,* and others (for general analyses see also Refs. 23,70, and 71).

We shall describe Raman scattering from phonons as collective phe-
nomena involving the interaction of many molecules. Much attention has
also been drawn to a microscopic picture of the Raman effect by consider-
ing the interaction with individual molecules. Shen,?® ’? in his quantum-
statistical theory of nonlinear phenomena, proposed the general m + n
photon Hamiltonian, describing m emissions and n absorptions, and
atomic transitions of an ensemble of N f-level atoms. This microscopically
correct Hamiltonian contains Bose operators of a field and Fermi opera-
tors for optically active electrons and therefore describes a variety of
nonlinear phenomena, in particular Raman scattering (for two- or three-
level atoms). The same general Hamiltonian has been used by Walls*? and
McNeil and Walls.” Raman scattering from a two-level molecular (atomic)
system™ 8 and in a three-level molecular system™ #-%2 has been exten-
sively studied by various authors. Walls’* has shown that a description of
Raman scattering from two-level molecules with a large cooperation
number (coherent molecular coupling) is markedly similar to the results
for-Raman scattering from phonons. This is because for coherent molecu-
lar coupling, sums of the Fermi operators for the individual molecules can
be replaced by the collective operators approximately satisfying boson
commutation relations.

Nonclassical properties of radiation, such as squeezing, sub-Poissonian
photon statistics, and photon antibunching, remain central topics in quan-
tum optics. The literature in this area is truly prodigious. The reader is
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referred to the articles published in Vol. 85 of this series and references
therein, for instance, Refs. 93-95, as well as the reviews by Kiclich et al.,”
Leuchs,” Loudon and Knight,”® Teich and Saleh,”® ' Zaheer and
Zubairy,'°! and the topical issues of the Journal of the Optical Society of
America B'? and the Journal of Modern Optics.'®

Squeezing properties of Raman scattering have been studied by
Pefinovi et al.,®> % Pefina,> Karsk4 and Pefina,”® Levenson et al.,*” and
Pefina and Kiepelka.®” %8 Sub-Poissonian photon-counting statistics and /
or photon anticorrelations (in particular antibunching) have been investi-
gated within various approaches to the standing-wave Raman effect by
Loudon,®® Simaan,” Agarwal and Jha,® Trung and Schiitte,®
Szlachetka and Kielich,%! Szlachetka et al.,*®-% Gupta and Mohanty,”® 7
Pefina,® 5 Tanzler and Schiitte,”> Germey et al.,'> Mohanty et al.,*
Kral,'% Gupta and Dash,> 1% Ritsch et al.,*” and in papers already
mentioned>> 3% -9 (see also Ref. 23). We note that photons scattered in
the hyper-Raman effect can also exhibit nonclassical photon-counting
correlations?” 0 65 106-116 oy squeezing 6> 113 116

We shall analyze, in particular, cross-fluctuations (cross-correlations) in
quadratures and in photocount statistics between different radiation modes.
The theory of coherent light scattering within the consistent multipole
tensor formalism, developed by Kielich!'” (see also Refs. 27, 58, 60) was
successfully applied to disclose a novel cross-fluctuation mechanism. Here,
an analysis of cross-correlations is presented along the lines of Szlachetka
et al.>® ¥ (see also Ref. 23), as well as Loudon.*

We shall be studying sub- or super-Poissonian photon-counting statis-
tics. We shall not analyze photon antibunching or bunching. The inclusion,
in our Raman scattering model, of standard (i.c., temporal) photon anti-
bunching would pose no problem. Let us mention the difference between
sub-Poissonian statistics and anti-bunching pointed out in Refs. 118 and
119, which enables us to claim that these are distinct phenomena, and
definitions should not be confused. The Raman scattering model is
not suitable for investigations of spatial antibunching as defined by
Le Berre-Rousseau et al.'?® and Bialynicka-Birula et al.'?! in terms of
negative angular correlations of photons.

As stated above, we shall be considering the quantum statistics of
Raman scattering from phonons. We shall concentrate on a statistical
analysis within the master equation approach to the Raman effect pro-
posed by Shen,?® Walls,'?> and McNeil and Walls.”? This approach has
been studied by various authors, e.g., Simaan,” Schenzle and Brand,
Pefina,? 53 5% Germey et al.,'” Gupta and Dash,'% Bogolubov et al.,%
Grygiel,®® Miranowicz,®* and Karsk4 and Pefina.’® Usually a master equa-
tion is converted to a classical differential equation. Here, we shall apply a
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transformation to a Fokker-Planck equation (FPE) for s-parametrized
quasidistributions using the coherent-state technique and an alternative
method of a master equation in terms of Fock states (or a rate equation
for the conditional photon-number probabilities).

Walls'?? was the first to apply the FPE technique to Raman scattering.
This approach was extensively developed by Pefina and coworkers (Ref. 23
and references therein). Unfortunately, a FPE for the Raman effect has
been solved exactly under parametric approximation only; i.e., a pump
depletion was not included. It means that Raman scattering is described as
a competing process of parametric amplification (Stokes scattering) and
parametric frequency conversion of light (anti-Stokes scattering) in a
nonlinear crystal. This approximation seems to be a real shortcoming of
the FPE approach. A problem of the existence of a solution of the FPE
also arises. A diffusion matrix of the FPE for the s-parametrized quasidis-
tributions (with s = 1) in many cases is not positive or positive semidefi-
nite. Therefore, such a FPE cannot be interpreted as an equation of
motion describing the Brownian motion under the influence of a suitable
force.!?® For this reason the term pseudo- or generalized-FPE is used in
the literature. It is sometimes argued that .equations of this type are
unphysical. However by doubling the phase space, it is possible to intro-
duce a generalized P-representation (the positive P-representation).'?* 12°
The equation of motion for this generalized P-representation is a FPE
with a positive or positive semidefinite diffusion matrix. The nonpositive
definite diffusion matrix plays an essential role in the production of
nonclassical fields.'?6

The second method of an equation of motion in Fock representation
has been applied to various multi-photon Raman processes.>® 73 7> 78-80, 90,
106, 107, 112, 114-116 The master equation (in terms of Fock states) for
first-order Stokes scattering can be solved by applying the Laplace trans-
form method. Solutions obtained by McNeil and Walls,” Simaan,” and
others apply only to the diagonal elements of the density matrix g, which
is a serious drawback of these formulations.??> The photocount statistics
(sub-Poissonian photon statistics, antibunching, or anticorrelation) can be
fully analyzed using the diagonal, in Fock representation, matrix elements
of p only. However, the phase properties of the fields,'?*~!3! or squeezing
properties® 32 (which are sensitive to the phase of the field) require the
availability of the non-diagonal terms of the density matrix. We shall
derive, for Raman scattering including depletion of the pump field, an
exact solution of the master equation for the complete density matrix in
Fock representation {n, mlp|n’, m') with arbitrary n, m, n’, m'.

The classical description of Raman scattering into both the Stokes
and anti-Stokes fields seems to be well understood,® ?° contrary to quan-
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tum description, which is hampered by the complexity of the underlying
Hamiltonians and hence the complex structure of the equations of motion.
One of the simplest nontrivial models describing the coupling of the
Stokes and anti-Stokes scattering was proposed by Knight.!*® This
Raman-coupled model, in which a single atom is coupled to a single-cavity
mode by Raman type transitions, has attracted some attention and has
been generalized to much more realistic experimental conditions in the
subsequent papers by Phoenix and Knight,'** Schoendorff and Risken,'*
Agarwal and Puri,®® 137 as well as Gerry and Eberly,!*® Gerry,'*® Gerry
and Huang,'* and Gangopadhyay and Ray.'*! It is quite remarkable that
there exists a strict operator solution'*® > of the master equation describ-
ing the evolution of the generalized Knight model, which describes the
system of an atom undergoing Raman transitions between two degenerate
levels on interaction with a quantized field in a lossy cavity driven by an
external field including the effects of atomic dephasing collisions. An
extension of the propagation theory of Raman effect'> 3 to include
anti-Stokes scattering has been developed by Kilin'* and independently
by Li et al.'¥ As mentioned, we shall analyze another model of the
Stokes-anti-Stokes coupling within the framework of the temporal theory
of Raman effect proposed by Walls'?? and extensively studied by Pefina
and coworkers (see Refs. 23 and 68).

We shall discuss only temporal variations of fields instead of full
temporal and spatial analysis. The assumption of monochromatic pump,
Stokes, and anti-Stokes fields restricts the validity of our theory to a cavity
problem. However, a temporal evolution in a cavity problem can usually
be converted to a corresponding steady-state propagation in a dispersion-
less medium by simply replacing the time variable ¢ by —z/c, a “normal-
ized” space variable z. This procedure permits us to address nonlinear
optical phenomena, in particular Raman scattering, in a manner analo-
gous to their classical treatment.? 2% 2 2° Formal space—time analogies
have also been pointed out in the differential equations for the propaga-
tion of short light pulses.!*® Obviously, a full quantum space—time descrip-
tion is considerably more complex and resides in solving equations of
motion for an infinite number of creation (annihilation) operators of the
single-mode radiation fields. The total spatially dependent field is a sum of
the single-mode solutions.

Here we mention only some spatial propagation theories of Raman
scattering. For a detailed analysis we refer the reader to the review by
Raymer and Walmsley?? and references therein. The temporal and spatial
evolution of the radiation fields (laser, Stokes, and anti-Stokes fields) in
Raman scattering was successfully described within the framework of the
classical coupled wave theory developed by Bloembergen and Shen¢-3
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(see also Ref. 20). The first quantum theories of Raman scattering includ-
ing spatial propagation were proposed independently by von Foerster and
Glauber*” and Akhmanov et al.!*® using the analogy of Raman effect and
optical parametric amplification processes. Another method was proposed
by Emel’yanov and Seminogov'*® and Mostowski and Raymer '*% ' using
the analogy between Raman scattering and superfluorescent processes.'>®
Spectacular predictions of the latter theory have been, in particular,
macroscopic pulse-energy fluctuations of the emitted radiation in a man-
ner reflecting the underlying spontaneous initiation.’>~'>* The negative-
exponential probability distribution (NEPD), derived by Raymer et al.,'*!
describes the macroscopic fluctuations of the scattered radiation. Karska
and Pefina®® pointed out that the NEPD corresponds to the generating
function of the integrated intensity extensively used in this paper (see
Section V.B). The standing-wave theory of Raman scattering properly
describes the macroscopic fluctuations in the low-gain and high-gain
regime (see Refs. 22, 23, and 145 and references therein). In the latter
limit the quantum fluctuations of the generated fields can be thought of as
arising from a classical noise process, contrary to the low-gain limit, where
certain nonclassical effects occur.

Finally, we should mention certain crucial experiments revealing some
manifestations of Raman scattering. For more details, see the review
article by Raymer and Walmsley.?> Experiments on the detection of
fluctuations of Stokes pulse energies were carried out by Walmsley and
Raymer* '3 and Fabricius et al.'>® The temporal and spatial fluctuations
of the Stokes beam profile, the spectrum, and delay have been investigated
in a number of experiments both for depleted and undepleted pump pulse
(for references see Ref. 22). We mention these experiments because the
theory of Raman scattering for cavity modes, to be presented here,
correctly predicts the existence of macroscopic quantum fluctuations of
the Stokes pulses.

Generation of Raman solitons in the heavily depleted pump pulse has
recently been observed by MacPherson et al."*” and Swanson et al.,!>® as
predicted by Englund and Bowden.!®® 1% Cooperative effects in Raman
scattering, referred to as cooperative Raman scattering, which is analo-
gous to two-level superfluorescence,'®' occurs for a laser pump not signif-
icantly depleted. The effect was first observed by Kirin et al.!®?> and then
re-examined under fully convincing experimental conditions by Pivtsov et
al.!® In our analysis we clearly distinguish the two cases of the depleted
and undepleted pump field, and therefore have listed some effects and
experiments in which this condition for the intensity pump is crucial.

Hyper-Raman scattering, i.e., the three-photon analog of Raman scat-
tering, was discovered in 1965 by Terhune et al.’** (see also Ref. 165). This
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effect was predicted theoretically by Neugebauer,'®® Kielich,'*” ¢ and
Li'® prior to its experimental detection. Since the discovery of hyper-
Raman scattering, numerous papers have appeared reporting theoretical
investigations and observations of the process in a variety of solids, liquids
and vapours. Here, we shall not discuss higher-order Raman scattering
processes. We refer to the reviews of Refs. 17, 23, 27, and 172 for details
and literature.

This paper is organized as follows. In Section II, the standing-wave
model of Raman scattering is constructed and the basic equation of
motion (master equation) is derived. In Section III, we give a short
account of multimode s-parametrized quasidistributions and s-parame-
trized characteristic functions. In Section IV, we introduce definitions of
nonclassical properties of radiation such as quadrature (“usual” and
principal) squeezing and sub-Poissonian photon statistics. In Section V, we
present the s-parametrized quasidistribution formalism of Raman scatter-
ing either including (in Section V.A) or neglecting (in Section V.B)
depletion of the pump laser beam in the process of scattering. In Section
VI we develop the density matrix formalism of Raman scattering. We
derive exact solutions of the master equation in Fock representation in
Section VI.A.2. We also give short-time (in Section VI.A.1) and long-time
(in Section VI.A.3) solutions of the master equation. In Section VI.B we
present approximate solutions valid under parametric approximation, i.e.,
when pump depletion is neglected.

II. MODEL AND MASTER EQUATION

Let us analyze Raman scattering starting from a completely quantum
Hamiltonian but describing phenomenologically only the net effect, i.c.,
ignoring the details of the scattering mechanism. We describe the interac-
tion of three single-mode radiation fields: an incident laser beam at the
frequency w;, a Stokes field at the frequency wg, and an anti-Stokes field
at the frequency w, through an infinite phonon system at frequencies @y,
after Walls!'?? (see also Refs. 53-55), by the effective Hamiltonians:

Hy, = hw, 4] 4; + hogdids + hw,d1d, + thVid;jﬁVj
! (1)

Ay = hZ/\S 4,8367 + hee.

= hZA* 4,d%4, + he 2)

i
j

Hy=H,—-Hg—H, (3)
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where H (H,) is the trilinear interaction Hamiltonian for Stokes (anti-
Stokes) scattering and H,, is the unperturbed Hamiltonian. For simplicity,
we have dropped the zero-point contributions. The annihilation operators
for the laser, Stokes, anti-Stokes, and phonon fields are denoted by 4, , dg,
d,, and 4, respectively (we label all Hilbert space operators with caret).
The coupling coefficient Ag(A,;) denotes the strength of the coupling
between the Stokes (anti-Stokes) mode and the optical phonon at the
frequency w,,;. These coefficients depend on the actual interaction mecha-
nism. In the Hamiltonians (2) we neglect terms describing higher-order
Stokes scattering,”” ¢ 7 as well as terms describing hyper-Raman scatter-
ing.?” 6% 19 In Section VLA in the analysis of the Raman effect without
parametric approximation we also neglect anti-Stokes production.

In our model we take into account only the radiation modes appropri-
ate for a cavity. It should be kept in mind that the several radiation mode
description is applied to the waves involved in the whole course of the
interaction, not only at the beginning of the interaction process. This
approximation is a shortcoming from the experimental point of view, since
it is not very suitable for describing the most common experimental
arrangements used when measuring stimulated Raman scattering.?’~??

We apply the rotating wave approximation since in the interaction
Hamiltonians (2) we have omitted terms of the form ayag +4, + h.c. and
é;d,}'é ..+ h.c.. For weak coupling these terms are neghglble because they
vary rapidly as exp[+i(w,; + lw, — wg 4|)t], which implies that their
average is approximately zero for times of evolution much greater than
lw; — wg, 417", contrary to the interaction Hamiltonians Hg and H, (2),
which vary as exp[ti(w,; — lo; — wg 41)t] giving unity for @y = lw, —
Ws, AI We have also neglected terms of the form ddgd, + h.c. and
dgd 4, + hc. These terms, if included, would descrlbe a process in
which both the Stokes (anti-Stokes) and laser photons are annihilated and
created in the scattering act.

The Hamiltonians (2) describe Raman scattering under the long wave-
length approximation, which has several important implications.'4” 173 174
Firstly, we can neglect the intermolecular interactions. Each optical vibra-
tional mode of the medium is equivalent to a simple harmonic oscillator.
Secondly, the optical phonon dispersion is negligible. A typical dispersion
curve for optical phonons, w,(k, ), is almost flat for wave vectors k, from
the interval (—=1/A,1/A), where A is an optical wavelength. In other
words, optical wave vectors occupy only a very small volume about the
origin of the reciprocal lattice. Thirdly, a crystal can be treated as a
continuum; thus, from the mathematical point of view, sums over lattice
sites can be replaced by integrals over a volume of the crystal. This long
wave approximation is quite realistic for optical processes, in particular .
Raman scattering.



540 A. MIRANOWICZ AND S. KIELICH

A detailed derivation of the Hamiltonian from first principles has been
given by von Foerster and Glauber'¥ in their quantum propagation theory
of Raman scattering from phonons. Although we deal with modes in a
cavity, many aspects of their theory recur in our approach.

