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The spectral analysis of light Rayteigh scattered by monodis-
perse solutions of rigid, anisotropic macromolecules in the re-
orienting electric field of a laser beam is presented. Formulas
for the spectral lineshapes of the polarized and depolarized
intensities of scattered light are derived, taking into account
the rotational and translational diffusion of the macromole-
cules in the laser field. From our numerical computations, the
influence of the shape and size of the macromolecules and the
influence of the reorientation parameter of their polarizability
ellipsoid on the lineshapes of the respective scattered light
components at a low degree of reorientation in the laser field
are determined. @ 1995 Academic Press, Inc.

1. INTRGDUCTION

Optical macromolecular light scattering investigations
have been greatly developed due to the progress in laser
techniques (1-4), leading to the determination of the
dynamics of the scatterers (5-8).

Here, we report results for the polarized and depolar-
ized intensity components of spectral lines Rayleigh scat-
tered by monodisperse solutions of rigid, anisotropic
macromolecules in (he Rayleigh—-Debye-Gans (RDG)
approximation (see Ref. 9), reoriented by the strong
electric field of laser light polarized vertical to the plane
of observation,

Formulas for the scattered components are derived by
us for the generalized Smoluchowski-Debye model of
molecular diffusion in liquids (see Refs. 10, 11). We
analyze the case of bidiametric molecules, also consider-
ing other kinds of anisotropy. In particular, we consider
the influence of macromolecular rotational and transla-
tional diffusion in an external clectric recrienting field
on the lineshapes of the scattered light components. We
assume statistical independence of rotational and trapsla-
tional diffusion,

We shall restrict our considerations to the case of a
low degree of reorientation of macromolecules in the
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electric field of a laser beam. Qur formulas describe the
spectral line intensities for the scattered light compo-
nents. Next, on the basis of numerical computations, we
discuss the shape of the lines as a function of the size
of the macromolecules, compared with the incident probe
light wavelength A, the shape of the macromolecules
(rodlike or disclike), and the value of the reorientation
parameter of their optical polarizability ellipsoid.

2. THEORY

We consider monodisperse, dilute solutions of rigid
anisotropic macromolecules, not absorbing energy, and
having the shape of a rod or disc with rotational ellipsoid
symmetry, We assume the symmetry axis of their optical
properties to coincide with their geometrical axis. More-
over, the solutions fulfill the conditions of the RDG ap-
proximation (9), i.e.,

2LV |n— 1)< 1,

where k = 27/M (A is the wavelength of the incident probe
beam, and LY is the length of the rodlike macromolecule or
the diameter of the disclike macromolecule}.

We assume that the weak probe beam is incident along
the laboratory Y-axis and that observation takes place in the
direction of the X-axis. Figure 1 visualizes the various possi-
ble polarization directions of the incident and scattered
waves. We assume the systemn to be acted on simultaneously
by the electric field of a strong laser beam of intensity I}
polarized vertically.

We express the heterodyne autecorrelation function of the
clectric field amplitudes of the scattered light in the form of
the second-rank Cartesian tensor Ij;(g’, 1) (12, 13) of the
light intensity scattered by the macromolecular solution in
the presence of the external electric field of a vertically
polarized strong laser beam ( superscript v).

Applying the method of irreducible spherical tensors (13-
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FIG. 1. Geometry of observation of light scattering. The probe light

beam at frequency w is incident along the Y-axis of the laboratory coordi-
nates. The indices v and } denote, respectively, the vertical and horizontal
polarizations of the incident probe light. The observation is performed along
the X-axis, with ¥V and H denoting the vertical and horizontal components
of the scattered Light. The angle ¥ lies between Z and the symmetry axis s
of the macromolecule, and  is the azimuth of s. The electric ficld E,, of
the strong laser beam (with intensity /7 and frequency w, ), which reorients
the macromolecules, is polarized vertically along the Z-axis and propagates
in the X Y-plane.

