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Abstract. We consider two definitions of coherent states in a finite-dimen-
sional Hilbert space based on (i) truncation of the usual coherent state expansion
and (ii) generalization of the displacement operator acting on vacuum. The
number-phase Wigner function is computed for such states. Analytical results
and numerically computed graphs are presented. Special attention is paid to
two-level states and to their Stokes parameter representations.

1. Introduction

The most common states in quantum optics are Glauber coherent states (CS).
In the past three decades progress in the field of coherent states, including their
generalizations and applications, has been truly breathtaking [1]. Quite recently,
generalizations of coherent states comprising the finite-dimensional case have
attracted some interest due to popularity of the Pegg—Barnett Hermitian phase
operator [2] defined in a finite-dimensional Hilbert space (FDHS).

There are several reasons for studying states in such spaces. Firstly, it gives us
a deeper insight into the Pegg—Barnett formalism [2] of the Hermitian optical
phase operator constructed in a finite (s + 1)-dimensional Hilbert space. The key
idea of the Pegg—Barnett procedure is to calculate all the physical quantities such
as expectation values of variances in the finite-dimensional space and only then to
take the limit s — o0. BuZek et al. [3] have pointed out that all quantities (in
particular states) analysed within the Pegg—Barnett formalism, should be properly
defined in the same (s + 1)-dimensional state space before finally going over to the
infinite limit. So it is useful for a better understanding of the Pegg—Barnett
formalism to construct finite-dimensional states and to know what exactly is
happening before the limit is taken. Secondly, we can treat these states as states
of a real one-mode electromagnetic field which fulfil the condition of truncated

Fock expansion. These states can in principle be generated using methods
described by Vogel et al. [4], Garraway et al. [5] or Leonski and Tanas [6].
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Thirdly, the obtained results are also applicable to other systems described by the
FDHS model, like spin systems or systems of two-level atoms. In such cases we
should talk, for example, about the z-component of the spin and its azimuthal
orientation rather than about the photon number and phase. However, the states
studied here were first discussed in quantum optical papers and we shall also keep
the terminology of quantum optics.

It is possible to define FDHS coherent states in several ways, We can do this
using the concept of Lie group representations (see, e.g. [7]), or postulating the
validity of some properties of the infinite-dimensional Hilbert space (IDHS) CS for
the finite-dimensional CS. In this paper we shall be interested in two definitions
of the latter case. First, coherent states in an FDHS are usually treated as the
displaced vacuum, where the displacement operator is defined in an analogous way
to the IDHS (the Glauber treatment of CS [8]). This idea was applied in the work
of BuZek and co-workers [3] and further studied by Miranowicz et al. [9]. Here,
we shall refer to these states as fimte-dimensional Glauber coherent states or simply
coherent states in an FDHS. Another definition is based on the postulate that the
Fock expansion of the finite-dimensional CS shall be equal to the truncated
expansion of the usual infinite-dimensional CS. This approach was extensively
developed by Kuang et al. [10] and here we shall refer to states of this kind as
truncated coherent states in an FDHS. These two constructions were used in the
analysis of other finite-dimensional states [11].

Although many properties of such states are known by now, for their better
understanding it is very useful to analyse graphs of their quasi-distributions. The
main aim of this paper, apart from the explicit comparison of different coherent
states in an FDHS, is to discuss their finite-dimensional Wigner functions. Qur
treatment is based mostly on the work of Wootters [12] and Vaccaro and Pegg
[13]. After recalling the most important general properties of the Wigner functions
in section 2, we present some analytical results and graphs of the Wigner functions
for several types of finite-dimensional state in section 3.

The simplest non-trivial case of the FDHS is the Hilbert space of the two-level
system. This model provides a highly useful tool in many branches of physics, and
states of this system have often been studied. Here, in section 4, we present the
properties of these states from other points of view, using Stokes parameter
representations and calculating the respective Wigner function.

2. Wigner function

A very interesting way of treating quantum states of simple systems is to use
quasi-distributions. The most popular of the latter is the Wigner function
(W-function) [14], which has the classical-like property that some of its marginal
integrals are equal to actual distributions of physical quantities (it can, however,
take negative values in contrast to classical distributions).

Wigner’s definition of the function of continuous variables has been generalized
to the case of finite-state systems by Wootters [12]. The problem of introducing
the Wigner function with discrete spin variables was analysed even earlier [15].
Wootters’ definition borrows much from these studies; however, contrary to the
former approaches, it is applicable to arbitrary-dimensional state space and 1is
defined on an explicitly geometrical phase space. We use the Wootters definition
of the W-function [12] which was also applied by Vaccaro and Pegg {13].