In the case of an unbounded medium the momentum is conserved in
the interaction, i.e., the sum (difference) of the wave vectors kg (k ,) of the
Stokes (anti-Stokes) photon and k. of the photon involved in the scatter-

ing act is exactly equal to the laser light wave vector k, ,
k, =ks+ky, k, =k, -k, (4)

This means that each laser mode interacts strongly only with phonons
having a single wave vector (one and only one vibrational mode). This is
the requirement of translational invariance. Momentum is no longer
strictly conserved for interactions in a finite medium, since the introduc-
tion of boundaries destroys the translational invariance of the medium.
The strongest interaction is still for those modes which conserve momen-
tum (4) and energy (w,; = |, — wg 41); nevertheless, in this case the
radiation modes are coupled to a certain range of optical phonons whose
wave vectors may not satisfy the adequate conditions (4) by amounts of the
order of the reciprocal of the dimensions of the medium.'#” The coupling
constants Ag;, and A4; contain these momentum mismatches via phase
integrals®” 122;

Ag; ~ fVexp[~i(kL — ks — ky;) 1] &
(5)

Ay~ fVexp[—-i(kL -k, + k) r] d3r

Hence, the interaction Hamiltonians (2) are represented by sums over all
optical vibrational modes that may scatter into or out of the desired mode.
This means that the coupling of the radiation fields (in particular Stokes
and anti-Stokes) through a large number of optical phonons is treated
stochastically.

In the Hamiltonians (1)—(3) we have assumed all the radiation fields
and phonons to be polarized linearly in the same direction. We have not
included explicitly the polarization states of those photons, which might
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175, 176 177, 178

affect the photon-counting statistics, squeezing, and other
properties (Ref. 179 and references therein). Obviously, this would require
the discussion of correlation tensors, in place of correlation functions,
involving the photon polarization states.!® 13% 181

The model under discussion is restricted to the approximation of
electric-dipole transitions. In previous papers,'’” 7! Kielich has proposed
and extensively developed the formal quantum theory of first-, second-,
and higher-order processes (in particular Raman scattering) taking into
account multipolar electric and magnetic quantum transitions.

A lot of attention has been devoted to a simpler completely boson
Hamiltonian applied to the description of the statistical properties of
Raman scattering by phonons treated as a single monochromatic mode
(Refs. 23, 44, 57, 58, and 69 and references therein). It is clear that the use
of a large number of phonon modes (a phonon bath) in the model
Hamiltonians (2) provides a fuller picture of the scattering processes. In
particular, the model describes the stochastic coupling of the Stokes and
anti-Stokes modes through a phonon bath. The assumption of a single
phonon mode implies that the Stokes and anti-Stokes fields are coupled in
a deterministic manner, which seems to be a rather serious drawback.'??

As a digression, let us mention that the same phenomenological Hamil-
tonians (2) have been used in the description of Brillouin scattering (see,
for example, Refs. 23, 104, and 182 and references therein). The main
difference between Brillouin and Raman scattering lies in different kinds
of the scatterers responsible for these effects: acoustic phonons in the
Brillouin effect, and optical phonons in the Raman effect. This difference
is included in the frequencies, the coupling constants Ag;, A4;, and the
reservoir spectrum. More important, acoustic phonons exhibit much greater
dispersion than optical phonons. In our approach to Raman scattering we
neglect dispersion. This assumption applied to Brillouin scattering has
considerably less validity.

We are interested only in the statistical properties of the radiation
fields (the pump and scattered beams) considered as a system. We there-
fore remove the unnecessary information about the infinite system of
optical phonons, treated as a reservoir (heat bath). The procedure leading
to the master equation is widely used in quantum optics. For a general
review of the master equation methods and the extensive bibliography see
Refs. 23, 51, 183, 184. We rewrite the interaction Hamiltonians Hg and
H, in the interaction picture as

4
Hy +H,=h ) F0, (6)
k=1
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where
F,=F = Z/\sjﬁf;j exp[in}-(t - to)]
j

Fy=Ff = YN0, exp[—iwy(t — 1,)]
j

(7
Ql =0 = d, ag exp[—iQg(t — t)]
Q,=0r = d, a; exp[iQ, (1 — t)]

The QAi (15,-) are respectively functions of the system (reservoir) operators
only. The “cavity” frequencies (g, (), are equal to

Qs,A = |wL - “’s,A| (8)

Since the system and the reservoir variables are mutually independent, as
it follows from

[4,47] =8, fori,j=L,S, A,V,V,,... (9)
we may trace, in standard manner, the complete density matrix over the
reservoir leading to the reduced density matrix p(¢). Obviously, we cannot
obtain any reservoir averages from p(¢). There are some Raman scattering
models (e.g., Refs. 23, 104, and 147), where optical phonons are included
in the system, whereas other crystal excitation modes, such as acoustical
phonons, electric excitations, and other species of molecular vibrations,
serve as a thermal reservoir.

The radiation fields are weakly coupled to the thermal reservoir. The
anti-Stokes mode loses energy to the reservoir. The fluctuations in the
reservoir also couple back into the system introducing noise from the
reservoir. However, we apply the Markov approximation, a condition
sufficient to ensure that energy that goes into the reservoir will not return
to the radiation fields. This conclusion follows from the definition of the
Markovian system as one that cannot develop memory—the future of the
system is determined by the present and not its past.'®> ¥ The impor-
tance of this assumption is sometimes stressed in the concept of a
Schrodinger-Markov (or Heisenberg-Markov) picture, meaning the stan-
dard pictures under Markov approximation.'®® The importance of non-
Markovian effects in Raman scattering has been recently studied by, e.g,
Sugawara et al.'® and Villaeys et al.®! Obviously, the system operators Q,
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obey the same commutation relations under this approximation as they did
originally.

To obtain the equation of motion for the reduced density matrix p(¢),
one has to compute the reservoir spectral densities

wj = j(; éi“f7<ﬁ}(7)ﬁ}>R dr

(10)
W =f0 ei“i’<I§I$i(T))R dr

where {...)g is the average over all reservoir operators; w, takes the
values +Qg ,. The infinite system of optical phonons is assumed to be
densely spaced with the number of modes between w; and w; + dw; equal
to g(w;)dw;, so we may replace the sums over the optical vibrational
modes by integrals

Z(...)zj:dwjg(wj)(...) (11)

J

Let us introduce two quantities: A{)-the frequency mismatch and ()—-the
medium “cavity” frequency, defined by

‘QS_QA
2
Q¢+ €,

=T

AQ =
(12)

The frequency mismatch A(), in general, is not equal to zero. It is quite
realistic for optical phonons to assume that the coupling constants A s Ao j)
and the phonon density of g(wj) are flat in the vicinity of €1, so that we
can write

g(+AQ) =g(Q)

. (13)

A2 £ AQ) = A () k=3S,4
The reservoir is supposed to be at thermal equilibrium. The phonons are
unaffected by interaction with the radiation fields. In the classical sense
this means that the phonons are so quickly damped that they remain in
their steady state.”® 3> 3 The mean number of phonons in the reservoir
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mode at thermal equilibrium is defined by the ‘Bose-Einstein distribution

hoy, !
<ﬁ(ij)> = [GXP( & T) - 1} (14)

where kg is the Boltzmann constant and T is the temperature of the
reservoir. Obviously, as the reservoir temperature approaches absolute
zero, the mean number of phonons (ﬁ(w,,j)) tends to zero as well. In
Section V.B, we analyze Raman scattering in a parametric approximation
for a “noisy” reservoir ((/i(w,;)) # 0), whereas we study Raman scatter-
ing including the pump depletion for “quiet” reservoir ((A(w;;)) = 0).
After some algebra one obtains from (10),

(
(
(
w3 = (— + iAwAS)(<ﬁV> +1) (15)
(
(
(
(

All other reservoir spectral densities, in particular the diagonal densities
wi (for i =1,...,4), vanish. For simplicity we have denoted the mean
number of phonons at frequency Q by (A, ) = {(A,(Q)). The gain con-
stant for the Stokes mode vy, the damping constant for the anti-Stokes
model y,, and the mutual damping constants for both scattered fields
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Ysa4>Y4s are

=27g(Q)IA ()1  (k=85,4)
Ysa = Yis = 2m8( Q) As(Q)AX5(Q)

where g({)), as earlier, denotes the density of the optical phonon modes
(the reservoir spectrum) at frequency . It is seen that the following
simple relation between the single and mutual damping constants holds:
lysal® = lv4 s|2 = y,vs. The frequency shifts, representing the Lamb shift
in the frequency Q = (), are expressed by the Cauchy principle value, %
of the integrals:

(16)

oo(g'(“’;')l)\k(“’jﬂz
= _gvj(; 2L TR

Aw, Y do; (k=S§,A4)
] g(w))t (@)Xl @;) 4
; ;
Awg, = (Aw )" = —.9"/ Eaat —q 4 do;

The only effect of the Aw, is to change slightly the frequency (2, so
we neglect them. Having calculated the reservoir spectral densities we
can write the master equation for the reduced density matrix p =
o, ,dg,d,,t) as

d
h = bvs([acag, pazas| + h.c.)

+1v([ata,, pa az] + h.c.)

+ 3745 €% y

= <) {s([agas, 4,45, 8]] + he)
+ival[anas, [afaq 8] +he)
+ysae M0 ara [afa,, p]

+,yAS621AO.At[A A~ de;,p”}

The term in vy represents the amplification of the Stokes mode; the term
in vy, describes the loss of energy from the anti-Stokes mode into the
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reservoir; the y,¢ and vy, terms represent the stochastic coupling be-
tween the Stokes and anti-Stokes modes through the reservoir; the re-
maining terms in {A, )y, represent the diffusion of fluctuations of the
reservoir into the system modes. Eq. (18) describes, moreover, the evolu-
tion of the laser beam, i.e., the depletion of the laser field, the coupling of
the field with the Stokes and anti-Stokes fields, as well as the diffusion of
the reservoir fluctuations into the laser field. The interpretation of the g
(v,) terms as the amplification (attenuation) of the radiation fields is as yet
intuitive, but will gain in precision on solution of the generalized Fokker-
Planck equation. The master equation (18) could have been written in
more compact form; albeit for purposes of interpretation the above form is
more convenient.

The master equation (18), in the particular case of parametric approxi-
mation, reduces to the equation obtained by Walls'?> and Pefina,*® and
reduces to that of McNeil and Walls for Stokes scattering alone but with
no need for the parametric approximation.” Our master equation (18)
differs but slightly in the diffusion terms {7, )7y, only from the special case
of the master equation given by Agarwal'® (see also Ref. 73).

The master equation may be solved by various techniques presented in
standard textbooks.Z> 183 184, 186-188 Here we apply two methods. We
convert the master equation to an associated classical equation. On the
one hand, expressing the quantum equation in s-ordered form one obtains
the generalized Fokker-Planck equation for the s-parametrized quasi-
probability distribution, which can be exactly solved for a class of
Ornstein-Uhlenbeck processes.!8® 1°! On the other hand, one can express
the master equation in Fock representation, which can be solved, for
instance, by the Laplace transform method.® 7> 7

In the following sections we analyze three cases. Firstly, we briefly
describe coupling of the three quantum radiation fields: the laser, Stokes,
and anti-Stokes beams. The problem simplifies considerably if one as-
sumes narrow quasi-probability distributions. Secondly, we apply the para-
metric approximation, which means that the pump field is treated classi-
cally. We include the coupling of the Stokes and anti-Stokes field through
the phonon bath. Thirdly, we separately describe either the laser and
Stokes mode or the laser and anti-Stokes mode, but include the depletion
of the pump laser light. In this case we assume the heat bath to be
“quiet.”

1II. MULTIMODE s-PARAMETRIZED
QUASIDISTRIBUTIONS

A description of the multimode fields via quasiprobability distributions
(quasidistributions, QPDs) or equivalently via characteristic functions was
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first proposed by Glauber,!8% 192 193 Cahill,'** and Klauder et al.'*> Gen-
eral ordering theorems have been given by Agarwal and Wolf.!% The
s-parametrized single-mode quasidistributions and characteristic functions
were introduced by Cahill and Glauber,'®” who extensively studied various
ways of defining correspondences between the operators and functions.
For a recent review of the multimode s-parametrized functional formalism
we refer the reader to Ref. 23. Here, we list the basic definitions and
properties of the s-parametrized multimode quasidistributions and charac-
teristic functions useful for our further investigations.

To solve the master equation (18), i.e., the operator equation, we use
the c-number representations #"®)({,;)) and #({B8,}) of the density
operator introduced by Cahill and Glauber.'”” These representations not
only are useful as a calculation tool, but also provide insight into the
interrelations between classical and quantum mechanics. By virtue of the
multimode s-parametrized displacement operator

BO((B) = LDV(B) = T exo Boai = prae + 518,) (19

where the continuous parameter s belongs to the interval { — 1,1), one
can define the s-parametrized multimode characteristic function as the
mean value of D®({B,}),

£O({B,)) = Tr[ DO((B})] (20)

In our situation involving the three radiation modes laser (k = L), Stokes
(S) and anti-Stokes (A), the simplified notation in Egs. (19) and (20)
stands for ({8,}) = (B., Bs, B4). The Fourier transform of the characteris-
tic function #({8,}) (20) readily gives the s-parametrized multimode
quasidistribution 7" ({a,}),

W(s)({ak})_[gm({ﬁk})exp[z(akpk akpk)]dZ{B"} (21)

For completeness we write the inverse Fourier transform, which enables
us to determine & from 7', namely,

e(B)) = [7 () p| (e - )| () 22
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where integration extends over « in the following sense:

dz{ﬂ}= [T »'da,==3 [I d(Reay)d(Ima,)

™ k=L,S, 4 k=L,S, A

or over 3, similarly. The normalization is chosen to satisfy

[7o(ad) {2} - g0 - 1 (23)

In the three special cases of s = —1,0,1 one recognizes the well-known
QPDs, > 197 201 namely the Q function, the Wigner function, and the
Glauber-Sudarshan P-function, respectively:

O({ei}) = {ai}pl{e}) = 7 P({a)})
W({ak}) = W(O)({ak}) (24)
P({ak)) = 77'_MW(D({"%})

with M denoting the number of modes (in our analysis M will be equal to
3, 2, or 1). One can say that the s-parametrized quasidistribution 7"
(with s from the interval { — 1, 1)) is a continuous interpolation between
the P- and Q-functions. The Q-function directly determines antinormally
ordered expectation values, the P-function determines normally ordered
averages, and the Wigner function can be used directly to calculate the
averages of symmetrically ordered operators. The following relations hold
for any parameter s:

<rkl(a:>’"*(ak)”k><s>=Tr[ﬁ{I,jl<ﬁ;>'”k(ak)”} ]

(s)

- /Wm({ak})I;[(az)"’*(ak)"kdz{ak/w} (25)
amk ny

B a(—BE)™

ZO({B:})

{Bi}=0

where {B8,} = 0, in the three-mode case, means that 8, = 85 = B, = 0.
The generally accepted criterion for the definition of a nonclassical field
resides in the existence of a positive P-function, i.e., a classical state is one
whose P-function is no more singular than a §-function and is nonnegative
definite (e.g., Refs. 23, 98, 202, and 203). This means that the quantum
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statistical properties of the nonclassical field cannot be described com-
pletely within the framework of a classical probability theory. A detailed
discussion of the existence of quasidistributions #“({e,}) for the Raman
scattering model under consideration is presented in Section V.B. The
Wigner function always exists as a nonsingular function, but may assume
negative values, and in this sense is not a classical probability distribution
(nevertheless, as was shown by Stenholm,?™ experiments always give a
positive Wigner function). The Q-function has the properties of a well-be-
haved (bounded, nonnegative and infinitely differentiable) classical proba-
bility distribution.

Let us write down the relation between two s;- and s,-parametrized
quasidistributions:

7N () 1) - (%) fexp(—s = Z'“k‘ﬂk'z)
1 2 1 2 k

(26)
X %V“ﬂ({ﬁk},t)dz{gf}

where s, <s,. It is seen that the quasidistribution %2 is given by the
convolution of Y with the multidimensional Gaussian distribution.
The analogous relation for characteristic functions (20) is simpler and
valid for any s, and s,,

S2"“

§ 5
UG I C

FO(B), 1) = E((Bi)1) exp(

Even in the case when s,-parametrized QPDs do not exist, the calculation
of the expectation values (4 *™@" ), in s, order poses no problem. They
can be obtained from the corresponding s,-parametrized characteristic
function #¢? in view of Eq. (25) or, equivalently, from an s,-parametrized
quasidistribution %2, which does exist, by means of the relation

§3 = 8 )m"

TT@2) ™ (2™ = [ Emet( 2

X Tt T [ R My M W(Sz)({ })dz ﬂ
O my, 5, — 5, Ay -

(28)

where L7(x) is the generalized Laguerre polynomial. Alternatively, to
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obtain the s,-ordered moments (4*"d"),, one can use the generalized
P-representation (positive P-representation).!**'%

IV. PHOTON-COUNTING STATISTICS AND SQUEEZING:
DEFINITIONS

To investigate nonclassical phenomena such as sub-Poissonian photon-
counting statistics or photon antibunching, one needs to know the diago-
nal matrix elements in Fock representation of the density matrix p({c,})
only. We start from the probability distribution p(n) of the photon-num-
ber n in the k-mode field within a given volume V of space at the time ¢,
defined by

p(”l) = Z <{nk}lﬁ|{nk}>6n,):nk (29)
{n}

where n, = |a,|>. The s-parametrized quasidistribution #"®({a,}, t) (21)
can be readily transformed to the following s-parametrized integrated
quasidistribution (intensity distribution) # (W, t) by means of the &-
function,

B W, 1) =[7/<s>({ak},t)a()k:|ak|2— W)dz{%} (30)

where the variable W can be interpreted as the integrated intensity. The
photodetection equation gives a connection between the continuous inte-
grated quasidistribution (W, t) and the discrete photon-number distri-
bution first derived by Mandel.??> 2% This photodetection equation states
that the photocount distribution p(n) is the Poisson transform of the
integrated quasidistribution % ((W,t). A generalized photodetection
equation for #®({a,}, t) or for #' (W, t) can be written as> >’

o= (5

1+s 1+s

n

J7 ()

2 5 B 4 5 ay
TTs ol )Lﬁ‘ 1(1 Ll )dz{ﬂ
Mis—1\"

e

1+
2w
LM—I
1+s) " (

X exp

(31)

If
———
[
4]t
[}
——— L ——

1_S2)d2W
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with LM=1(x) denoting the generalized Laguerre polynomial. We formally
identify the photon-number distribution (29) with the photocount distribu-
tion (30). There is some slight difference in their physical interpretation,
since the former distribution describes the probability of having n photons
in the mode volume V, whereas the latter distribution describes the
probability of detecting n photons in the detector volume V., defined by
its parameters (sensitive area, response time, quantum efficiency, etc.). It
can be argued, however (e.g., Refs. 208—-210), that there is perfect physical
equivalence between the photon-number moments obtained from (29) and
the photocount-number moments calculated from (31), under the assump-
tion of ideal detectors.

