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We analyze two different definitions of phase coherent states in a finite-dimensional
Hilbert space. Their explicit phase-state expansions and their Wigner representa-
tion are given.

1. Introduction

Recently, Buzek, Wilson-Gordon, Knight and Lai [1] proposed a definition of an-
nihilation and creation operators of the phase quanta in a finite (s+1)-dimensional
Hilbert space. These operators are in a close analogy to well-known number creation
and annihilation operators. Their idea proved fruitful and several recent articles deal
with the properties of various states generated by these operators, including phase co-
herent states [2,3,4] and displaced phase states [2]. Here, we study two kinds of phase
coherent states associated with the Pegg-Barnett Hermitian optical phase formalism
[56]. First states can be generated by the action of the generalized phase displacement
operator. This definition of phase coherent states (PCS) is close to Glauber’s idea and
was applied by Gangopadhyay [2]. Second definition of phase coherent states is based
on another formally designed phase “displacement” operator as proposed by Kuang and
Chen [3,4]. We shall refer to these states as truncated phase coherent states (TPCS).
We construct PCS and TPCS explicitly and derive their Wigner representation in a
finite-dimensional Hilbert space. In particular, the states are compared by calculating
their scalar product. Here, we present only a glimpse of our analysis. More details,
illustrated with figures, shall be given elsewhere [6].

2. Phase creation and annihilation operators

Phase creation, d;o, and annihilation, &I, operators were introduced by BuZek et al.
[1] with the help of the relation &5 = qAﬁl qgo for the Pegg-Barnett Hermitian optical phase
operator ®g [5]. They are defined in a finite-dimensional Hilbert space #() | which is
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spanned by a complete orthonormal set of number states |0), |1),..., |s) or, equivalently,
by a set of phase states

0m) = (s+1)‘1/2Zexp(in0m)|n), m=0,1,..,s, (1)
n=0

where 6,, = 6y + m. The operators qﬂi' are expressed in the polar form via the

s+1
photon-number operator N and phase &y, analogously to polar form of the operators
a* but with interchanged N and ®,. The phase annihilation operator &, , in the phase-

state basis, has the following form
Z V 19mlem—1><0m| (2)
m=1 .

and the phase creation operator (ﬂ is simply a Hermitian conjugate of (2). Clearly,
only for 8y = 0, the phase annihilation operator &e (2) in the phase-state basis has the
same form as the (photon-number) annihilation operator & in the number-state basis.
Besides, the operators qSi' act on the phase states in a similar way (particularly for
fo = 0) as the ordinary operators @* act on Fock states [1].

3. Phase coherent states

Phase coherent states have been studied both in the Glauber (2] and Kuang-Chen
[3,4] sense. The main idea is to choose a preferred phase state |fp) and to refer to
it as phase vacuum; and then to construct phase creation (2)2[ and phase annihilation
(Z)o operators in analogy to the usual creation and annihilation operators. The phase
coherent state is then constructed by replacing vacuum |0) by |6y} and the operators
a, a' by ¢9, ¢T in the definition of coherent states. So, in the Glauber sense, the
phase coherent states |3,00)(;) for 8 = |B]exp(ip) can be defined as |8, 00)(3 =
D(=) (8,60) |60}, i.e., by the action of the finite-dimensional phase displacement operator
D) (B,00) = exp(ﬁdff - ﬂ*¢> ), which is given in terms of the phase creation and
annihilation operators. This definition was proposed by Gangopadhyay [2]. Applying
the method developed in [7], we have found the following phase-state representation of
the phase coherent states, for various values of g

3

18,60)sy = Zei(ﬂ—mo)‘f’b%)wm) (3)

m=0
with the decomposition coefficient

Y = ) = (1) (udmol) e ()

X exp (izx7s|B]) Heu(mk)Hemo(“fk)Hes_z(xk)' (4)
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Here, z; = x,(’+1) are the roots of the modified Hermite polynomial of order (s + 1),