16), we express the tensor Fj;(qg’, t) in laboratory coordi-
nates X, ¥, and Z for a moment of time ¢ as (8}

(g )= A'exp(—q"*Drt) 2, 2, 3, X, X (- DM(=)"
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where D; is the translational diffusion constant of the macro-
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molecule; U/, Ua¥, -+ are the transformation coefficients
between the spherical and Cartesian tensor components ( Ta-
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ble 1); , .+ represent the
0O 0 0 -M M O

Clebsch—Gordan coefficients; ¥ 7 4(Q,), Y. -m(82),

- - are spherical harmonics dependent on the set of angles
€1, determining the position of the scattering vector q” (q’
= k4 — k, where k is the wave vector of the incident probe
light and k that of the scattered wave). The shape functions
d;(x), b,{x),- - - for (i) rodlike macromolecules (prolate
cylinders of height / much greater than their diameter 2a,,
i.e., I & 2ap) are (17)

dj(x)

I
—f Jr(x)dx’,
X Vo

b;‘f'o(x) = dﬁ’(—’f),

i

b (x) [1a]

where x = 1g'l, whereas for (ii) disclike macromolecules
(oblate cylinders with ! <€ 2a,) we have

TABLE 1
Values of the Transformation Coefficients Uty

LN,
ik 00 20 22 2-2 21 2 -1
1 1 1 1
xx = - = = 0 0
A V6 2 2
1 1 1 1
- - - - - - 0 0
¥y vg Jg 5 5
1 2
z2 - - 0 0 0 0
V3 3
{ i
0 0 - Z 0 0
xy 2 2
¥z 0 0 0 0 L u
2 2
2x 0 0 0 0 -1 1
2 2
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J—-nt 2 ¥
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: 0
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bf’n(x) =—-= d,?v(x),

bl
(x) >

(1b]

where x = ¢'up, and j,(x') is a spherical Bessel function
of order J (Egs. [la] and [1b] hold for even J, n’ only).
The function A’ in Eq. [1] is given by (8)

4
Al = 967r3a3p'(§) . [1c]

where p’ is the density of the macromolecules in the solu-
tion, w is the frequency of the incident probe light wave; ¢
is the velocity of light; and the quantity

a, = 3(a¥ + 2ay) [1d]
is the mean optical polarizability of the macromolecule
(a4 and af are optical polarizabilities of the macromolecule
along its axis of symmetry s and along the symmetry axis

perpendicular thereto). Other quantities occurring in Eq. [1]
are defined as

ay — ay
Kw = ] 'l
2ai{ + a3y

[le]

the optical anisotropy of the macromolecule, and

1(r) = Eq(1Eq(0), [1f]

the intensity tensor of the probe light incident on the scatter-
ing medium at 7. The coefficients C{;(¢, {7) occurring in
Eq. [1] are those of Debye rotational diffusion (6, I8). They
intervene in the expansion of f(2|, ¢, I}) in a series of
Wigner functions, determining the conditicnal probability
density distribution of reorientation €2, of the E, (directed
along the Z-axis as depicted in Fig. 1) of the strong laser
beam polarized vertically with intensity I at the moment ¢,
provided that its reorientation was given by {1, at the moment
t=0,ie.,

f(Qlﬂh t1 I}:)
= ¥ (2N + DCE(t, IDDG(S0) Diar(€2),.

J K MN

[2]

where Dy, + + + are Wigner functions ( 14). The coefficients
C,(I}) of the expansion of f($, I;) in Wigner functions
determine the stationary probability density distribution
function in the external field E, of the strong laser beam.
We have
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J(S, 11 = 2 CULDp(). (3]

The functions C,(f}) can be expressed as linear combina-
tions of Langevin—Kielich functions (see Refs. 8, 12, 19).
The Langevin-Kielich functions L,(*g;) arc defined as
(12)

Jo cos™8 exp(=qicos™9)sind dif

L.(*q;) = -

fo exp(+gycos’d)sing dv
where 9 is the angle between the symmetry axis s and the
direction of the field E; of the strong laser beam of intensity
17 and frequency w,, and

v _ a‘;L - a‘f"i. v
gr{we) T I [4a]
is the dimensionless reorientation parameter of the ellipsoid
of optical polarizabilities at the laser frequency w,. More-
over, k' is Boltzmann’s constant and 7 is the temperature
(in Kelvin).