The s-parametrized time-dependent generating function {exp(—AW)),
defined by the Fourier transform of the s-parametrized quasidistribution
7 “({a,}, t) or characteristic function #9({8,}, ¢):

(exp(=AW(1)))i = [#O({au}, 1) e"p(_" g‘ ""klz) dz{%}
= A‘Mf%"’({ﬁk},t) exp(— % % |Bk|2) dz{%}

(32)

enables us to calculate the photon-number distribution p(n,¢) and the
s-ordered photon-number moments {#A* ), in a particularly simple man-
ner:

(-1)" d” s—1 \™™ A
1+ A
(Na=1
(33)
k dk
WEw =(-1) W<6Xp(—AW)>(’)A_ (34)

Eq. (33) takes the simplest form for s = 1. Several parameters are widely
used in the literature to describe the photon-number statistics, e.g.; the
Mandel Q parameter, the Fano factor, or the normalized second-order
correlation function. In our analysis we employ the normalized second-
order factorial moment of the photon-number operators (or integrated
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intensity) (Refs. 23 and 210 and references therein)

(M) (A (A — 1))
2y — = -]l=—"" 7 1 35
T TG (A, ()

and its generalization, the normalized pth order factorial moment of the
kth and /th mode (the normalized two-mode cross-correlation function of
pth order)

Y = <ﬁA/€1>(;) 1= (A — 1) - Ay —p+ 1) ~ 1 (36)
<nk1> <nkl>

where A,, = A, + A,. The higher-order factorial moments (36) by compari-
son with the second-order moments (35) provide us with further informa-
tion concerning the photon-number distributions. In view of the fact that
A, is the sum of the single-mode photon-number operators, the factorial
moment y{? can be written as

@ (AR Dy 3 (AA) Yy + (AR Dy + 2( AR, ARy 7
Yii = <ﬁ >2 o A \2 A \2 A A ( )
k! (A" + (AP~ + 2{a A

The Mandel Q parameter for the mode k is equal to yP{#A,), whereas
the Fano factor F is (y{?(#, ) + 1) (the photoefficiency 1 of the photode-
tector is assumed to be = 1).

Light with photon-number fluctuations smaller than those of the Pois-
son distribution is called sub-Poissonian (or photon-number squeezed) and
is described by a negative value of y@, both for y{® in the single-mode
case and for y{? in the two-mode case. In Section VI we analyze the
two-mode model of the Raman effect that comprises the laser (L) and the
Stokes mode (S). We show that the sum of photon-number operators in
both modes is a constant of motion, which implies that the factorial
moments y{% are constant as well. Henceforth we shall be applying
another definition to investigate two-mode cross-correlation, referred to as
the interbeam degree of second-order coherence, given by (Ref. 30 and
references therein)

(AR, An,) (AR
<nk><n1> <nk><n1>

2) _
gl(cl) =

(38)

(Our definition deviates from those of Ref. 30 by the extra term —1.)
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To investigate squeezing properties of light we introduce the Hermitian
single- and two-mode operators:

X, (0) =d, e +a; e (39)
X, (0) =dye™® +dj e = X.(0) + X,(6) (40)

where 4,, = @, + 4,. The operator X,(X,,) for § = 0 corresponds to the
in-phase quadrature component of the kth (kth and /th) mode (modes) of
the field, whereas for 8 = 7 /2 it corresponds to the out-of-phase compo-
nent. For brevity, we use the notation X = X 0), X, = X, (7/2), as
well as X,,; = X, ,(0) and X,,, = X, (m/2). The following commutation
rules hold:

[Xkl’/\;kz] =2 (41)
[Xklli Xk!z] =4 (42)

Firstly, we shall discuss in brief the single-mode case. The variances of the
#-dependent quadrature (39) are

(A%(0))) = 2Re[e™2%(ad, )] +((Aa7,44,)  (43)

which obviously give )fkl and X,, in special cases. The Heisenberg
uncertainty relation for quadratures,

(%) W(a %) )= 1 (44)

lays the basis for the definition of “usual” (“standard’) squeezmg The
state of the field is said to be squeezed if the variance of X,, or X,,
becomes smaller than unity (in general, smaller than the square root of the
right side of the uncertainty relation for the quadratures). Equivalently,
light whose quantum fluctuations in the one quadrature are smaller than
those associated with coherent light (minimizing the uncertainty relation)
is called squeezed (in the usual meaning). Since, for a given quantum
state, the variance (43) is still dependent on 6, the angle 8 can be chosen
in a way to minimize (or maximize) the variance. Differentiation with
respect to @ leads to the angles 8. and 6_ for the maximal and minimal
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variances, respectively, given by the relation?!! 212

<(Adk)2> ) 7

45
((8aY) (45)

exp(2i8 ) = i(

where the difference between the angles 6, and 8_ is 7 /2. On inserting
(45) into (43) one obtains the extremal variances

<(A1\}ki)2> = < AXk(eJ_r))2>

+21((8d)°)| +({ad7, Ad,))

(46)

It is noteworthy that the #-dependent variance (43) can be expressed in
terms of the extremal variances

<(AXk(0)) >= <(AXk_) >:os2(e —9.) “
+((aX,,) Ysin>(6 - 0.)

which is the equation for Booth’s elliptical lemniscate in polar
coordinates.?’? The principal squeezing, introduced by Luks et al.,?'!> 213
occurs if the minimum variance is less than unity:

(%, ))=1 (48)

From (46) it follows that the principal squeezing requires the fulfillment of
the condition

(AaFAd) < |((Ad,))] (49)

whereas the condition for standard squeezing, in view of (43), is

min{<Aa,jAak) + Re[<(Adk)2>]} <0 (50)

The mathematically elegant formalism of principal squeezing (in particular
other equivalent conditions for principal squeezing) can be formulated
using the generalized Heisenberg uncertainty relation (the Schrodinger
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uncertainty relation)?!! 214 215

<(A)2k1)2><(A)2k2) )= 1({a%,,, AXk2>>2 +1 (51)

which 1ncludes the Wigner covariance (cross-correlation) of the quadra-
tures Xkl and sz equal to

({8 %0, 8%,,)) = 41m((82,))] (52)

For extremal variances ((A)fk .)?) the generalized Heisenberg relation
reduces to the standard uncertainty relation.

The generalization of the above definitions for the two-mode case is
straightforward. By virtue of the commutator (42), twice as great as for the
single-mode case (41), the standard and principal squeezing can be de-
fined, respectively, as

min{((8%)"), (8 %e2) )} <2 (53)
<(A)?k,_)2> <2 (54)

We express the two-mode variances and the Wigner covariances in terms
of the single-mode moments:

(%)) = ((a%))+ (8%)) + 2(a%8%) (59
({8808 8i0)) = (000 200+ (050 80))
+ 2(AX, AX ) + 2(AX,AX,)

where X, stands for X,,() (in particular the quadratures). Relations
such as (55) and (56) for the quadratures hold for the two-mode crez}tion
and annihilation operators 4. The moments ((X,)?) and ({A X, ,, AX,,})
are given by (43) and (52). The remaining cross-correlations have the
following form in terms of the annihilation and creation operators:

(AR AX,) = 2Re[(Ad,AQ) + (Ad7AG))|

(A%, ,8%,) = 2Re[ —(Ad,Ad)) + (Ad7AG))|
. (57)
(ARAXy) = 2Im[(Ad,AQ) + (Ad7AG))]

(AR ,AR,) = 2Im[(Ad,AG) - (AGFAG)]
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Substituting Eqgs. (43), (52), and (57) into (55) and (56) one obtains explicit
dependencies of the two-mode quadrature moments on the annihilation
operators.?"?

Alternatively, the single-mode moments (43), (46), and (52) and the
conditions (49) and (50) for single-mode squeezing can be generalized to a
two-mode case by simple replacement of d,, X (8 by d,,, X (), showing
complete analogy between the single- and two-mode descriptions. In
particular, the two-mode extremal variances are

A N2
(A%.)") = £20((8d,)) +{{ads, Ad,)) (58)
by analogy to (46).
V. FOKKER-PLANCK EQUATION

A. Raman Scattering Including Pump Depletion

The master equation (ME) is the quantum equation of motion for opera-
tors and hence it is possible to solve it directly only for a small class of
models. As an example we cite the Raman-coupled model of Knight!*
and its generalizations (Ref. 137 and references therein). Usually the
quantum master equation is converted to a classical differential equation.
Then, standard methods of mathematical analysis can be applied. In this
section we present one of the most popular methods: transformation to a
generalized Fokker-Planck equation (FPE) or equivalently to an equation
of motion for characteristic functions. This method is extensively studied
in a number of textbooks?® 183 184188 and consists of performing s-ordering
of the field operators in the ME (18) and then applying the quantum-—
classical number correspondence of coherent-state technique. The rules
for the transformation of the ME into Fokker-Planck equations for the
s-parametrized quasidistribution # “Xa, a*, A) are the following (e.g.,
Refs. 216 and 217):

£a s+1 0 —
A‘i N (a - )W(s)(a,a*,A)
4A

2 da*
(59)
At 4 s+1 0 _
{aAA} — (a* - —)W(s)(a,a*,A)
Ad+ 2 da

where A is an arbitrary operator; in particular, A can be the density

matrix pg; A is the classical function associated with the operator A4; the
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parameter s takes arbitrary values in the range ( — 1,1). If necessary,
these rules can be applied repeatedly. Similarly, we list the rules of
transformation of the master equation (18) to the equation of motion for
the s-parametrized characteristic function €, *, A) (e.g., Ref. 216):

is d 1 -
{A‘i}»(— + 22 B)%‘“(B,B*,A)

60
A+ 4 ) s+ 1 —
{f}ﬁ} - e )ee s D

Applying repeatedly the rule (59) of transformation to the master equation
(18) and after some lengthy algebra we finally arrive at the generalized
Fokker-Planck equation for the s-parametrized quasidistribution 7' =
W Na,,ag, ay,t):

L
at 2 da; "dag
| |2 1+s) 4 | |2 1—s)\ @
+ + —a, — - _
*s 2 BaLaL %L 2 Basas
1—-s%( d 9 9 a 9 9
— Ty T T T + c.c.
4 \da, “oag dat  da, daF dag S
. al? 1-s%| 8 o
+|1(1 -5 + —_—
( )las 2 |da, daf
. Pt 1—-s%2| 3 9 7
+|(1 +s - ——
( )l 2 |dag da¥
1 d d
+_.. — — ——
274 aaLaLaaAaA
| |2 1—-s) 0 | |2 1+s) @
— — —a, + | |a + —_—
o 2 Joa, " L 2 o, "
1—s%2({ 9 d 9 a 9 9
- — T T T T T T + c.c.
4 \da, “Foa, dak  da, dat da, "
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+1(1 +s)!ozA|2 —

, 1-s*[ 9 4
+(1 = s)la, 1" + — 7

d dJ 9 . d
—a}|a} 0 a5
L Aaas dag da SaaA

1
{ 5 Ysa exp( —2iAQ At)

+a;
s daj

. J . d d
(1+S)aA£+(1—S)aSE T

1-s2 9 ey 1= 0} @ 7 ®
+ Ay — ek , — -—a —- | + C.C. s
4 Yooy 5 4 Saa,)osar?
i 1 9 0 ad 1 4
+ n —; - —a; —ag + ag + C.C
YA 2 ba, M da;, “dag 0 2 dag °
+lagl"— + la| — 7
da; dat dag dat
7 1 4 ad d 1 4
+ v, A - — +cc
AN 290, T day, Hoa, T 2 9, A
2
+la + '
el S g el aa;;}
(A 2iA0 A rak 2 , 0 9
— ny ) exp( 21 t)|asa P
Yas Ay ) exp( )| s Aaafz Loy da,
a* %\ o .
+ +cc ) 7
B TR P e
(61)

which is a generalization of our former relation for y,,ys, # 0 and
arbitrary parameter s (Ref. 218). For brevity, we refer to the generalized
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Fokker-Planck equation®® simply as the Fokker-Planck equation (FPE).
The physical interpretation of (61) can be given in the same manner as the
interpretation of the appropriate terms in the ME (18) given in Section II.
The FPE (61) exhibits a highly complicated structure. Nonetheless, the
equations of motion for the mean values {a,),{a,a,),{afa;), (with
k,l=L,S, A) can be calculated. In particular, we obtain

%((ﬁL(m +{Ag(1)) + (Ay(t))) =0 (62)

with {A,(t)) = (afa,). Eq. (62) states that the total mean number of
photons (in all radiation modes) is a constant of motion.
The FPE (61) contains terms of the form

a © Jd 0 . g d 4 ©
Eaiakal% ggaka,W — a7

i i J

where a;, @, ay, @, = a;, af, ag, a¥f, a,, o It is seen that most compo-
nents of the drift vector are nonlinear to the third order in «, and most
components of the diffusion matrix are nonlinear up to the second order.
It is particularly difficult to solve a differential equation with such nonlin-
ear diffusion and drift coefficients. Besides, the FPE (61) for 7 =
¥ Na,,ag,a,t) with the parameter s # +1 contains third-order
derivatives in the terms

a 9 9 o
—— —a, ¥
da; Baj da !

This could be expected since in many models,>> '° for instance in the
anharmonic oscillator model (for references see Ref. 94), there occur
third-order derivatives in the FPEs for the Wigner function (s = 0).

The corresponding equation of motion for the s-parametrized charac-
teristic function #X(B,, Bs, B4, t) can be obtained either from the ME
(18) by performing the transformation (60), or from the FPE (61) by means
of the Fourier transformation (22) with respect to the variables a, , ag, a ,.
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Finally, we arrive at the equation of motion for ) = (8, , By, B4, 1):

_a_g(S) = 17s{[_BLBs—a’i +BL(_ 1+s + _a__a_)__a_
at 2 3B, 9By 2 9B 3B% | 9B,
1-35 a 0 d
o5
+ 5 (|BS|ZBL_?__ - |BL|ZBS‘0—) + c.c.
4 B 9Bs
— ¢? )
+|BL|2[_ s t(- )%E
2| - T ? J
+ | Bsl [ + (1 +s):w—L5B: &

1 a 0 1-—s a @ ad
ra “BL”AEE‘BL(TJrEE)E

1+s Jd 0 d
M RS TR
_ g2 9 9
+ ( lBAlBL(?BL +|BL|BA33A)+C.C.
d
+18,1° +(1+9) 5 bﬁf]

9B, BT

=
L

+ { 5 Vsa exp( —2iAQ At)

J d
+(1-5)— —|}&¥

F] ] 92
BAa—B”;;‘ —BsBa— Bsﬁ)&‘g

P 3\ 9
+Br| (1 — S)BAﬁ +(1+ S)Bsbﬁ_j)ﬁ
.2 1— 52 K} . Jd 0 1—s2 a N
—t — — — ——BsTx c.c.
g Poops T o ams 4 oo

g(
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. 1 d Jd .0 1 J
+7s<nV> —(EBL:?—B—L + BLBSEE + Eﬁs% + C.C.

a 0 )
+ 85I’ — 38, 3BT + 1Bl — 3Bs P }%‘s’
X 1 4 9 8 1 4
+'YA<”V>{_(‘2‘BL83 BLﬁAaBL B, 2/3,4 B, -C~)
I8 "'zam aBL e L'ZaﬂA 98 }gm
1 9? I
{ Yas$fi, ) exp(21AQ At)[BsBAaBL + B2 9B% 3B
0 ad d
—BZ(Bs@ + ﬂA%)EE +cc jBW
(63)

Here, we come upon similar difficulties in the way of obtaining an
analytical solution of (63) as in the FPE case (61), inherent in the
nonlinearity of the coefficients of the terms with first- and second-order
derivatives as well as the presence of terms with third-order derivatives.
Nevertheless, in contradistinction to %", the existence of a solution for
#0 implies, in view of the property (27), the existence of a solution for
any other parameter s,.

In view of the particularly complicated structure of Egs. (61) and (63) or
equivalent equations of motion derived within the completely quantum
model of scattering into both the Stokes and anti-Stokes modes, it would
seem that a solution in exact closed form cannot be obtained.® It is
necessary to apply further restrictions or approximations in the model to
achieve an analytical solution of (61). In Section VI.A.2 we present a strict
analytical solution of the two-mode ME (including pump depletion) in
terms of Fock states by applying the Laplace transform. In Section V.B we
present solutions of two-mode linearized FPEs for #Nayg, a,,t) and
solutions of equivalent equations of motion for #“X(g8, B,,t) in the
Raman scattering model under parametric approximation. In Appendix A
we give the solution of a linearized form of the three-mode FPE (61) for
7" Na,, ag, ay,t) properly describing the evolution of the radiation
fields valid only on the assumption of small fluctuations of the fields
around their mean values. There, we restrict our considerations to the
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Q-function (s = —1) to avoid problems of the existence of the quasidistri-
bution #“Na,, ag, a ,, t) (particularly important in the case of s close or
equal to 1) and to simplify the third-order FPE (61) to second-order,
which takes place for s = + 1. Within a similar model of Raman scattering
from a single-phonon mode, Szlachetka et al.®8-%! (see also Ref. 27) and
Tanzler and Schiitte®® have solved the equations of motion in the short-
time approximation up to the second power in time. Within the latter
(single phonon mode) model Pefina and Kfepelka®” % have obtained
approximate solutions using the approximation of small fluctuations around
a stationary solution.