He,41(2) = 0, and He,(z) = 27"/?H, (2/v/2). For brevity, we have denoted p =

m+my mod(s+ 1) and v, = (%) . The values 6, are mod(2x). We also assume

that the permitted values of fy are not completely arbitrary and are equal to 27/(s +
1)mg mod(2mw) (where m=0,1,...). This is the main result of our paper. In a special
case, for §y = 0 and s = 1, the PCS (3) reduces to the state |3, 600 = 0)(;) studied by
Gangopadhyay [2]. Here, for simplicity, we consider only the case of 6y = 0.

4. Truncated phase coherent states

Kuang and Chen [3,4] defined the phase coherent states |3, 60)(s) in HG) by the
action of the finite-dimensional operator exp(ﬁq@l) on the phase state |fp). The reference
phase 6 is chosen as zero {3,4]. Therefore, on comparing the explicit expressions for
a and 43,, (2), it is clear that the states 13, fo)(s) are in close analogy to the truncated
coherent states [10]. For this reason we shall refer to the states |3,600)(,) as truncated
phase coherent states in H (). For completeness, we present their phase-space expansion
explicitly for 8 = |B] exp(ip):

B.6o)sy = N exp(Bel)lbo) = 3 €™ b5)[0m), (5)
m=0
2n 1/2
b, :,N(’)('Yalﬁl)m(m!)_l/z; (Z ')’slﬁl) ) ’ (6)

where /) is the normalization. In particular, squeezing properties of the states (5)
were analyzed by Kuang and Chen [3,4]. They have paid special attention to the two-
dimensional case.

5. Discussion

Although many properties of the phase coherent states are known by now, for their
better understanding it is very useful to analyze graphs of their quasidistributions.
Here, we shall restrict our attention to some analytical expressions. A full analysis will
be presented elsewhere. The discrete Wigner function, as defined by Wootters [8] (see
also [9]), takes the following form for s > 1

)

- (2
Winbm) = 5272 bty by exp [—mp (s -
p=0

for the PCS with b,, given by (4) and for the TPCS with superposition coefficients (6).
In eq. (7), the subscripts m =+ p are mod(s + 1). We have obtained the particularly
simple Wigner function for s = 1 [8].
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Phasé coherent states |3,60)(s) and truncated phase coherent states 18, bo)(s) are
associated with the Pegg-Barnett formalism of the Hermitian phase operator dy. Since
the operators &y and qgj: do not exist in the usual (i.e., infinite-dimensional) Hilbert
space (), the PCS and TPCS are properly defined only in #(*) of finite dimension.
The phase coherent states |3,8¢)(;) and truncated phase coherent states 18, 0o)(s), sim-
ilarly to the Glauber coherent states |a)(,) and truncated coherent states [@)(,) [10],
approach each other for 3|2 = |B|2 <« s/n. It can be explicitly shown by calculating
the scalar product between PCS and TPCS. We find (3 = 8):

_ 2s+2)
(B, 00|B,600)s) = 1"(\‘L{_sﬂ!l(zl—)+2)2+0(|ﬁ|2(’+3))- (8)

For values |3|2 = |8]2 ~ s/r or greater than s/, the differences between |3, 6p)(s) and
|3,60)(s) become significant. Besides, we have shown in [6] (see also [10]) that PCS are
periodic or quasi-periodic in 3, whereas TPCS are aperiodic in 3 for any dimension.

The finite-dimensional phase coherent states, discussed here, are not only mathe-
matical structures. A framework for their physical interpretation is provided by cavity
quantum electrodynamics and atomic physics. Besides, they can be generated, e.g., in
a single-mode resonator. Several methods have been proposed for preparation of an
arbitrary field state (e.g., [11] and references therein), which can readily be applied for
generation of these finite-dimensional states. Also, a scheme, developed by Leoriski and
Tana$ [12], seems to be very promising.
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