The successive coefficients C;(I7) are of the form (12):

C[) = l,
C, =3L(%xq1),
C, = 3{3L,(*q1) — 11,

Gy =3I5L:(*=q1) — 3L(xgD)]. ... (51

The analytical form of the dynamic coefficients Cy(z,
11) is found by solving the Smoluchowski—Debye equa-
tion for spherical top molecules (10, 20) on the assump-
tion that in a first approximation the molecular transla-
tional and rotational motions are statistically indepen-
dent. If the field E; is directed along the Z-axis,
Ci¥(r, ID) involve only the rotational coefficient D, of
diffusion about the axis perpendicular to the symmetry
axis of the macromolecule, whereas the rotational coef-
ficient Dy about the parallel axis are insignificant. Alexie-
wicz et al. {18) have solved the resulting Smoluchow-
ski—Debye equation by the method of statistical pertur-
bation calculus. They expanded the coefficients C{y (¢,
I1) in a power series of 8 = 1/k’T, the reciprocal of the
thermal motion energy. Here, we rewrite the expansion
Céi(e, I7) in a slightly different manner than originally
written in (18),

(s, 1) = X B OCH(, 1)),

5=0

16]

where
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“CIm(r, I7)
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For free rotational diffusion s = 0 they found (18)
VCG) = 5 dexp(—117)), (8]

where the 7; are Debye rotational relaxation times, related
as follows with the rotational diffusion coefficient D, :

1

NTESI N 191

Ty

With regard to Eq. [1] and the data of Table 1, in conformity
with the experimental conditions adopted in Fig. 1, we finally
arrive at the following expressions for the individual compo-
nents of the time-autocorrelation function of light, scattered
by solutions of rodlike and disclike macromolecules reori-
ented by the external electric field of a strong laser beam of
intensity Iy :

Hi(g, 1) _Vilg'. 1)
1Z(n I (1)
= A'kiexp(—q* D) X X X X X X (=)
n on G I J M N
2N 4+ 1 ¥2n" + |
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n

<y (Q)JZH J 2 n
MMy 0 o f{M-1 1 M
72 e[ 2 6 G N I
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“ N ! b b 10
x 1=M M-—1 0] n(x) n'(-x)s [ ]

Hi(q',t)
15.(1)
=A'kZexp(—q"’D:1) 2 2 X X X X X iN(—)"
n n G I J M N

where, for example, H,
ponent of the scattered light intensity (capital letter H) at
vertical polarization of the incident probe light (subscript v)
and vertical polarization of the reorienting external laser field
(superscript v). The symbols Hj, V ;, and V | are interpreted
analogously. For details see Fig. 1.
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[12] denotes the horizontal com-

3. DISCUSSION

With the form of the time-autocorrelation function
Ii(q’, ©) (Eq. [1]) available, we are able to derive the ex-

pression for the spectral density [};(g’, Aw) of the scattered
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FIG. 2. The ratios —d,/d, (solid lines) and d./d;, (dashed lines) versus
the parameter x for (a) discs, x = q'ap, and (b) rods, x = q'ii2.

light intensity tensor by applying the Wigner—Khintchine
relation (21)