B. Raman Scattering Without Pump Depletion

Here, to find a solution of the ME (18) we apply the parametric approxi-
mation, so no allowance for pump depletion is included. The trilinear
Hamiltonians A 1» Hg (2) can be reduced to bilinear functions as a result
of the replacement of the annihilation operator 4 1, representing the
quantum pump field, by the classical complex amplitude of the pump field,
e; . This approximation effectively linearizes our model of Raman scatter-
ing. Then, the Fokker-Planck equation for the two-mode s-parametrized
quasidistribution #"“ ey, a 4, t) takes the form

) * Kg . )
5% (as,aA,t)= - (7+1AQ)T‘S'&S+C.C.

82 (64)

dada

. 1\ 2
- KSA((nV> + E)aasaaA + c.c.

XW(S)(aS, ay,t)

on applying the rules (59) to the ME (18) with complex classical amplitude
e, instead of the annihilation operator 4 . and transforming the variables
a, = exp(—iAQANa, and B, - exp(—iAQA1)B, with the frequency
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mismatch AQ defined by (12). For brevity, we have incorporated the
complex amplitude e, into the coupling constants kg = ySIeLIZ, Ky =
yale 1%, and kg, = kg = ys€:. Equation (64) is a generalization for any
parameter s (s € { — 1,1)) of the FPE given by Walls for the P-function
(s = D' and by Pefina for the P- and Q-functions (s = +1).5* % If we
consider production of the Stokes radiation only, neglecting anti-Stokes
scattering, then Eq. (64) reduces to the s-parametrized FPE obtained by
Pefinova et al.!®’

We can interpret the FPE (64) in the same manner as the ME (18). The
first term in (64) describes the amplification of the Stokes beam, whereas
the second term describes the attenuation of the anti-Stokes beam; the
third term shows the coupling between the Stokes and anti-Stokes fields;
the remaining three terms account for the noise diffusion from the “noisy”
(for nonzero temperature) reservoir into the system. Contrary to the
former equations of motion (18), (61), and (60), we lose all information
about the depletion of the laser field. It is seen that the FPE (64) for any
quasidistribution %), even if related to the field ordering s # + 1, does
not contain third-order derivatives, contrary to the FPE (61) without
parametric approximation. Let us note that (64) describes an Ornstein-
Uhlenbeck process!®! since the components of the drift vector are linear
and those of the diffusion matrix are constant. Various methods have
been developed for solving the equations of motion for Ornstein-
Uhlenbeck processes.” 188 For instance, expressing the quasidistribution
¥ “Nag, ay,t) by its Fourier transform (22) with respect to the variables
ag, o, we obtain the following first-order differential equation for the
Fourier transform, i.e., for the characteristic function (8, B4, t):

d K a
a—t%(s)(BS,BA,t) = {[(—25 - iAQ)BS@ + c.c.

_[(%" + iAQ)ﬁA£ +cc.
A

J
BA;E - Bs@

K
SA4
+ | ==

) + c.c.

s+ 1 (65)

> )I/BSI2

|
( s

2

1
—[KAS(<ﬁV> + E)BSBA + c.c.

-

}g(s)(BS: BAﬂ t)
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Again, to obtain (22), one might use the rules (60) applied to (18) with
4, — e,. Our further results presented in this section are mainly based on
very extensive studies carried out by Pefina,> >* Pefinovd and Pefina,®
and Karskd and Pefina®® (sce also Ref. 23 and references therein).
However, their solutions of the equations of motion for the Raman effect
under parametric approximation hold only for quasidistributions
7 Nag, a,,t) or #Nag, ay, ) and characteristic  functions
@+ (B, B4, t) related to normal and /or antinormal ordering of the field
operators. We generalize their results to functions related to s-ordering of
the field operators, i.e., to an s-parametrized quasidistribution
% ag, a,, 1) and s-parametrized characteristic function X, B4, t)-
Let us use, after Ref. 23, the following simplified notation for functions
characterizing the quantum noise, i.e., the Wigner covariances and vari-
ances as well as the mean values of the annihilation operators dg and d 4:

1 s
BP(r) = S{{Aai (1), Ad(D)) ~ 5
1
Dy (t) = Dy(t) = §<{Aﬁk(t)’A‘iz(t)}>
_ _ 1
B(r) = Di(n) = - 5{{adf (1), A, (1)) (66)

Cu(1) = {(aa, (1))
£.(1) =(a,(1))

where k = S, A and {..., ...} is an anticommutator. Assuming the initial
condition that the Stokes and anti-Stokes fields are stochastically indepen-
dent, the solution of (65) for the s-parametrized characteristic function
exists for any parameter s and is equal to

%(S)(BS,BA,t)=exp{ )y [—BI((S)(t)lﬁk‘z

k=5, A
+(3CE()BE + cc.) + (B (1) - C'C‘)]

—= 67
F[Dor( 8387 + Da(Bsfs + ecl)
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where

. 1+s 2
BP0 = (89 + ) + o]

1-s 2 1+s
#(89= <) = 2 o = <y - 2
1 —
B = (85~ <) - 2 o
1+s 1-s
+(B‘S) + {Ay) + —— )]VA(t)| + {Ay) + 5
1
Dy (t) = (B(S) + (A, + ; )Us(t)V(t) (68)

1—
+(B§1S) —<Ay) — TS)VS(I)UAU)

Dg,(t) = CsUs()VF (1) + CEUF(1)Vs(2)
Cs(t) = CsUS (1) + CEVE(t)
Ca(t) = CLUL(t) + CEV(t)
£s(t) = Us(1)és + V(1) &
E4(1) = Us(0)é + V(2)EF

The solution (67) for #“X(8y, B4, t) with any parameter s from { — 1,1)
is, in view of the property (27), a straightforward generalization of the
solutions given by Karskd and Pefina®® (see also Ref. 23) for
#t1(B, B, t) related with normal or antinormal field operator ordering.
Setting initial values C, = Cg = 0, which implies that Dg (1) = C (t) =
Cs(t) = 0 for any time ¢, the solution (67) reduces to that of Pefina.’* The
time-dependent functions U, (¢), V() (k = S, A) appearing in (68) can be
expressed as

Vi(t) = =20,
ZOBEE

(69)

Us(t) = 0, + (%A + iAQ)Q1

Ult) = 0% - (7 —1AQ)Q*
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in terms of the auxiliary functions

exp( P, At) — exp( P, At)

! P - P
(70)
0, - % _ P, exp( P, At) — P, exp( P, At)
9t P, —-P,
1[ks—k Kg — Kq\2 K¢ + K 12
P L= ( > “) —4((AQ)2—1———S AAQ)
’ 2 2 2 2
(71)

It is seen that for the initial moment of time t, the functions V,(¢,) vanish
and the U,(t,) are equal to unity, so that the initial Wigner covariances
D, ,, and Dy, (k,1 =S, A) also vanish as a result of the initial condition
of zero stochastical correlation between the scattered modes. Let us note
that on the assumption of the frequency resonant condition AQ = 0, the
functions (69)—(71) simplify considerably®® since P, = 3(xs — k) and
P, = 0. This leads, in particular, to the relations

Vi(t) + Vu(t) =0,

Ug(t) +Uy(t) =1+ exp(KS _ At) (72)

To obtain the solution of the FPE (64) we perform the Fourier transform
(21) of (B, B4, 1), which leads to the s-parametrized quasidistribution
7 Nayg, ay, t) in the form

7 (ag, ay,t) =

1 s ) 5
™ exp{(L‘”) [‘E1|“s = &()| = Ejlay — £4(1)]

1 , 1 2
+ 5 Ea(af = €(D) + SEi(ad - (1)
+Es(a - £5(0)(a% — £5(1)

+Eg(as — &5(1))(ak — £4(1)) + cc. }

(73)
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which generalizes the Kdrska and Pefina result for antinormal ordering>®
going over into s-ordering of the field. The time-dependent functions E;
(i=1,...,6) and LD have been calculated by Pefinova*’ in her analysis
of quadratic optical parametric processes. Here, we have the following
generalized s-parametrized functions E; and L occurring in (73):

E, = BP(t)KP(t) — BY(1)K (1)
+(CA (1) Dy () Ds (1) + cc.)
E, = BY()KE(t) — BO(H) K, (1)
+(Cs(t)D§‘A(t)BSA(t) + c.c.)
Ey = Cs(t)K(t) + 2B(1) Dsf(1) DEA(1)
+ CH(1)DE4(1) + Co(1)DEI(1)
Ey = C(1)Q(1)KE(t) + 2B(t) Dyy(1) Dy (1)
+ Cs(£) DE(t) + CE(1)DE(1)
Es = Dyy(1)[ BY(1) BY(1) — K_(1)]
+ BO(1)Cy(1) DEy(1) + BO(1)Cs(1) Dy o( 1)
+ Cs(1)Ca(1) DA(1)
Eg = —Dg(t)[ BO () BY(1) + K_(1)]
= BP(1)C4(1) DEA(1) — BO(1)Q(1)CE(1) Dy (1) (74)
— CH(1)Ca() Dia(t)
(L9)" = K@ ()KP(1) = 2BP(1) BL(1) K, (1)
+[Cs(1)Ca(£) DE(E) + Co(1)C5(1) DR (1)

(75)
+2B{(1)C% (1) Dy 4(t) Dy 4( 1)
+2BO(1)CE (1) Diy(t) Dgu(t) + cc] + K2(1)
with
() = (B® 2 _ 2
K@ (1) = (B4(1)) —|Cs, 4()] (76)

K, (1) =|DSA(t)|2 i|55A(t)|2
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The two-mode functions % “Xag, e, t) (73) and FX( B, By, t) (67) re-
duce to the single-mode functions # “Na,, t) and X B,,t) (k = S, A)
simply by setting either ay = B¢ =0 or a, = B8, = 0, implying that the
coefficients V(¢), V(t), Dg (t), and D (¢) vanish and, for instance, L*
reduces to \/K,(f)(t) .

Contrary to the solution (67) for the characteristic function
&)Bs, B4, 1), the solution (73) for the quasidistribution 7 “Xag, ay, t)
may be absent for some s-ordering of the field operators, depending on
the choice of initial field. The condition for the existence of the QPD (73),
i.e., the existence of the Fourier transform (21) of #“X By, B4, 1) (67), is
that the function K{(¢), LEX(t), Re C (1) + B$(¢t), and

7 = (K/(f)(t))l/z[Re Cy(1) + B§s)(t)] + (Kﬁf)(t))‘l/Z

x|Re C5(1)(Dya(1) = Dya(1))’ = BY(1)| D) = Dsa()[] >0
(7)

should be positive. If any of the four functions K§0(¢), LE(¢), LE(t),
and ReC (¢) + B§V(t) (for a particular parameter s,) is not positive
definite everywhere, the equation of motion (64) for the s,-parametrized
quasidistribution cannot be interpreted as a FPE describing the Brownian
motion, i.c., the equation is not a “true” FPE. The quasidistribution
7 “Nag, a4, t) does not exist as a positive well-behaved function; still it
does exist as a generalized function according to the Klauder-Sudarshan
theorem.'®® This property is a signature of quantum effects.”®~1% Let us
note that it is possible to use generalized P-representations (positive
P-representations) by doubling the phase space, as has been proposed by
Drummond and Gardiner.'® The generalized P-representations have
been applied successfully to solve master equations of various nonlinear
problems (see, e.g., Ref. 124, 127, 128, and 200). This method, if applied to
our model, requires us to handle eight real variables (not counting time),
instead of four.

For initially coherent Stokes and anti-Stokes fields, i.e., satisfying Cg =
C, = Dy, = 0, the rather complicated expressions for L® (77) and L'
(75) reduce to

I = BO(O)BO(1) — | D (0) [ (78)
L9 =|BE() BP(1) | Dsu(1)'] (7)

It is seen that, in the case of initially coherent fields, the sufficient
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condition for the existence of % (ay, a,, t) (73).is only that the function
L® (78) shall be positive. One obtains further simplifications of the
problem under the assumption of negligible frequency mismatch (AQ} = 0).
The functions B§”,(¢) and Dg (t) (68) now reduce to

® Ks Ks K .
B$P(t) = _ f- —f=2 _ + A fy
Kg = Ky Kg — K4 Kg — Ky
1—-35
+ >0
;=
K4 Kg R 1—s (80)
BP(t) = ———f_ | ———f+ Apfe | + >0
Kg = K4 Ksg = Ky 2

VKsK4 Kg

Rl e KRV

with
K¢ — K
fo= exp(% At) +1 (81)
In particular, the Wigner function exists, since

7O _ 1 N 1 exp[(ks — k) Af] — 1

[<Ayd(ks + k) + k5] >0 (82)

£

Kg — K4
contrary to the P-function, which does not exist for ¢ > ¢, since>

KgK4

(ks — KA)2

_ Kg = Ky 2
T = _ [exp( 5 At) — 1] <0 for Ar >0 (83)

In general, the solution (73) at a given time ¢ exists for parameters s less
than

s < BY(t) + BP(r) + 1 - (BO(r) + BP(1)) — 41O (84)
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Assuming that the damping constant vy, is equal to the gain constant vy,
or equivalently k , = kg = k, we arrive at

IO = H[(1 = 5)> + 2(1 — s)(1 + 2(A,))x Ar = sk>(Ar)]  (85)
which is greater than zero for parameters s less than

1 k At + 1)°
s<_+%

k At \?
(1+2(ﬁV>+ —2—) +1

+ {2<ﬁV> -

1,2
}KAt

(86)

In particular, L® (83) for the P-function and L@ (82) for the Wigner
function respectively reduce to

_ k At\?
L(‘>=—(——) <0 for At > 0
2 (87)

LO =3+ ((Ay) + 7))k At >0

The condition for s fulfilling L& > 0 cannot be expressed explicitly in a
simple form in cases with frequency mismatch AQ # 0. As another exam-
ple, let us assume that the Stokes and anti-Stokes fields are initially
chaotic, which mathematically differs from our former example of initially
coherent state by the presence of nonzero initial coefficients B " =
{(iggx» (k=S8,A). By virtue of the relations (68), the functions
B{(t), Dg [(t) for chaotic field are the same as for a coherent field with
extra terms. Here, the function L® (75) is found to be

I = (BO(1) + Gy Us(D] + i OVs(1) )
X (BQ(1) + Gigy DNULD] + (VA1) (88)

+|IDg 4l + (g ) Us(£) V(1) + <ﬁchA>UA(t)Vs(t)|2

which has a form similar to (79) with the same function B{*(¢) and Dy 4(¢)
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given by (80). In the case of equal damping and gain constants we obtain

_ Ary?
L(K) = _('YTt) s(<ﬁchA> + <ﬁchS> - 1)

1+s
+ yAt[(ﬁChA>(<ﬁV> + 3 )

. (89)
-5
+(ﬁchs>(<ﬁ,,> + T) + ((ﬁ,,) + 5)(1 - s)]
R R -8 N 1-3s 1-s5)\°
+ (g 2| A s) + T) + <”chs>‘2— + ( > )
It is seen that the Wigner function always exists, since
LO =y At({Agy ) + (g ) + 1)(<Ap) + 3) (50)

+ Ay a2 ((Aens) + %) + 3 Ags) + >0

whereas the P-function exists only for times shorter than

2 _
At < (i a) + (ys) +1) 1{(ﬁchA>2[(ﬁchs) + (CAy) + 1)7]
+<ﬁchA><ﬁchS>[<ﬁchs> + <ﬁy>2 + (<ﬁV> + 1)2]

+<ﬁChs>2<ﬁV>2}1/2 (91)

+ (A a2 ({Ay) + 1) + (Ag 2Ry

The relation (89) is quadratic in s and readily gives an analytic expression
for the largest parameter s (s < 1) for which the quasidistribution
¥ “Nag, ay,t) exists at a given time of the evolution Ar =t — .

In Fig. 1 we present the function L®(¢) for different values of the
frequency mismatch A€, of the mean number of photons {4, ), and of the
damping (x,) and gain (k) constants. We assume that the Stokes and
anti-Stokes modes are initially coherent. Thus, for all discussed cases
(Figs. 1a—d), the condition of a positive definite function L*)(¢t) is suffi-
cient for the existence of the corresponding s-parametrized QPD. For
clarity, the dashed lines in Fig. 1 are depicted for L&(¢) = 0.
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Figure 1a. The time and parameter s dependence of the function LOX(¢), related to the
existence of the QPD W) (ag, ay, t), for (a) kg = 108, k= 10'°, |AQ| =1 = 109 (the
surfaces coincide in this range of |AQ), (Ay,) = 0; () kg =k, = 103, 1AQ] =1, {A,) =0
+100; (c) kg = k4 = 105, |AQ} = 10°, (A, = 10; and (d) g = k4 = 105, [AQ| = 105,
{Ay) = 0. The Stokes and anti-Stokes fields are initially coherent. The dashed lines on the
surfaces are depicted for Z(t) = 0.
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Figure 1b. (Continued)

We shall briefly analyze a more general situation, which comprises the
above cases and others. Let us assume after Refs. 56 and 66 (for a general
analysis see Refs. 23 and 219) that the Stokes (k = S) as well anti-Stokes
(A) modes are initially in squeezed states characterized by complex
amplitudes ¢, parameters r,, and phases ¢,, superposed with a chaotic
field, characterized by the mean number of chaotic photons (A, ;). The
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initial s-parametrized quasidistribution " “Xay, a4, t,) is then given by

¥ ag,ay,ty) = Il (K,((s))q/2

k=S, A
! () 2 * 2
Xexpy — K©® [Bk ot = &1° = Re(ck(ak = &) )]
k
(92)
with
' ) s+1
BYY = B(t) = (coshr)” + (ngy ) — 2
C, = Ci(ty) = % exp(id,)sinh(2r,) (93)

which trivially reduces to the quasidistributions of a pure squeezed state
(A > = 0), a coherent state ({Ay,> =r, =0), or a chaotic state
(r, = & = 0). In Section VLB we analyze another special case of (93) with
r, = 0 describing a general superposition of coherent and chaotic fields.

The Raman effect model under parametric approximation is fully
specified either by the s-parametrized characteristic function
&N Bg, B4, 1) (67) or the s-parametrized quasidistribution 7 ay, a , t)
(73). In particular, by virtue of the relations presented in Section 1V, one
can obtain complete information about the photon-counting statistics and
squeezing properties of the scattered fields from (67) or (73).

One can calculate the photon-counting probability distribution p(n)
from the quasidistribution 7" (ay, a,, t) or integrated quasidistribution
7 (W,t) (30) by means of (31), or equivalently from the generating
function {(exp(—AW(¢)))() (32) by virtue of (33). We apply the latter
method, which gives us, after insertion of %X ag, ay,,t) (73) or
&N By, By, 1) (67) into (32), the following time-dependent s-parametrized
generating function:

(94)

—2( ()" 1/2 i
(exp(—AW )y = A72(Z) Texp

78
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where the Z® (Z{) are polynomials of the fourth (third) order in A~ ":

4 1-s\/
.?1(3)= Z()\—l+—*2—) b

J
i=0

3 1 -5 j
2 - z(rw . )aj (95)
j=0

Adapting the results of Pefinové and Pefina*® for the coefficients a;, b,
(j =0,1,...) occurring in (95), one obtains

ay = [~BPKP + BPK, +(CyDs4Dys + c.c. )1l
+{[BODs.iDss + 5(CEKP + CaDE4 + C1D, )] 63
+1[ BEBPED;, + 2BOC3Ds 4 + C5CEDE, — Dy K_| €t s
_%[Bg)B/(‘il)BSA + 2B{"C Dy + C§C Dy
+Ds K_|&58% + cc} +[S © 4]

[-2BPBY — K + K. )&l (96)

)
=~
Il

+ [(B{EPC;‘ + DSABSA)§§ + (B{"Ds 4 + CEkBAs)gsz
—(B§"Ds, + CED%, )5t + ]
+[S§ & A]
ay = —(B + 2BP)I&l
+3(C3€5 + Dyabsta — Dsabstl + cc.) +[S o 4]
as = "|§s|2 - |§A|2
by = 3KPKP — BOBPK , — 2BO(CiDE4Dys + c.c.) + 3K2
—%[CA(CSDg"A + C§Djs) + c.c.] + [S o 4]
b, = 2B{(KY — K,) = 2(CsDs,Dg 4 + c.c.) + [S & A]
b, =2BPBY + KP — K, +[§ & A]
by = 2(B® + BY)
b, =1

(97)
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where [§ « A] stands for the preceding terms albeit with interchanged
subscripts S and A. For brevity, we have omitted the time dependence of
Egs. (96) and (97). Our formulas (94) and (95) are generalizations of the
results given in Refs. 23, 48, and 56 for s = —1 to any s. It is seen that the
simplest form of (95) is for normal ordering of the field operators; hence,
here, we use only this ordering. Pefinov4 and Pefina*® have shown that if
the polynomial .#(" has four single roots A, = —(1/A),, the generating
function (exp(—AW(¢))), has the form of the fourfold generating func-
tion for Laguerre polynomials

k

AA
- ——) (98)

1+ AA,

4
(exp(—AW (1)) =TT (1 + Ad) " exp

The field is described by a superposition of signal components

4
A =TT = A7) Ta(=a0Y (99)

=0

and the noise components A,. With Eq. (98) available, one obtains***® the
following photocount distribution

4 Al
p(n,t) = )y ITexo| -1~
kyky ks kg =1 T A
ky+ky+ky+ky=n (100)

Ak -
X d L;‘/z(———’
A+ )2k, + 57 A1 +24y)

and its factorial moments

4 )J;z A,
(W) = k! > 1_1-715”2(—)\—) (101)

1 ky
ky+hky+hytk,=k =1 F(k, + 2)

by applying well-known properties of the generating function of the
generalized Laguerre polynomials L$(x) to the definition relations (33) for
p(n,t) with s = 1 and to the relations (34) for (W*(¢))q,. Much simpler
expressions are found in the special case when the radiation fields are
initially superpositions of coherent and chaotic fields. From relations (93)
with r, = 0 and (68) it is seen that Cy(t) = C(t) = Dy (t) = 0. The
fourfold generating function (98) reduces to a twofold generating function
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in the form of (98), where the upper limit of the product should be
replaced by 2 and the square root in (1 + AA,)~'/? should be omitted.
Then the photocount distribution p(n,t) and its factorial moments
(W*(t))qy become

1) = ' 1 _ _ (n)AIAn_l 1+ A -+
p(n,1) = (n) exp( T ) B (1 e
A A
X(1+/\2)—n+(l+1)Ll ____—]_ Ln_l _—2____
A1 +A) A1+ Ay)
(102)
n A A
ORI o [ MPC 1 et VRN ey BT
ITo\! Ay Ay

where L,(x) = L%(x) and the roots A, and coefficients A4, are*
1) pa 1 - 1 1 2 2|1/
M= H{BP() + BO(0) 7 [(BO(1) - BE(0) + 4Dy, (0f] )

A= 2 [(BO(0) - BO0) + 40 0f] (104)
X [$(BO(r) = BP(OYI£41 = 1£617) = (Dsaéses + cc)]
+1(1& + 14P)

The photon-counting statistics of scattering either into the Stokes or
anti-Stokes mode can be calculated from formulas (98)-(101). In the
single-mode case the moments D () and Dy (¢) vanish, considerably
simplifying the polynomial .Z{" (95), with coefficients b;, to the form

_71(1) - k_l;[A ()Fz + 2/\—13’((1)0) + Kl(cl)(t)) (105)

with the roots A 55 4, = —(A71),
/\1,2k=Bl(<l)(t) $|Ck(t)| (k=8§,4) (106)

The notation A, 4 and A, 4, instead of A, , 5 ,, emphasizes the depen-
dence on the single-mode variables in accordance with the assumption of
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alternative scattering into the Stokes or anti-Stokes mode. Analogously, it
is seen that

Ay = YO F HCU()| T (CE(0) (1) +cc)  (107)

On insertion of (106) into twofold functions (98)—(101) one immediately
obtains

(exp( =AW )y = [(1 + A2 ) (1 + Ady,)] e
X exp| = A A (1+Ah,) 71 = Ay (1 + Ay 7]

(108)
—1/2 4NN
pe(m) = [(1+ A1+ 0] (1 +A51)
A A
XCXp _ 1k . 2k
1+ A, 1+ Ay
n 1 1+ A5 (109)
X Z —
So T+ )T (n =1+ 3) {1+ A5,
xL,‘l/z(—i——)L;_‘,/Z ___AL__)
Ae(1 4 Aqp) Aye(1+Ay)
1 Ay
<Wk(t)>(1) n: MkZ T (_)
ol l+ n—Il+3)\A

Alk . A2k
X Lj 1/2( A—)Lnl{Z(—A—
1k 2k

To obtain the results of Refs. 23, 56, and 189, one should replace A, by
E, — 1and A,, by F, — 1. In particular, assuming that a scattered (Stokes
or anti-Stokes) mode is initially in a coherent state (thus C, = 0) the mean
photon numbers (A, ) (k = S, A) are

(Ae(1)) = (Wi =1 &(0) " + BO(1) (111)
or explicitly

(Ag(t)) = &g exp(rg At) + ({iyy + 1)[exp(ks Ar) — 1] (112)
(A1) = 1€47 exp( — i At) + (Apd[1 — exp(—x, A1)]  (113)
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whereas the mean-square photon-numbers (A} ) are

(Az) = WHay + W

\ , (114)
=& +]&() (4B (1) + 1) + 2Bi(1) + Bi(1)

Then, the normalized second-order factorial moments (35) are equal to

¥2(1) = BO) |16y [ + BO(D)]

. (115)
2 2 1 -
x{leo Pl + 8]+ 1)
Let us proceed to analyze squeezing along the lines presented in
Section IV. We focus our attention on single- and two-mode squeezed
light according to the definition of ‘“usual” squeezing and principal
squeezing of Luk$ et al.'®> 2! 213 Using the definitions (66) of the
functions B{*(t), D, /(t), D,,(t), and C,(¢) we readily obtain expressions
for the moments of the quadratures X, « and X !

(ARuyi2) ) = £2Re Cy(1) +2BP(1) +5 (116)
(A% ,)")= +2|Cu(t)| + 2BP(1) + s (117)

(A%, 0%,,)) = 4Im C (1)
<A)2k1A)211> = ZRC[DkI(t) - L—)kl(t)] (118)

(AX,A X, = —2Re[ Dy (1) + Dyy(1)]

(AX,AX,) = ZIm[Dkl(t) - 5kz(t)]

(AX,0X,) = 2Im[ Dy (1) + Dy (1)]

where, as usual, k,/ =S, A and k # l. Thus, the two-mode quadrature
variances now have the form

(A%sa))

(AXs40)")

— 1+ 2Re[Cy(t) + Cylt) + 2Dy 4(1)]

+2[B{(t) + B (1) — 2Re Dy (1) + 5]
(119)
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and the extremal variances are

<(AXSA1)2>= +2|Cs(2) + Ca(t) + 2Dg4(1)]

+2[ BY)(t) + B(t) — 2Re Dy (1) + 5]

(120)

The single-mode squeezing, defined in standard manner, and the single-
mode principal squeezing require, respectively, that

|Re Cyo(1)]

WAO!}>&WO+% (k=S5,A) (121)

whereas the conditions for the two-mode squeezing are, respectively,

IRe[Cy(t) + C4(t) + 2Dy ()]

$) (s) _ =
|Cs(t) + Ca(t) + 2D (1) } > BE(1) + B(t) — 2Re Dy (1) + 5

(122)

Examples of the time evolution of (Aiy(7)), (A3(r)), {(d4(r)), and
(4%(7)) are given by curves C in Figs. 2, 3, 7, and 8, respectively. We
assume that the Stokes fields are initially in a coherent state (stimulated
Raman scattering) or in a vacuum state (spontaneous Raman scattering).
The rescaled time 7 is defined by ¢ — 7 = ty,. Anti-Stokes scattering is
neglected. The phonon bath is at very low temperature, so we put
(A, ) =0. In Fig. 9 we present the time evolution of the extremal
variances ((A X J_r(T))2> for fields initially coherent with amplitudes equal
to o, = V2, ag = V0.2 and assuming that the heat bath is “quiet” (i.e.,
{Ai,,» = 0). In the model under discussion, the variance for the Stokes
mode, ((AX(0,7)?) (curve C in Fig. 9), is independent of 6, ie.,
(A X, (7)) = ((AXs_(7))*). Hence, squeezing is not observed if the
initial Stokes mode is in a coherent state. Even if the Stokes field is
initially squeezed and yg > y, (not necessarily y, = 0), squeezing will
rapidly vanish due to strong amplification of this mode, which leads to a
strong increase in quantum noise.’® The results of this section (curves C)
are compared with the exact solutions (without parametric approximation)
derived in Section VI.A.2. (curves A) and the short-time solutions of
SectionVI.A.1.
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V1. MASTER EQUATION IN FOCK REPRESENTATION

The parametric approximation, applied in the previous section, introduces
linearization into our Raman scattering model described by the Hamiltoni-
ans (1)—(3). Here, we shall search for a solution to the nonlinear problem,
thus including pump depletion. The generalized Fokker-Planck equation
(61) and the corresponding equation of motion (63) for the characteristic
function reveal the difficulties to be overcome in the complete analysis of
Raman scattering into simultaneously both the Stokes and anti-Stokes
fields from phonons treated as a “noisy” ({A,, ) # 0) reservoir. Let us
assume that the temperature of the medium is low. Under this assumption
it is quite reasonable to neglect the anti-Stokes scattering (y, = y44 =
v4s = 0) and, with regard to Eq. (14), to assume that the reservoir is
“quiet” ((Ai,,) = 0). Under these approximations the master equation (18)
reduces to the simple form”:

{

where we have introduced a rescaled time ¢ — 7 = yt. Let us denote the
matrix elements of the reduced density operator p in Fock representation
by

p

— (123)

D>
~
D
“
>
LY
™+
ESPY
)
[G—
+
—_—
DB
~
X
“
=N
Q>
4
Q>
[
—
N’

(nesnslp(r) ny, g =(n,m|p(r)|n + v, m + w) = p, (v, 1, 7)
(124)

where for simplicity we identify n; = n, and ng = m; p is the degree of
off-diagonality for the elements of the matrix p for the Stokes mode,
whereas v is the degree of off-diagonality for the pump laser mode
elements. The master equation for the matrix elements (124) readily
follows from Eq. (123) and can be written as

d 1
b;pnm(v,u‘r) = - E[n(m + 1)+ (n+v)(m+p+ D]p,(vur)

+[(n + D) (n+ v+ Dm(m +u)]?p, sy mi(ve7)

(125)

The equation (125) for the diagonal matrix elements p,,,(007) reduces to
the rate equations of Loudon,® and McNeil and Walls.”” Simaan”
(cf. Ref. 30) analyzed Raman scattering from a gas of two-level atoms. On
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the assumption that almost all the atoms are in their ground state, the
Simaan rate equation of Ref. 75 takes the form of Eq. (125) for v = u = 0.

A. Raman Scattering Including Pump Depletion
1. Short-time Solutions

Before proceeding to derive an exact solution of (125) we shall present the
short-time solutions calculated with the help of the relation (A(T)) =
Tr{A[p(1y) + p'(7y) At + p"(1, (A7) /2]}, where p"(7,) is found by dif-
ferentiating Eq. (125) with respect to 7. The solutions for the mean {A)
and mean-square number of photons {A2) in the laser mode up to Ar
squared are

(A(7)) = (AY — (AY({m) + 1) At
(Ar)? (126)

— [ Ry + 1) = (AY(m2Y + 3 + 2)] -

(A (7)) =A%) — (A% — (AY)((m) + 1) Ar
—[2(a2 (Y + 1) = (A2Y(4CR2) + 13Ch) +9)

AT)2
+3(AY((MPY + 3wy + 2)|——

(127)
(

2

where for brevity we set (7i?(7,)) = (A?) and (M?(7,)) = (Mm?) (k =

1,2,3) as well as A7 = 7 — 7). Then the normalized second-order facto-
rial moment, y®(7), defined by (35), is equal to

v(r) = v + [( A2 — (A3 (A)(1 + ()

FRY(CAY = ()(1+ (i) — G + G?))|(A) T (Ar)?

(128)
which reduces to the Simaan result™:
(A%)
O(7) = 1@ + |(A2) +1
VL ( ) nL <ﬁ>
(129)

—(A%) — <ﬁ>}<ﬁ>*2(m)2
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in the special case in which no scattered photons are excited initially, i.e.,

(M) = (m?) = 0. For the initially coherent Stokes and laser modes the

factorial moment (128) reduces to the simple form y{ = |ag|*(A7)2.
Our short-time solutions for the Stokes mode are

(7)) = Ry + (AY((A) + 1) Ar

A 2
— [(R2XAY + GRY(BCARY = (A2) + 2(AY — ()] ( 27)
130
+[(rh3><ﬁ> + (Y (T(RY — 4A%)) + (i (14€A) (130)
(a7)°
—12(A%) + (A%)) + 8(A) — 8(A?) + (ﬁ3>]——6—
(M2(1)) = (R2) + (AY2(M2) + 3(m) + 1) Ar
— [20A3NRY + (R2)(9CAY — 4(AY)
A 2
-umxwm>—%#»+6m>—x#ﬂ(;)
+[20R*) Ay + GRPH(21CARY — 14¢A%Y) (131)

+(RPY(T3AY — T2AA%Y + 8(A%))
+(my(102¢A) — 118(A%) + 21(A%))

S 600 ] (A7)’

+4BCA) — 60CA%) + 13¢AM)] =

On adding Egs. (126) and (130) we note that the sum of the mean number
of photons in both the Stokes and laser modes is constant (at least up to

(A7)?):
(A(r)) +{m(r)) = (A) + (M) (132)

Taking a closer look at Eq. (125), which contains only terms with p,,, and
Pn+1, m—1» One can draw the more fundamental conclusion that the
property (132) holds for any times, in particular for the steady solutions for
7 — =, Equation (132) is a special case of (62). Actually, we note in view of
the master equation (123) that the operator 4; (7)d,(7) + a3 (v)ds(7) is a
constant of motion.

The time evolution of the mean values {A(7)), {mi(7)), {(A%(7)), and
(@*(7)) is shown in Figs. 2 and 3 for initially coherent distributions.
Curves B are obtained from Eqgs. (126), (127), (130), and (131).
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00 02 04 06 08 1.0

Figure 2. Time behavior of the mean number of the Stokes photons {#(¢)) (solid lines)
and the laser photons {#(¢)) (dashed lines) for the initial fields: (a) |a, = V2>, lag = 0},
and (b) la, = V2D, e s = \/65 >. Numerical results with exact solutions of Section VI.A.2
(curves A); short-time approximation of Section VL.A.1 (curves B); parametric approximation
of Section V.B (curves C); approximate solutions of Section VI.B (curves D).