Ii(q', Aw) = F1j(q', 1), [13]
where % is the Fourier transform. We shall now discuss the
influence of the size and shape of the macromolecules as
well as the influence of the reorientation parameter g} =
qr(w; )} on the spectral lineshapes of the individual compo-
nents (Eqs. [10]-{12]) of light scattered by solutions of
rodlike and disclike macromolecules at a low degree of reori-
entation in the external electric field of a laser beam of
intensity {;. In the present case, the dynamic coefficients
Cim(t, I7) (Eq. [6]) can be expressed in the form of the
approximation

Conlt, 1Ty = OCTH(t, 1) + OCH (e, 1)), [14]
where the successive terms are calculated with Egs. [7]
and [8]. The expansion coefficients C,(/}) (Eq. [5]) are
nonzero for subscripts I = 0, 2 only. To determine the
respective relations for C;(J}), we must expand the
Langevin—Kielich functions (Eq. [4]) in series in g}
leading to (8, 12):

DEBSKA-KOTLOWSKA AND MIRANOWICZ

C(_) = l,
C] = 0,
C, =31 [15]

In accordance with the assumptions made, the angular coor-
dinates of g’ are (Fig. 1)

.8 .8
q' =2k smE[Q smi—jrcos g] [16]

hence

T 8 =
2, = (5,5—5) [17]

where g* = 2k sin(8/2) (6 = ©/2 is the angle at which we
chose to observe the experiment of light scattering). The
shape functions d,(x) and b,(x) (Egs. [la] and [1b]) are
taken for n = 0, 2 only. Terms for higher-order approxima-
tions (n = 4, 6, - -) take much smaller values (see Fig. 2)
compared to n = 0, 2, so we omit them. We obtain from
the definitions [1a] and [1b] the following expressions: (i)
for rodlike macromolecules

by = 21
X
—3sinx 3cosx  Si(x)
5(x) = + , 18
2(x) 2x? 2x? 2x 18]
and (ii) for disclike macromolecules
s 2
do(x) = = (1 — cos x),
X
» 1 3 .
2(x)=——2(cosx+2)+~§smx, [19]
x X

where, at @ = w/2, we have x = \Em'/)\ for rods and x =

2\/57:%/ A for discs; Si(x) is the integral sine function. In
the limit x — 0, the shape functions [18] and [19] tend to

lim do(x) = 1,
x—=0

lim d,(x) = 0. [20]
x—0

With regard to the preceding relations, one can express
as follows the Fourier transforms of the components
Hi(q', 1), Hi(q', 1), and V }(g’, r) for a low degree of
orientation of macromolecules in an external iaser field and
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on_a;;}')roximating d, = d,(x) and b, = b,(x) to the order 22 b3 . 4 bobs ~ 20x2 b2 N Kobods
nTe 35 44l 3087 63
Hy(Aw) 2 bi , bobe 25’75) Wi,brd, 53 9k b3
———=A"w A —_— 4 — + whotly A2 wt' 2
12 Ko (8 20 28 392 YT 252) + Guldw) 3773 ]} (23]
45b% . b2 37beb, 25b3 ) , )
+ Ly(Aw) 392 + g1f L.(Aw) 310 + 058 T 7203/ and the function A" is equal to A'/87*. The functions
L;(Aw) occurring in Eqs. [21]-[23] are Lorentzians de-
b 20552 termining the Lorentz shape of the scattered light spectrum,
+ Li(Aw)| =222+ —2 | + Gy(Aw) with
343 105,644
1 (1 + (7/77))
LAAW) = — ., [24a]
o (B | boba 25BEN o 27 (21] ABD) = T G + (Bwr))?
420 © 588 8232 ) 60,368 | |’ ) .
Li(Aw) = Ly(Aw) = — ——X—— [24b
2 r(Aw) = Ly(Aw) 21+ (Do) [24b]
Hi(Aw) " b beh, Sbl
———— = A"k}, A — = == ) )
1, K F2(Bw) 20 14 196 whereas the functions G,{Aw), given by
1563 bi  43bob, 7, (1 + (7d717))* — (Awr,)?
{(Bw) g ‘“[LZ( “’)(105 2058 ! 7 [(L+ (/)7 + (Awr,)?)?
14552 b, 1755h% are the non-Lorentzian contributions to the spectral line-
m) - L{(Aw) ( 33 52 822) + G (Aw) shape. The translational relaxation time 7 of the macromole-
’ ’ cule is given by
by bbb, 5b35 14153 [
X|——-——+ + Gi(A , [22 =
(210 147 7 2058 (A S sa | [ 1 TS D, 1261
VI Aw) , Kib2 k. bdy, di The function G,{Aw) (Eq. {25]) never occurs indepen-
70 = A"§ Lr(Aw) 12 t 6 + 12 dently. It intervenes only as an additional component of the
= superposition of Lorentzian factors (Eq. [24]). In the limit,
_—p 2 P when 7; = 77 (J > 0), the Lorentzian (Eq. [24]} and
+ Lz(!_\w)(K;’:U + 2x;1130b2 + 201'(4‘;1)2 + '.‘“’I;Odz non-Lorentzian (Eq. [25]) functions simplify considerably,