The factorial moment y{?(7), in the case of nonzero (), is equal to
y@(r) = v@ = 2({m2y — 2(m)* — (A)) (A m) 7> At
= [roymyay — Gamya)
+ ()i ((AY + 2(A) — (A%))
— (R CRY(2(AY + 2Ry = (A%)) (133)
—3(mPWAY + (Y (TCAY + 8(A) — S(A%))
+ (i) (10¢AY + 4(A) — 3(A%))

+3mMAY |y (Ar)’
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Figure 3. Time behavior of the mean-square number of the Stokes photons {#%(¢))
(solid lines) and the laser photons {/*(¢)) (dashed lines) for the same cases as in Fig. 2.

whereas in the case when all moments (/%) (for k = 1,2,...) are zero,
v§(7) can be expressed as

6{A%y’ . R o AT
Gy 8(A*) + 8(a) [{A) 5
(134)

y@(7) =29y@ + 1 + |6¢A%) —

To obtain a correct time dependence of the factorial moment (134), it is
clearly necessary to include in Egs. (130) and (131) terms at least up to
third order in 7. An equation similar to (134) has been obtained by
Simaan.” In Fig. 4 we compare, in particular, our result for the factorial
moments of photon number in the Stokes mode calculated with Eq. (133)
and (134) (curves B) with that obtained from the exact solution (curves A)
of the master equation (125) discussed in Section VI.A.2. Our Eq. (134)
gives much better approximation to the exact results than Simaan’s
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Figure 4. Time behavior of the normalized factorial moments y{(r) for the Stokes
mode for the same cases (except for curve D) as in Fig. 2.

formula (33) in Ref. 75. Analogously in Fig. 5, the factorial moments for
the laser mode calculated with Egs. (128) and (129) (curves B) are
compared, in particular, with the exact solutions (curves A).

The Egs. (133) and (134) reduce, respectively, to

Y@(r) = 2la Plas] A7
— Qlagl* + 3lagl + 3la,|? + laglla,?) o, Plasl (A7)’
(135)
yP(r) =1-3A7 (136)

for initially coherent radiation fields.
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(a)

1.0

(b)

YE(T)
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0.0 0.2 0.4 0.6 0.8 1.0

Figure 5. Same as Fig. 4, but for the normalized factorial moments y{?(r) of the laser
mode.

The corresponding short-time dependence of the cross-correlation (in-
terbeam) function is

(A(r)m(T)) = CAYCm) + [CA2Y(Ch) + 1) = (AY(GR2Y + 2Gh) + 1)] Ar
+[CAO(CAY + 1) = GAH(@GR) + 1R + 7)

(a7)°
R + 6Ch) + 1<) + 6)] =

= [3¢aty @)y + G2y + 1) = (AHEGR) + 4R - 1)
— (A2)(68(rm) + 43(m?) + 11(r) + 36)
Ar)?
+CAY(66C) + 47¢m7) + 140 + () + 32)| S—Bl

(137)
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On inserting (126), (130), and (137) into the definition (38) of the inter-
beam degree of second-order coherence, g{3(7), we obtain the following
relation for the case when photons are initially present in the Stokes
mode:

gB(7) = [(AD(G) + 1) + AY(GRY: = Gy — i?) = 1)
— (AR (CRY + D] (CAXRY) " Ar
+{BYGR(GRY + 1) + A Cm)
X (3¢m)* = 6(ri) — &(m?) - 5)
— (AR + 5Cm) + 2) (138)
AR 20h) = 3CR) + G)(S = 3(P))
FACAZY + Gy + 4
(AR [ — 3y~ 3R + 2) - 2(¢A%) + 1)
+2AY (Y + 20 + 1)}<n*1>'2<ﬁ>(—A-25)—2
Otherwise, for the case () = (A?) = () = (M*) = 0, we get
gR(r) =y + ((A*) = (A /<A)

A
— %A% + 2<ﬁ>)<ﬁ>_2—T

2
(6<ﬁ4><n>2 + 5(A3Y(A%Y(A) (139)
—12ANAY: — 3(AZY — 22(A2YHA)
A 2
S =a

Assuming that the Stokes and laser modes are initially coherent, Egs.
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(138) and (139) reduce respectively to

. (Ar)?
y2(1) = —Ar + (|a5|2~‘2|as|2|aL|2+ laL|2)|a5| g 5 (140)
Ar (ar)°
Y1) = ==+ (1= Blayl” - 8l [*) — (141)

Equation (137), calculated up to the third order in A7, enables us to
determine the relation (139) correct up to Ar squared only. Simaan” has
calculated an expression similar to Eq. (139). Examples of the time
evolution of g{%(7) for initially coherent fields are presented in Fig. 6.
Curves B in Figs. 6a and b are calculated with Egs. (139) and (138)
(including terms up to At only). Curve S in Fig. 6a is calculated from the
Simaan short-time approximate solution (32) of Ref. 75. One can compare
these results (curves B and S) with g{®(r) obtained from our numerical
calculations utilizing the exact solution of the master equation (123)
(curves A). We note the supremacy of our short-time approximation (141).

Figure 6. Same as Fig. 4, but for the interbeam degree of coherence g(z)(r). Additional
curve S is calculated with the Simaan short-time approximation (Eq. (32) of Ref. 75).
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By analogy to the photon-number moments we calculate, in the short-
time approximation, the mean and mean square of the annihilation
operators, {d; (7)) and {4; *(r)) for both fields (k = L, S), as well as the
cross-correlation functions {d; (r)d{(r)) and (aL(T)zis+ ()). After some
algebra, we arrive at

At
(a3 (n) =(a5) +(aaa) S

F(araNas) - Aazaaay - Aazaas) S
(142)
G (o) ~(ag) ~(ap)(azad + 1) 5 + KarXasad)
afara)((azad + 1) + () (agad + 1]
(143)
(a3(n) =(859 +(ata)as) o 2
+((ar2az)(as?) —(aia)asas) — 2Aaja) Naz) 2
(144)

(a2 = (a7 () (agay + 1) ar + [0 a5
apa)(azay + 1) +(apasay + 0] L Lo

(af (r)ad (7))
~(ap)ad) + (araag) —(apasay) - Aai)aD)) 5
+((araz)ag)y — 1(a; %y, ><d;>—6<azZaL><&;Zﬁzs>
ws(ap agiay +(ap)asad + K ap)as))
(@ (r)ag (7))
~(aag) + (araag) —(a) a2y - Aa)a5))
+(ar2a3)ag) - 1€ af a3 ag)y - 6( a7 a2y aas)

+9(a){ a3’y +(a{agay +12(a{(a3))—

(146)
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Figure 7. Time dependence of the expectation values of the field amplitudes (dg(7)) =
{ag(r)) (solid lines) and {d,(7)> = {a; (7)) (dashed lines) for fields initially coherent |a,
=2 and Jag = v0.2). Curves A, B, C are calculated within the formalisms of Sections
VLA.2, VI.A.1, and V.B, respectively.

For brevity, here, we shall restrict our considerations to initially coher-
ent states for the Stokes mode denoted as ag = |ag| exp(igg) and for the
laser mode a; = |a,|exp(i¢,). In Figs. 7 and 8 we demonstrate the
evolution of our short-time approximations for {4¢(7)) (solid line B in Fig.
7), {&,(r)) (dashed line B in Fig. 7), {4%(7)) (solid line B in Fig. 8), and
{a%(r)) (dashed line B in Fig. 8) for initially coherent radiation modes.

From the general relations (130) and (126), under the condition of
initially coherent Stokes and laser fields, we get

(1)) = lagl + lay I (lagl® + 1) A7 + la P[(la,” + 1)(lagl® + 1)
(ar)*
(148)

—(lasl* + 4lagl® + 2)]

(A(r)) = la |* + lagl* = (rm(r)) (149)

Inserting (148) as well as (142) and (144) with (d/7d{) =
la, [P expl—i(p — @), 1 (k = S, A), into (43) we obtain the §-dependent
variance for the Stokes mode:

A AS o a,|*Ar
(A%s(8))) =1+ 2la,| (150)
+ lag P{la ) = [1 + cos’(8 — ¢)]lasl® — 1}(ar)’.
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<dd(n>, <cf(n>
°o = =
[o ] N [ (o]
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»

Figure 8. Time dependence of (4%(r)) = {a(s)) (solid lines) and (a3(r)) = (a}(r))
(dashed lines) for the same cases as in Fig. 7.

The minimal variance {(A X, s_)?>, which follows from (46) or directly from
(150), is equal to

(A%s_)) = 1+ 2la ) A7 + lay P (la,” = 2lagl® = 1)(Ar)* (151)

Analogously, for the laser field we obtain the following 6-dependent
variance:

<(A)?L(o))2> =1 + [cos(20 — 2,) + 1]l IPlagl?(A7)° (152)

on insertion of Eqs. (149), (143), and (145) into (43). With regard to the
relation (46), the minimal variance for the field, ((A X, _)?), is constant up
to the second order in time:

<(AX,_) )=1 (153)

One can readily deduce the maximal variances <(A)fL’S i)2> from (150)
and (152) or from (46). The time evolution of the single-mode extremal
variances obtained from (150)- (153) is presented in Figs. 9 -and 10 (for
b, = 0 (AXg_(1)?) = (AXg())?) (solid line B in Fig. 9),
((AXs+(T))2> = <(AXSI(T))2> (dashed line B in Fig. 9), (A X, _ (T))2> =
(AX, (7)) (solid line B in Fig. 10), (AX, . (r)?) = ((AX, ,(r)*)
(dashed line B in Fig. 10).
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Figure 9. Time dependence of the extremal variances {(AX; )?) (solid lines) and

((AX;,)?) (dashed lines) for the same cases as in Fig. 7.

The covariances for quadratures in the Stokes and laser mode, accord-

ing to (52), are, respectively,

<<A)?51,Aisz}>= IaL|2|as|25in(2¢s)(AT)2
(8% 82,0} ) = ~la Plagl? sin(26, ) (r)’

The generalized Heisenberg uncertainty relation (51) with the covariances
(154) and (155) inserted takes the following form for the Stokes mode in

15
B_.-"]
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DN PR e
# szzIf-"" A B, C
<X 1.0 —
g
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T

(154)
(155)

Figure 10. Time dependence of the extremal variances <(A)?L,)2) (solid lines) and

((A)?LQZ) (dashed lines) for the same cases as in Fig. 7.
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our short-time approximation: .
dla I’ A7 + la, P (6la, |* - 3lagl* = 2)(Ar)* = 0 (156)
and for the laser mode
2la, lagl*(Ar)? = 0 (157)

To obtain the two-mode variances and covariances of the quadratures one
has to calculate, apart from the single-mode functions (150), (152), (154),
and (155), the cross-correlations (57), which are obtained in the following
form:

(AX,, AXg,)
= —la,| lasl{Zcos ¢, cos g At + [cos(c{)L — ¢s)(4n, — 6ng — 11)
<Ar>2}

4
(158)

+cos( b, + d)s)(4lozL|2 — 2lagl* - 3)]

(AX,, AX,)
= —la,l Iasl{Zsin ¢, sin pg AT + [cos(¢>L — ¢g5)(4n; ~ 6ng — 11)
(Ar)z}

4
(159)

—cos( ¢y + ¢5)(4le, |* = 2]agl® - 3)]
(AX, AX,)
= la, | [asl{Zcos ¢, sin g At + [sin(¢>s — ¢, )(4n, — 6ng — 11)
A 2
+sin( g + ¢L)(4|aL|2-2|as|2—~3)]£_?;2_} (160)
(AX,, AX,)
= la,| Iasl{Zsin b, cos g AT + [sin(¢L - ¢g)(4n, — 6ng — 11)

+sin(¢, + ¢5)(4|aLl2 — 2lagl? — 3)] (_A:)_} (161)
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Thus, the two-mode Wigner covariance (56) of the quadratures X, ¢, and
X, s 18

({8 %50, 8K,5,) ) = 4l | la| sin(, + ) Ar
+[4la, Plagl® cosj (g + ¢,) sind (b5 — )
+la,l lagl sin( ¢, + @)

X (4la,|* - 2lagl” - 3)](Ar)*  (162)

The two-mode variances (55) of X 1.s1 and X 152 are

(A%u512)")
=2+ 2{la,|® — lag | agl[cos(¢, — ¢s) + cos($, + b5)]} Ar
+{2la, Pl * = lagl® = 1) £ lay Plas]®(cos 26, — cos 265)
—lagl la,|[cos(¢,, — ¢g)(dla|* — 6lagl? — 11) (163

(Ar)?
2

+cos(p, + <;/>S)(4|01L!2 — 2lagl* - 3)]}

whereas the extremal variances are
(A%5.) ) =2+ 2[la,l® — lay | lag| cos(, — )] Ar
+[ler, 1P (la, I* = lagl? = 1)

~ley | lagl cos(d, — ) (2la, |* = 3lagl” — 4)](ar)

+(2a,a5 AT + [IaL|2a§ — lagl’a? (164)

(Ar)?
2

+01Las(4|ozLI2 — 2]agl® — 3)]

according to the general expression (58).
Equations (158)—(164) can be readily generalized to any initial distribu-
tion of the radiation fields.
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2. Exact Solutions .

Let us now proceed to the exact solution of the master equation (125). We
apply the Laplace transform method. The method is readily applicable to
nonlinear master equations for a variety of nonlinear optical phenomena
(Refs. 30, 73, and 220 and references therein); in particular, it has been
applied successfully to different multiphoton Raman processes in Refs. 73,
75, 78, 106, 107, 112, 115, and 116. The solution of (125) for diagonal
terms of the density matrix p,, (007) (i.e., for v = u = 0) was derived by
McNeil and Walls™ and then, in a more general form, by Simaan.” As the
chief result of the present work we derive the time-dependence of the
complete density matrix p, (vu7), where the degrees of off-diagonality
v, w are arbitrary. To the best of our knowledge, ours is the first derivation
of a complete analytical solution to the Raman scattering model including
depletion of the pump field.

As usual, we assume that the Stokes and laser beams are mutually
independent at the initial time 7 = 7,. Thus, the initial joint distribution
Pum{vury) is a product of the distributions for the separate beams,

PrmlP170) = Py (v70) P 7o) (165)

Let us define the coeflicient A in terms of the integer-value function {[x]]
(the maximum integer < x);

=“m—n+1+u—l/” (166)

2 4

The exact solution of (125) under the condition (165), derived in Appendix
B, reads as follows for A < 0:

mi(m + p)! 12 m
L S
vur) = | —m— VT _Aur
Prm(VIT) [ PTEEAY Eopw( 0)Pm—1(170)

(n+DYn+1+v) 177

(m =D (m -1+ p)!

(167)

1] /
<L exp| —f(q) Ar] pI]O[f(p) - f(a)] ™!

K p#q
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whereas for A > 0 it is

mi(m + p)! 12

Pum(vut) = nl(n + )]

A
X { X pE(vTo)ps_i(nT)
=0

172

(n+DI(n+1+v)!
><[(m —DYm =1+ p)!

{ I
x Y expl—f(@) Ar1 [T f(p) — f(a)] !
=
+(1=8,0) X pri(v7o)pm—_i(mTo) (168)

I=A+1
(n+DIn+1+v)
(m—DYm =1+ p)!

1,2

A { A !
xY X TIlfim -f@1™" I1 [fw) - f@)™
g=0g'=r+1p=0 =i+l
p#q D #q

X (af(q)f(q’) Arexp[~f(q) A7]

+(narray = 1)

exp[ —f(q) Ar] — exp[ —f(q") AT] )
(@) — f(g")

where the function f(x) is given by

f(x)=3[(n+x)(m-x+ 1)+ (n+x+v)(m—x+p+1)] (169)

The coefficient A can be alternatively defined as

A=Hm;"+“;V” (170)

The solution (167) and (168) with consequent application of the coefficient
A of Eq. (170) reduces, as it should, to the Simaan solution (45) and (49) of
Ref. 75 for the diagonal matrix elements (v = p = 0); McNeil and Walls
have also obtained a solution of (125) for the diagonal matrix elements
(Egs. (6.5), (6.6), and (4.14) in Ref. 73); however, their solution is not in
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full agreement with Simaan’s solution and is not a special case of ours for
reasons given by Simaan.”

The solution (167) and (168) is very well adapted to numerical analysis;
nonetheless, it is of a rather complicated form. Our solution of (125) can
be rewritten more compactly. Following the method of Malakyan,''® we

find (for details, see Appendix B)

Prm(VRLT)

[ mi(m + )]
- [ ni(n + v)!

m

Z n+1(V70)Pm 1(1To)

(n+DW(n+l+v)]7"

(m =D (m =1+ p)!

(171)

4 {

x9 Y exp[-f(q) Ar] T [fp) - fla)]l'

q*q’l,qqz ..... qy P#4,4\,45, -, q
The differential operator of the dth order, &, is defined as follows:
g = (—l)dlil ’ (172)
+=19f(q,)

The order d of the differential operator (172) is equal to the number of
pairs of mutually equal factors occurring in the product of Eq. (171),
f(a) = f(@), f(ay) = f(gh), ..., fla,) = f(gy). 1f there are no pairs of
equal factors, then the operator & is defined to be unity (see Appendix
B). The solutions (167), (168), and (171) represent the chief result of our
paper. In Section V.B in the Raman effect model under the parametric
approximation we have analyzed, in particular, the single-mode solutions
for either the Stokes mode or for the anti-Stokes mode. For completeness,
we give in Appendix C the solution for anti-Stokes scattering without the
parametric approximation. The degree of off-diagonality u is assumed to
be nonnegative (contrary to »); nonetheless, the time dependence of the
complete density matrix p,, (vur) is determined by the simple relation for
the inverse matrix elements:

PEn(VIT) = Ppiy e~V —H5T) (173)

Thus, solutions (167), (168), and /or (171) provide an entire specification
for all measurable properties of the light field under consideration.
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The two-mode (joint) density matrix with elements p,, (vu7), (167) and
(168), enables the calculation of the single-mode (separate) density matrix
with elements p3(u7r) and pZ(ur). The Stokes mode matrix elements

pauT) can be calculated from

5wty = X Y pun(vur) (174)

n=0v=—n

and the laser mode matrix elements pZ(u7) can be found analogously,
with the exception that for terms p,,, (vur) with u < 0 the property (173)
must be used. The already mentioned solution of McNeil and Walls™
corresponds to the separate diagonal density matrix (174).

There is yet another manner of expressing the two-mode solutions of
the master equation (125), p,,,(007), for any initial distributions, via the
density matrix elements for the initial number states in the Stokes and
laser fields:

Pam(007) = Z Z g "0(007) pr(076) 05, (075)  (175)

ng=0my=0

where p{'>"?(007) is the solution (167) and (168) for p,,(007), under the
initial conditions that the laser field is in the number state |n,) and the
Stokes mode is in the number state |m,). The weighting functions in (175)
are arbitrary initial distributions of the laser, pZ(07,), and the Stokes field,
p3(07,). Here, for brevity, we restrict our considerations to diagonal terms
(with v = n = 0). Otherwise, instead of p{"o"™(007) we would have to
use the solution p{l9™o¥o#)(yu7) and perform two extra summations in
Eq. (175) over v, u. McNeil and Walls” have presented their solution of
Eq. (125) in this manner. Analogously, we can express the single-mode
distributions p(07) (p3(07)) for arbitrary initial states using the solutions
p"(7) (p(r)) for the initial photon-number states |m,)(|n,)). For
instance,for the Stokes mode solution we apply the formula

p(07) = X o) p(0ry) (176)

my=0

We shall make use of this procedure for the diagonal approximate solu-
tions (194).

Having the solutions (167), (168), or (171) available we can, at least
numerically, analyze, e.g., the single- and two-mode photocount statistics
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and quadrature squeezing. The expectation values in the relations describ-
ing squeezing and photocount statistics (see Section IV) are readily ex-
pressed in terms of the density matrix elements p,,, (vur) by way of

<]

(B = T (0.0 (am)

(it (0) = L mp, (0,00 (17%)
n+ k)]’

arrwh = £ [CTE 0 am)
m 1/2

() - £ |2 0k s

(4 ()ag (1) = L [(n+ (m + D], n(1,1,1)  (181)

(af ()as(t) = L [(n+ 1)m]p, n(1,=1,0) (182)

n,m

In Section III we defined the s-parametrized quasiprobability distribu-
tion #®({a,}) and the s-parametrized characteristic function £({8,})
and adduced relations between them for any parameter s. Here, we deal
with matrix elements in Fock basis of the density operator, p,,(vu). To
achieve consistency between our analysis of the Raman effect presented in
this section with the analysis of section V, we shall present some relations
between the functions 7 “({a,}) or #“({B,}) and the density operator
p({a,}). We restrict the general formulas for the M-mode fields to our
two-mode situations, so that ({a,}) = (a,, a5 ,). These formulas are in
complete analogy with the results of Cahill and Glauber !’ for the single-
mode case. By virtue of the operator T(a,, ag 4), which is the Fourier
transform of the s-parametrized displacement operator D“)(B 1o Bs. 4) (see
Eq. (19)),

A 1 N
T(S)(aL7aS,A) =3 D(S)(BLMBS,A)
™ (183)

xexp(a, BT + as,AB;A - C'C')dZBL dzBs,A

the density matrix (4, dg 4) can be obtained from the s-parametrized
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quasidistribution %" “Xa, ag ), (21),

1
ﬁ(dL’dS,A) = p[W(x)(auas,A) (184)

XTNa,, aS’A)dzaL dzaS,A

The inverse relation,

VN ay, a5 4) = Tt[p(a,, ds )T (ay, as )] (185)

resembles expression (20) for the characteristic function ?f;f(s)(ﬁ 1> Bs, 4)»
which is the average value of the displacement operator D(”(aL,as, -
We are interested in the relations for the matrix elements of §(d,,dg ,).
They immediately follow from (184) and (185):

1
o m(Voit) = — [ #7(a,,a
(1) = = [# ) ar, a5, 4) (156)

X<n,m|f'(_s)(aL,aS,A)|n +v,m+ ,u>d2aL d’ag ,

¥y, a5 4) = i i i )E P m(Vs 1)

n=0m=0v=—np=-m (187)

X<n,m|f’(‘)(a,‘,as’l4)|n +v,m+ p,>
The Fock matrix elements for the two-mode field,
<n,m’f(s)(aL,as,A)'n +v,m+ [.L> =<n|f:(‘)(aL)‘n + v> (188)
<m|T(’)(as,A)‘m + N>

are simply products of the two single-mode Fock matrix elements given by
Cahill and Glauber”:

A — 5 yrtl
O Vin V) =
<n|T ( L)l + > \/_(n—i——y)!(l“s)

(189)
2 2o dla 1”) L,
1—s lap |7 | LG 1= 42 (af)

s+l)"

s—1

Xexp(—

where L{)(x) is the generalized Laguerre polynomial. The above equa-
tions show equivalency of the two apparently different formalisms we have
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been dealing with: On the one side, the s-parametrized quasiprobability
distribution functions Z°® obtained within the Fokker-Planck equation
formalism presented in Section V, and, on the other side, the density
matrix operator formalism under discussion in this section.

Solutions (167), (168), or (171) reduce to rather simple expressions in
special cases, for instance, on the one side, for long periods of time when
the laser beam is totally depleted, and on the other, for an intense laser
beam almost unaffected (undepleted) during the process of scattering. We
now discuss these two cases.

3. Long-time Solutions

After a sufficiently long time, the system settles down to a steady state as a
result of the total depletion of the laser pump. The steady-state solutions
can be readily deduced from (167) and (168). Indeed, in the time limit
(7 — ), the nonzero matrix elements p,,,,(vu~) must satisfy the condition
for the function f(x) (169) that f(g) =0, which implies that g = 0.
Hence, we have

pom(vp, 7 =00) =0 forn,v # 0 (190)

for arbitrary m, m + u ranging from zero to infinity. All photon-number
and annihilation operator moments for the laser beam vanish in the time
limit

AP(x)) =0
(A7(=) o0
(@8(x)) =0 forp>0
which reflects the fact that the laser beam is totally depleted. The
normalization condition takes the form

T pon(00) = 1 (192)
m=0

In the model of hyper-Raman scattering, as was shown by Malakyan,''®
there intervene in the limit 7 — « the nonzero density matrix elements
PormOu®), p,0u®), pg,.(lux), and p,,(—1, ux). Hence, the photon-
number moments and annihilation operator moments of the laser mode do
not vanish, contrary to the model of Raman scattering under consideration
in view of (191). If we assume that initially there are no photons in the
Stokes mode, then pZ(0r,) = p3(0x) (Ref. 75), which implies that an
arbitrary photon-number moment {#7(x)) (with any p) for the Stokes
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mode in the time limit is identical with the corresponding moment for the
laser mode, {(A”(7,)), at the time 7 = 7.

B. Raman Scattering Without Pump Depletion

 Compact approximate solutions can be obtained from Eqs. (167) under the
condition that the initial laser beam is much more intense than the Stokes
beam, i.e., {A) > {M). The depletion of the laser beam and amplification
of the Stokes beam restrict the validity of this approximation to short
evolution times 7 (7 < 1). This approximation implies that the density
matrix elements p,,(vut) for A > 0 given by Eq. (168) are negligible.
Moreover, we can simplify the remaining solution (167) by setting n = n
+ m. In the analysis of the phenomena described by the density p,,, (vi7)
with small degree of off-diagonality v (such as quadrature squeezing), we
can set n = n + v. Alternatively, in order to, for instance, investigate
phase properties'?> 3% 131 (which require summation over » ranging from
zero to infinity) one might assume that the fluctuations in the laser beam

are small in comparison to their mean value, ie., (A) > V{((AR)*).
Under these approximations the solution of (125) takes the form

Pum(vur) = [m(m + p)!]'”?

xli": pE(vr0) oS i) [(m = D)Y(m — 1+ uy1]~7?
=0

%y exp[—n(m —q + 1+ p/2) Ar] Il] (¢—p)""
£t
(193)
Applying the binomial theorem we rewrite (193) as
“ m+pu\]" !
unlonr) = Z (7)™ 1] e (199

Xexp[—n(m + 1+ pu/2) Ar]pi(vro)pn - (7o)

which, for u = 0 and v = 0, goes over into Simaan’s equation of Ref. 75.
The density matrix (193), applied to relations (177)-(182), enables the
calculation of the expectation values and variances for the Stokes mode
and the laser mode; however, in the latter case, as a result of the
approximations assumed, we find no time dependence of the laser field
photon-number moments for a Stokes beam initially in a number state
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containing

(flAa(n)] >
Zf(n)p,%(omexp[ n(mo + 1) Z " |1 =y
i F(n)pE(O70) = (Y (199

The result (195a) is valid for any initial number-state Stokes beam, so we
conclude that the pump beam is time-independent for arbitrary initial
Stokes beam. The photon-number moments for the Stokes mode calcu-
lated from (194) are of particularly simple form. For instance, we have

((r)) = () i@ exp(n Ar) pk(07,)

=]

+| Y exp(nA7)pk(07y) — 1
n=0

(m2(1)) = ((A%) + 3(m) + 2) i exp(2n A7) pL(07y)

(197)
= 3((my + 1) Z exp(n Ar)pk(07y) + 1
n=0

(m(m)A(7)) = ({m) + 1) i nexp(nAt)pk(07y) — (AY  (198)

n=0

Equations (196) and (197) were obtained by Simaan.” Equation (196) is in
agreement with the Shen relation in Ref. 26. Equations (196)—-(198) reduce
to Loudon’s results of Ref. 30 for the simpler special case in which no
scattered photons are excited initially. The sum of the mean photon
numbers for the laser and Stokes mode (196) is not a constant of motion,
contrary to our former considerations (132). Nonetheless, in view of the
intense laser field approximation, the conservation of the total number of
photons is at least approximately fulfilled. It is easy to find a physical
interpretation of Eq. (196). The first term of (196) describes the amplifica-
tion of the initial Stokes beam with {71 photons at the time =, and can be
identified as sensu stricto stimulated Raman scattering. The second term
of (196) corresponds to an amplification of the vacuum fluctuations and



QUANTUM-STATISTICAL THEORY OF RAMAN SCATTERING 605

can be interpreted as spontaneous Raman scattering, which occurs even in
the case when the Stokes field contains initially no photons ((#:) = 0).
Note that even in the model of scattering from phonons at zero tempera-
ture (“quiet” reservoir), spontaneous scattering does take place. The
coefficients y@(r) and g{(r), readily obtained from (35) and (38) by
insertion of (196)—(198), can be explicitly compared to the coefficients
calculated from other, corresponding relations. Assuming that initially
there are no photons in the Stokes beam, {#) = (#°) = 0, we obtain
from small-time expansions of the exponential functions in Egs. (196) and
(197) the following simple expressions for the normalized factorial mo-
ment y§(7):

yP(7) =292 + 1+ 2(KA%) — (A /)AY PAr (199)
as well as the normalized cross-correlation function g{2(7):
gR(r) = v@ + (B = (2’ /<Y )(AY 2 Ary2 (200)

Equations (199) and (200) can be equivalently obtained from the short-time
expansions (134) and (139), respectively, on omitting the expressions
1/{#A) and {(A?)/{A) in the terms proportional to A7, which are negligi-
ble in comparison with the terms (A%) /(A)* and (A%)*/{A)’. The Simaan
approximate relations for g2(r) (32) and y{’(7) (33) in Ref. 75, rewritten
in our notation (with extra —1 in view of (38) and (35)), do not reduce
exactly to our Eqgs. (199) and (200), respectively.

By substituting Eq. (194) with v = & = 0 into (174) one can obtain
solution (176), for any initial distribution of the laser mode, with the
following distribution p{o(7):

po)(7) = exp[—(m + 1)ny A7]

o () [ WD S e
=0

calculated for the laser field initially in a number state containing
photons. In this case the mean ({#(7))) and mean-square number of
Stokes photons ({#%(1))),
(m(7)) = ({m) + Dexp(ny At) — 1 (202)
(m2(7)) = ((M?) + 3(m) + 2)exp(2n, A7)

(203)
= 3({m) + Dexp(nyAr) + 1
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can be immediately obtained either from (196). and (197) or from (201).
Assuming that the Stokes beam is initially in a coherent state |a), we can
perform summation in (201) which leads to

pro(r) = exp[— lal® — n, AT](I - e‘"OAT)m
» (204)
XIFI[—m; 1; — lal®(e™A — 1) ]

where F; is a confluent hypergeometric function. The density matrix
elements p{"(r,) (204) describe a superposition of coherent and chaotic
fields.?* 222 This will be more transparent if we rewrite Eq. (204) in terms
of the average number of Stokes photons in the chaotic part,

<I‘hch(7’)> = exp(ny A1) — 1 (205)
and the mean number of photons in the coherent part alone,
(i (7)) = lal* exp(n, AT) (206)

Then, one obtains, using the Laguerre polynomial L,,, the standard form
of the distribution (204)%> 4% 75 221,

S00(r) = ()" expf - 7LD )
(1 + (rg(7))) 1+ (g(7)) )
[ () )
"\ (AT (1 + (A7)

Similarly, by expressing the relation (202) in terms of the mean values
(205) and (206) it is seen that

(i) =(rig(1)) +(ha(7)) (208)

The general moment of the pth order {(#?) can be found by repeated use
of the recursion relation?!:

(4 1(2) =) ) + 1)——(,,"’5,’:“(?;
< ) (209)
o)

Hm (D) (A ma(7) + l’a< o)
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with the help of (208) or using the following explicit expression®> 42

The factorial moments of pth order can readily be calculated from (209)
or (210). In particular, the second-order factorial moment reads as follows:

(m (7)) )
{m(r))

(mr (7)) = r!<m:h<f>>L,( (210)

yP(r) =1- ( (211)

which takes the minimal value, equal to zero, for the initial time 7, since
only then (A1) = 0.

For the Stokes beam initially in a vacuum state |0) the distributions
(204) and (207) reduce to the Bose-Einstein distribution

()"
(1 +{mag(r)) "

describing a chaotic field (cf. (14)). In this case, in the absence of
stimulated scattering ({#1) = 0), the chaotic field is generated in sponta-
neous Raman scattering as an amplification of the vacuum fluctuations.

To compare the results for the expectation values of the Stokes mode
obtained in Section V.B with the present results, we assume that the laser
and Stokes beams are initially in a coherent state |a; ) and |ag), respec-
tively. Performing summation in Egs. (196)—(198) with the coherent weight
function p/(07,) one readily arrives at

p(r) = (212)

(1)) = (lagl® + 1)exp[ler, )*(e? = 1)] - 1 (213)
(m2(r)) = (lagl* + 4lag)® + 2)exp|la, [*(e257 — 1)]
~3(legl® + 1)exp[la,*(e* = 1)] + 1 (214)
(m(r)a(r)y = lay*(lagl® + 1)exp[la, *(e* — 1) + Ar]| — la, |?
(215)

Within the Fokker-Planck equation approach under parametric approxi-
mation (Section V.B) we have obtained Eqs. (111) and (114), which can be
rewritten, using the notation of this section, i.e., kgt = |e leyst = |a L|27',
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and assuming that the mean number of phonons is zero, in the following
form:

(m(7)) = (leeg!® + 1)exp(la, A7) — 1 (216)
(1)) = (lasl* + 4lag)® + 2)exp(2la, |” A7) 1)
~ 3(lagl? + 1)exp(la, |I* A7) + 1
We also note that
(m(r)a(r)) = (m(m)<R) (218)

For short times of evolution, A7 < 1, and intense pump beams, |« L|2 > 1,
Egs. (213), (214), and (215) go over into Egs. (216), 217), and (218),
respectively. Indeed, the short-time expansions of (213) and (214) are

(7)) = lagl® + la I°(1 + las|®) A7

(A7)’ (219)
2

(m2(r)) = lagl*(1 + lagl?) + lay IP(1 + Slagl® + 2lasl*) Ar

(Ary? (220)
2

+ I(JzL|2(|afL|2 + 1)(1 + Iaslz)

+ lay P(lay* + 1)(5 + 13lagl® + 4lagl’)

whereas Egs. (216) and (217) obtained within the formalism of Section V.B
reduce to

(m(7)) = |ozsl2 + |aL|2(1 + Iaslz) AT

Ry (221)
+ IaL|4(1 + |aS|2)(A2)
(m2(r)) = lasl®(1 + lasl?) + la,*(1 + Slagl® + 2lagl*) A7
(AT)2 (222)

+ la, (5 + 13lagl® + 4lagl®)

2

respectively. It is seen that for high intensity of the pump field, (219) goes
over into (221), and (220) into (222) by setting laLIZ(IaLIZ + 1= IaL|4.
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Hence, the factorial moment y{(r),
2 -2 2 2
YP(r) = 2la, Plagl A1 = [la, 1*(3 + lasl?)