describing only the rotational diffusion of the macromole-
, - cules. The results are presented elsewhere (8). Here, we

S bad, | 5d 27kLb i i -
_ Kby | 2) + L(Aw) Kub3 | qi[ Li{(Aw) analyze various macromolecular components with the rota

21 12 196 tional and translational relaxation times of the same order.

In case of predominant translational diffusion of the macro-

2kiboby  2k1bE 2k bods 2k bady K bada molecules, i.e., for 7, <€ 74, the functions [24] and [25]
( 5 e T T T e g tend to be independent of Aw with increasing 7.

In the special case when x < 1 (see Fig. 3), our formulas

2.2 2 22 [21]-[23] simplify considerably, leading to the expressions
+ d{)dz) n IQ(AQJ)(4KWb0 + ]28wa0b2 _ 370wa2
18 315 3087 21,609 H'(Aw)
—p = A KL (Aw) + 5g1(2L2(Aw)
2wa{)d2 965wa2d2 Sdg =
T T eia 126) * Li(Aw) + Go(Aw))]bi(x), [27]
Hi(Aw) " .
16k2boby | 3T6k1D3  Ibad) oo —"ng = LA L(Aw) — 21 (2L (Aw)
1715 26,411 343 :

+ Go(Aw))1bi(x), [28]
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FIG. 3. The maximum (for Aw = 0} of the spectral lineshapes of the
normalized scattered light components H,(0) = H,(Aw = 0) (a, b},
H3(0) (¢, d), and V (0) (e, f) versus the parameter x for discs {a, ¢, ¢)
at gy = —0.5, k = —0.4 and rods (b, d, f} at g7 = 0.5, x = 0.4. Solid
lines are depicted according to Eqs. [21]—-[23], whereas dashed lines are
given according to Eqgs. [27]—[29]. The normalization is chosen to fulfill
the conditions: H {(Aw = 0, ap/h = I/ =0) = H(0, ap/h =1/ =0)
=Vi0,a/h=rx=0=1

Vi(A
_50_‘*2 = 5A" (kL[ L(Aw) + $qi(2L:(Aw)

+ Go(Aw))1b3(x) + KugiLr(Aw)bo(x)do(x)

+ 3L (Aw)di(x)}, [29]

which go over into Lorentzians for g = 0.

From Fig. 2, the order n of the shape functions [la] and
[ib] considered by us, namely n = 0, 2, restricts the range
of x values for which the formulas [21] —[23] hold. It is seen
from this figure that higher-order shape functions should
be taken into account for x > 4, particularly for disclike
molecules.