—lasl* = Slagl? - 2] la, |Plagl ~*(Ar)? (223)

calculated from (219) and (220) in the case of nonzero ag and an intense
pump beam, goes over into

yP(7) = 2lay Plagl A7 = (3 + lagl®)la, IYlasl ~*(Ar)? (224)

obtained from (221) and (222). If the initial field contains no Stokes
photons, we obtain the following factorial moments y{?(7):

YP(r) =1+ 2la |72+ 247 + (2 + $a, 1?)(A7)®  (225)
y§(r) =1 (226)

within the formalisms of this section and Section V.B, respectively. The
differences between the factorial moments y{’(r) are more pronounced in
the case ag = 0 since the expansion of {#(7)) and (/M?*(r)) correct to the
third order in r is required in the derivation of (225). The interbeam
degree of coherence g{(r) (38), as expected, vanishes for the model of
Section V.B. The short-time expansion of g@(r) obtained from
(213)-(215), for ag # 0, is

gﬁ% T) = (1 + |asl_2) At

—(1+ lagl?)(2la* — lagl)lagl

2
Otherwise, ag = 0, we get
! 2 o 1 1 2 (AT)Z
g3(r) = lay |72 + S Ae + o (laf +3) (228)

It is seen that the approaches of Sections V.B and VI.B give similar
predictions for the Stokes beam.

The evolution of the photon-number moments is demonstrated in Figs.
2 and 3: (7)) calculated with Eq. (221) is depicted by solid line C or
with (219) by solid line D in Fig. 2; {(#%(r)) obtained from Eq. (222) is
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given by solid line C or from (220) by solid line D in Fig. 3. No time
dependence of (A(r)) and {(A2%(r)) is observed for the results of this
section and Section V.B; i.e., we obtain straight lines C and D in Figs. 2
and 3. Similar notation is used in Figs. 4-6 for the normalized factorial
moments y{?(7) (Fig. 4), y@(r) (Fig. 5), and the degree of interbeam
coherence g%(r) (Fig. 6). We have chosen rather small initial numbers of
laser photons (la, |* = 2) for numerical reasons. In this case, the factorial
moments, calculated from (223), (225), (227), and (228), differ significantly
from the exact numerical results. So we omit them (curves D) in Figs. 4
and 6.

VII. CONCLUSIONS

Raman scattering from a great number of phonon modes is described from
a quantum-statistical point of view within the standing-wave model. The
master equation for the completely quantum case, including laser pump
depletion and stochastic coupling of Stokes and anti-Stokes modes, is
derived and converted to classical equations: either into a generalized
Fokker-Planck equation and an equation of motion for the characteristic
function or into the master equation in Fock representation. These two
approaches are developed both in linear and nonlinear régime. A detailed
analysis of scattering into Stokes and anti-Stokes modes in linear régime,
i.e., under parametric approximation, is presented. The existence of s-
parametrized quasiprobability distributions, in particular the Glauber-
Sudarshan P-function, is investigated. An analysis of Raman scattering
into separate Stokes and anti-Stokes modes in nonlinear régime, thus
including pump depletion, is given. The master equation in Fock represen-
tation is solved exactly for the complete density matrix using the Laplace
transform method. Short-time solutions, steady-state solutions and approx-
imate compact form solutions are obtained. Relations between the
quasidistribution approach based on the Fokker-Planck equation and the
density matrix approach based on the master equation in Fock representa-
tion are presented. The photocount distribution and its factorial moments
as well as variances and extremal variances of quadratures are calculated
in both approaches giving the basis for the analysis of the quantum
properties of radiation such as sub-Poissonian photon-counting statistics
and squeezing. A comparison of various statistical moments obtained from
numerical calculations utilizing our exact solution of the master equation
and from the approximate relations for short times, as well as obtained
under parametric approximation, is presented graphically.
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In Figs. 2-9 we compared various statistical moments obtained (1) from
numerical calculations utilizing the exact solutions without the parametric
approximation (Egs. (167), (168), and /or (171) derived in Appendix B), (2)
from the short-time solutions of Section VI.A.1, (3) from the solutions
obtained in Section V.B within the framework of the FPE approach under
the parametric approximation, and (4) from the approximate solutions
derived in Section VI.B within the density-matrix formalism.

In Figs. 2, 3, 7, and 8 we demonstrated that the initial and short-time
behavior of the approximate functions (curves B, C, and D) is consistent
with the exact evolution (curves A). We have shown analytically that our
expressions for the Stokes scattering formalisms presented in Sections
V.B, VL.A.1, VILA2, and VI.B are equivalent for short times and high
initial intensities of the pump field. Nevertheless, it is seen that the
equations derived in Section VI.A.1 give the best, whereas those derived
in Section VIL.B give the worst approximation to the exact solution of
Section VI.A.2 for small initial intensities of the laser field.

We showed in Fig. 4 (curve A) that the Stokes mode photon-number
fluctuations vary from initially chaotic to Poissonian in asymptotics (for
() = 0and {A) = |a,|*) or from Poissonian, through super-Poissonian,
to Poissonian for large times Gf (/1) = Iozsl2 # (0 and {A) = Iale). The
asymptotic behavior of y{’(r) is consistent with our predictions in Section
VLA.3. The short-time behavior of y{’(7) for hyper-Raman scattering''®
is similar to that presented in Fig. 4 for Raman scattering. However, for
long times the Stokes hyper-Raman photon-number fluctuations become
sub-Poissonian for reasons given in Section VI.A.3.

In Fig. 5 we demonstrated that the normalized factorial moment for the
laser mode, y{?(r), changes from initially Poissonian to super-Poissonian.
The differences in y{?(7) between Fig. 5a (spontaneous Stokes scattering)
and Fig. 5b (stimulated Stokes scattering) are only quantitative. We note
that for hyper-Raman scattering the photon-number fluctuations in the
initially coherent laser mode become sub-Poissonian.''® The time behavior
of the interbeam degree of coherence was presented in Figs. 6a and
b. Curve A in Fig. 6a coincides with the Simaan exact solution.”” Sub-
Poissonian statistics in the compound laser-Stokes mode is observed.

It is thought (see, for instance, Ref. 22, p. 192) that the Simaan
approach”™ is the most rigorous application of master equations to the
Raman problem. However, Simaan’s solution is restricted to the diagonal
matrix elements in number representation. Only these terms are needed to
obtain the mean photon numbers and their higher moments, whereby the
photon correlation effects can be investigated. To investigate squeezing
properties and phase correlations it is necessary to obtain the off-diagonal
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elements of the density matrix. We generalized .the solution of the master
equation obtained by McNeil and Walls”® and Simaan” to comprise all the
off-diagonal matrix elements as well. Our derivation of the complete
density matrix represents the main result of this paper.

Qur intention was to cite an extensive literature related to our Raman
scattering approaches. Nevertheless, we realize that the cited literature is
not complete. We include only those references that are most relevant for
the purposes of our article.
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APPENDIX A

Here, we give a simple formal solution of the generalized FPE (61) for the
quadidistribution 7 ~a,, ag, ay,t) (Q-functions) as well the corre-
sponding characteristic function (8, , B, B4, t)—the solution of the
simplified equation of motion (63). We choose antinormal order (s = —1)
to avoid the problems of existence of the quasiprobability distributions and
to reduce the FPE (61) containing the third-order derivatives (for s # +1)
to a second-order FPE. It is by no means easy to find an exact solution of
(61) or (63) even for particular orders, because the drift coefficients are
not linear and the diffusion coefficients are not constant. An often
employed method to solve problems of this kind is to assume that
the fluctuations of the radiation fields are small compared to their
mean values; i.e., the quasidistribution describing the fields is sharply
peaked.'% 23 188,223, 224 This will be the case for suitably chosen input state
and the initial output states. Under these restrictions we can rewrite our
FPE (61) related to antinormal order in the linearized form:

g
—# " a,, ag, a,,t)

at
1 d 0
= EYS{ —(Dys + ngS)Eg&;
R I¢] R d
+( i) Eal‘ - (<nL> - 1)?‘18-015 + c.c.

v2(ay— 2 g
Y9, dat
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L da,

1 Ja 4
+ EYA{[-(DLA + §L§A)£———

((nA>-1) aL+<n,> aAaA+cc

+2(h

(=1
da, 8aA

1
_{ —2i A0 AL *

5 Vsa® (CL + §L)

2

d 9 d
ag
c')as dag da, da 4
62
— (D5, + §§<§A) e

_2(551, - §L§§k)

= +ce v
daj 8aA

3 e = (Dps + §L§s) . das

L8 9 A b
+<ns>a_aiﬁ+<% P 17

*2
L

1 49 d J 1 @
5 aS+CC

+vs<ﬁv>{

s dag

1 4 a 4 1 9

D, ,+ _— +
28 ~(Dey gLfA) 8aA ZaaAaA CC)

oy V>{

i) 5o (i 7o
A 9a, 8 * e 4 da
A\ 20AQ A yx X gk 92 I 9
—{yak e (DSA+§S§A)aa*2 (CL+€)7——
L

dag da

dat dag dat da,

+(Dar — €.65) ’ i+(5 —¢ 5*)—8 2 )+cc}7/<*‘>
AL LSA a SL LSS hdd
(A.1)

where the coefficients D, l_)k,, Cp, & for k, I =1L, S, A are defined by
(66) at the initial moment ¢,. Equation (A.1) is the generalization of the
FPE given in Ref. 218 for the case of nonzero yg and y,s. It is seen that
the Raman effect under the approximations applied can be treated as an
Ornstein-Uhlenbeck process.'”’ The FPE (A.1) can be solved exactly
by various techniques; see, e.g., Ref. 188. For instance, using the in-
verse Fourier transform (22), one can transform the FPE (A.1) into the
corresponding equation of motion for the characteristic function
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#((B,, Bg, By t), which is a first-order differential equation. The
method of characteristics applied to the latter equation leads to the
solution

g(_l)(BL,BS:BA’t) = <CXD{_ ) [B/(f”(f)lﬁklz

k=L,S, A
+(3CE(1)BE + cc) + (Begf(t) — e
+[ Dy s()BB% + D,sB.BE (A2)
+Dy (1)BEBS + Dy aBLB

+Dg () BEBE + Dy, BsBE + c.c.]}>

The angle brackets mean averaging over the complex amplitudes &,
(k = L, S, A) with the initial distribution 7~ , as, a4, t,). They rep-
resent the influence of the initial photon statistics of the pump and
scattered fields on the evolution of the system. The solution of Eq. (A.1)
can be readily obtained by applying the Fourier transform (21) to solution
(A.2), and has the form of a shifted seven-dimensional (including time)
Gaussian distribution involving correlation between the radiation fields,

W(_l)(ala a,,as,t)

1 3
<L( 1 CXP{_ (L( 1)) Z [|aj - §j(t)12Ej(~1)

j=1

1
5 (@ - gy B + c.c.)}

2 3
+(L(‘1))A22 ) [(a;‘—ﬁ*(’))(ak EE())Ef T

j=1k=j+1

+(a; - §j(t))(ak £E(1)) 1(+11)+7] + c.c.}>
(A3)
where, for simplicity, we have identified the subscripts in a;, = «a;, a, = ag,

ay=ay, & =§, & =&, & = &4 The functions E{™Y,..., E{; ", and
LD which are time-dependent, are connected with the functions
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B{™Y,C,, Dy, D,, appearing in (A.2) in a manner similar to (74) and (75),
respectively. We do not adduce explicit formulas for the coefficients listed,
since solutions (A.2) and (A.3) serve only as an example of how one can
deal with Egs. (61) and (63). The validity of solutions (A.2) and (A.3) is
restricted by strong approximations, which are actually equivalent to the
parametric approximation and the short-time approximation.

APPENDIX B

Here, we solve the equation of motion (125). To eliminate the square root
appearing in Eq. (125) for off-diagonal terms, it is convenient to introduce
the transformation

172

n'(n + v)!
Silul )L (B.1)

where the degree of off-diagonality u is restricted to nonnegative integers,
whereas the degree v is > —n. On insertion of (B.1) into (125), the
equation of motion for the transformed matrix elements ¢, (vu7) takes
the form

Gom(vpr) = = 3[n(m + 1) + (n + v)(m + p + D]Y,,(vur)

(B.2)
+ l/}n+l,m~1(yl"l”r)

We apply the Laplace transform method to (B.2), which readily leads to
the solution

m )
(an(V/.LS) = l;0¢n+l,m—l(vy’70)p1;10[s +f(p)]_1 (B3)

for 4, (vu7), the Laplace transform of ,,(vur). The function f(p)
occurring in (B.3) is given by (169). If there are no equal terms among the
elements of the set f(0), f(1),..., f(I) the inverse transform, after retain-
ing the p,, (vu7) notation, yields (167). If there are repeated elements in
the denominator of (B.3), the inverse transforms will involve convolutions.
We apply two general procedures essentially equivalent to that of Simaan”
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and Malakyan.''® It is convenient to split (B.3)-into two terms, as follows:

A !
(an(V[J«S) = lg¢n+l,m—l(vru’70) [}:[O[s +f(p)]_l

+(1 = 8,,0) i Uit m—1(VRTy) (B.4)

I=A+1

1

><pl:[0[s+f(p)]_1p/l_l [s +f(p)]

A+l

with A defined by (166) (or equivalently by (170)). Let us note that a
parabola f(gq) = const takes its maximum value for g, = @m — 2n + p
— v + 2)/4. This value, g, or better A, the maximum integer < g,, can
serve as a criterion to split (B.3) in such a manner that a convolution
theorem can be easily applied. The first term in (B.4) has no mutually
equal factors in the denominator, so the inverse Laplace transform has the
form of (167) with the proper upper limit of summation. The denominator
of the second term of (B.4) contains repeated factors, which are separated,
so that we can readily apply the convolution theorem finally obtaining the
solution (168). Equations (167) and (168) have a rather complicated
structure. We can rewrite (167) and (168) in a more compact form. If we
assume that there is only one pair of equal factors among the elements of

the set £(0), f(1),..., f(D), i.e., if

V fla)=fa) A lf(th)*f(fI)

q,#4; g=0,..., ,
4, 41 €(0,..., 1} a#41,41

then we can express the solution (B.3) for ¢, (vu) as

1

Ban(18) = Lthysimoi(mro) s+ f(a)] ™ T Lo + 5]

(B.5)
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The inverse transform of (B.5) is

d/nm(V:u‘T) = Z lr[/n+l,m—l(V/J'TO)
=0

I
x{ Y exp[~f(q)Ar] rIO[f(p)—f(q)]“
g=0 . e

I
+{ar— Y [F(k) - f(a)] " exp[—f(ay) Ar]
k=0 (B.6)

k*qy,4q)

l
x IT [f(») —f(a)] ™

p*4,, 4}

which is a derivative of the solution (167) over f(q,) with extra minus,

l/]nm(VI‘LT) = Z (l’nJrl,m—l(V/*LT())
=0

]

9 ! 1
x(—a—f(—q)—) L el-f(a)ar] T1 11(p) - f(o)]”
! ‘;’;91 rha.d, (B.7)

In the case of d equal pairs, ie., f(q,)=f(q),..., f(q,) =f(q,), the
Laplace transform solution (B.3) can be rewritten as
_ m
l!fnm(yl“l‘s) = Z¢n+1,m—l(ylu'70)
1=0

d R ! 1 (B.8)
< IT[s +/(a)]" Il [s +£(P)]”
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finally leading to

l/’nm(V,U«T) = Z '»[’n+1,m—l(Vﬁ”0)
=0

(-1)° g P )

! I

x Y ep[-f(e)ar]l  T1  [f(p) -f(a)]™

(B.9)

or equivalently to the solution (171) with the dth order differential
operator & (172).

APPENDIX C

In Section VI we have given an analysis of Stokes scattering. For com-
pleteness, in this appendix, we present the solution describing the anti-
Stokes effect including laser depletion, but neglecting the Stokes genera-
tion and assuming that the reservoir is “quiet,” i.e.,

Ys=Yas=Vsa =0

Ci1
<ﬁv> =0 ( )

Under these conditions the master equation (18) in Fock representation is

ad

1
Epnm(vm) = - 5[('1 + D)m + (n+ v+ 1)(m + p)]pu(ver)

+[a(n +v)(m+ 1)(m +p + 1)]1/2Pn—1,m+1(”ﬂ7')

(C.2)

where, for brevity, we have set n;, = n, n; = n + v (as in Section VI) and
n,=m,n, =m+ p. If we define A as follows:

A=

Hn—m+1 v—pu (C3)

+
2 4
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then the solution of (C.2) for A < 0 becomes

12,

Y ok (vro) o (o)
I=0

nl(n +v)!
mli(m + pn)!

o |

(m+ D (m+1+p)]"?

(n— DY (n—1+v)! (C4)

! /
X ;0 exp[ —g(q) Ar] Eo[g(p) ~g(q)]™

p+q

whereas for A > 0 it becomes

nl(n +v)! 1% A
PumlVILT) = [ﬁg_m+—u))—' {Eopﬁ_z(Wo)p,ﬁu(wo)
(m+D(m+1+p)]7"?
|G =) — 1+ )1
! ! - 1
x Y exp[—g(q) A7] I'[O[g(p) —g(a)]
=0 ba
+(1 - 5n0)17£: pL_[(vro)pisi(mTo)
(m+D)(m+1+u)]"”
(n—-Dl(n—-1+v)! }
A ! A )
XL L Il —s@]™" TI [s(x) —s(a)]”

X | 8 pcrear AT exp| —g(q) A7]

+(8earecar — 1)

exp[ —g(q) Ar] — exp| —g(q') A7]
g(q) —2(a) )} (€3)
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with
g(x)=3[(m+x)(n—x+ D)+ (m+x+u)(n—-x+v+1 (C6)

Alternatively, we can express solution (C.4) and (C.5) as

1 ' 11/2 n
Prm(VUT) = [—’Z—,((—r%} E)p,’;_z(vm)p,ﬁﬂ(mo)
1/2
y (m+Dlm+1+w]Y )
(n =D n—-1+v)!
) I
xg X exp[—g(q) A7] Il [g(p) — g(@)]™"
q%q’l,qq’=2,0...,q;i P*q,qf’;g,-n,‘ﬂi

using the differentiation operator & given by (172).
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