Thus, the formulas obtained by us for the components
[21]-1[23] at low macromolecular reorientation in the exter-
nal laser field and their numerical analysis (Figs. 3—5) hold
for rodlike macromolecules with dimensions ! < A and for
disclike ones with g < 0.5\,

Figure 3 shows the x-dependence of the components
H{Aw=0), Hi(Aw = 0), and V }( Aw = 0), calculated
from Egs. [21] —[23] (solid lines) and approximate relations
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(2) ()

[27]-[29] (dashed lines). It is seen that the smallest contri-
bution of the shape functions 4,(x) is for the values of
H(0) and V ;(0) in case of disclike molecules. Hence, one
can use our approximate expressions [27] and [29] for these
compenents throughout the depicted range of x. The line
intensities of the components [21] - [23] decrease markedly
for large macromolecules compared with the intensities ob-
served for small macromolecules (I <€ A, ap <€ \) as pre-
sented in Fig. 4. The greater the values of I/ and ap/ A, the
weaker are the intensities, particularly for disclike macro-
molecules,

In Fig. 5 we have depicted the components [21] - [23]
for various values of the reorientation parameter g;. The
differences between the respective components for different
gi. become more pronounced with decreasing values of
{/N (ap/\) and increasing x. The components HJ(Aw)
(Figs. 5a and 5b) and V J( Aw) (Figs. 5e and 5f) at nonzero
g: are greater than those at g¢; = 0 for rods but smaller for
discs. In the case of the component H(Aw) (Figs. 5¢ and
5d) the line intensity at g; =+ 0 is lower than that at g} =
0 for rods and higher for discs. Thus, the line intensity mea-
sured at Aw = { allows the determination of the size and sign
of the anisotropy of the macromolecules. Similar conc¢lusions
have been reached by Alexiewicz et al. (18} in their studies
of small macromolecules. Also, results obtained in (30, 31)

(b}
2 1,0 1t 2 3
(d)
2 1,0 1 2 3
()
o8 0 10 05 00 05 10
40 05 00 05 Lo 10 05 00 O .

FIG.4. The spectral lineshapes of the normalized scattered light compo-
nents Hi(Aw) {a, b), H;(Aw) (¢, d), and V:(Aw) (e, ) for discs (a,
c,eyat g = —0.5, kx = ~0.4 and rods (b, d, ) at g7 = 0.5, x = 0.4 for
different values of the ratio a,/h = /A = 0 (dashed line), and 0.1, 0.2,
0.3 (solid lines) with the same normalization as for Fig. 3.
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@) ' (b)
10 25 0 =
%0-5 %o.s

0.0 0.0

°4 *i% o5 00 05 10
10 05 g0 05 1o - 5,00 . :
FIG.5. The spectral lineshapes of the normalized scattered light compo-

nents HY(Aw) (a, b), Hi(Aw) (¢, d), and VI(Aw) (e, I for discs (a,
¢, €) at g;. = 0 (dashed lines), —-0.25, —0.5, —0.75 {solid lines) and k =
—0.4 as well as rods (b, d, f) at g} = O (dashed lines), 0.25, 0.5, .75
(solid lines ), and x = 0.4 for the ratio ap/h = I/x = ().1. The normalization
is: Hi(Aw =0,4) =0) = Hi(Aw = 0, ¢} = 0) = V{Aw = 0, g% =
0)=1.

for integral components of light scattering are in agreement
with those presented here.

Here, we have not considered the effect of a laser field
on the translational motion of the macromolecules. However,
at high anisotropy of the translational diffusion coefficients
(D] — DI/ D7, the statistical distribution function contains
terms which interrelate the translational and reorientational
motions, so that the two processes of diffusion cannot be
dealt with as statistically independent {(22—26). As a conse-
quence, in Eq. [1] for the heterodyne autocorrelation func-
tion, one has to take into consideration the translational effect
due to the laser field (27-29). As an example of macromole-
cules for which the influence of the mutual interdependence
between the translational and reorientational motions on the
spectrum is very apparent, one should mention the case of
the tobacco mosaic virus TMV, for which (D] — DTy/DT
= 0.4 (23).
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