Wootters’ idea is based on the assumption that the Hilbert space of the system
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is spanned by (s + 1) eigenvectors |v;> of a quantity ¢ and equivalently by (s + 1)
eigenvectors jw;) of a quantity w, where these quantities are mutually independent
(see also [16]). This means that the absolute value of the scalar product |[{v;|w,)|
is a constant, independent of the indices 7, 7. As can be checked, in the case of the
finite-dimensional harmonic oscillator the eigenvectors of the quadratures X =
(@ +d")/2 and Y = (& — d")/27 (commonly used as continuous arguments of the
infinite-dimensional harmonic oscillator W-functions) do not fulfil this condition.
Instead, a proper pair of mutually independent quantities is here provided by the
photon number n and the phase 8, whose operator is defined by [2]

D= Y 0,410,008, (1)

m=0

where the |0,,) are the phase states:

8,0 = s+ 1)7V2 Y exp (inf, )|, )
n=0

with 8,, = 65 + 2mm/(s + 1). Here, 0, is the initial reference phase and (s + 1) is the
dimension of the Hilbert space #*. Wigner functions for phase and number were
first studied by Vaccaro and Pegg [13] for the limit of very high 5. Let us mention
that new interesting definitions of W-functions in n and 8 have been proposed
recently by Luks and Perinova [17] and Vaccaro [18]. In this paper we analyse the
W-function in the arguments »n and 8,,, but do not restrict our considerations to
high-dimensional Hilbert spaces (we consider even the case of s = 1).

Let us recall some main features of Wootters’ definition of the W-function for
the finite-dimensional harmonic oscillator. The W-function value of the ‘phase
space point’ (n, 8,) is proportional to the mean value of the phase space point
operator A(n, m) which for prime (see remark [19]) numbers s + 1 = 3 is [13]:

5

A(n,m) = Y. exp [—4innp/(s + 10,50l (3)
p=0
and for s + 1 = 2 is given by [12]:
An, m) = /D= 1)"G, + (— )", + (1", + 1], (4)

where ¢, are the Pauli matrices. The Wigner function is then
W(n, 6,) = (s + 1) (A(n, m)). (5)

Vice versa, with the W-function available for a given state, one finds its density
operator by inversion of equation (5):

p=> Win,8,)An, m. (6)

m,n
The situation becomes more highly complicated for composite numbers (s + 1),
where the phase space point operator is constructed as the direct product of
prime-number-dimensional phase space point operators. Here, for simplicity, we

consider only the case of prime numbers (s + 1). For pure states, which can be
written in the Fock basis

) )

W) = Y Clnd> = 3 b exp (ig,|n), (7)

1=0 n=0
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the Wigner function can be expressed in terms of the complex decomposition
coefficients C,, [13]:

M
Win, &9,,,)=(s-+-1)_l Z CrCpr-rexp [1(2k — M)6,,]
k=0
6D Y CIChperer exp [i2k— M —5— 10,1, ()
k=M+1

where M =2nmod (s + 1).

In infinite-dimensional Hilbert space, where the W-function arguments are
continuous (quadratures X, Y), a marginal integral along any straight line a X +
bY + ¢ = 0 1s non-negative and can be considered to be the probability. A similar
situation arises in the finite-dimenstonal case: we can define lines as sets of discrete
points (n, 8,,) for which the relation (an + bm + ¢) mod N = 0 holds (a, b, ¢ are
integers here). Again, sums of the discrete W-function values on such sets are
non-negative. The mod (s + 1) relations are essential here and are connected to
some periodic properties of the discrete W-function—the maximum value of each
argument (m or n) is topologically followed by its minimum (zero in our case).
This means that the discrete W-function is defined on a torus (or more precisely
on a discrete set of potnts of a torus). The ‘lines’ are then points of closed toroidal
spirals or, in a special case, points of a circle. The periodic property is quite natural
for the phase index m, but may seem strange for the problem number n. In the
next section we shall draw attention to some consequences of the periodicity in n
for different coherent states.

One of the aims of this paper is to show graphs of the discrete W-functions for
finite-dimensional coherent states. Because of the discreteness of the arguments,
the W-function graph should be a histogram. Two-dimensional projections of such
three-dimensional histograms would be very confusing; therefore, for better
legibility of the graphs we decided to depict them topographically. The darker
aregion, the higher is the value of the W-function it represents. Moreover, negative
values of the W-function are marked by crosses. As mentioned above, the most
natural way of presenting finite-dimensional W-function graphs is to construct
them on tori. Two such graphs for vacuum and coherent state are shown in figure
1. Nevertheless, because the present paper 1s printed on two-dimensional sheets, 1t
1s better to use two-dimensional objects as a compromise. In what follows we shall
work with circular graphs. Here, the periodicity in phase is very apparent: however,
one should keep in mind that some consequences of the periodicity in n can appear,

(a) 1))

Figure 1. Wigner function on a torus in ¥ with s =18 for x = T = 88: (a) a Glauber
coherent state [2),,, (20) which is almost vacuum; (b) a truncated coherent state |1} ,,,
(20). The darker a region, the higher is the value of the W-function.
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e.g. some peak can be located partially at the outer boundary of the circle (n = s)
and can ‘continue’ near the centre (n & 0). In the next section W-functions of
different finite-dimensional coherent states will be presented. For a better under-
standing of their meaning, let us recall their close correspondence to the photon
number distribution and to the phase distribution. The sum of the W-function
values, with constant », over all arguments 8,, (i.e. ‘along a circle’) gives the
probability of n photons and similarly the sum, at constant 8,,, over all n values
(i.e. ‘along a radius’) gives the probability of the phase 0,,—at least in systems that
are fully described by finite-number state models. However, if we want to interpret
our results as describing states of a usual one-mode field under the condition that
all Fock |n) components with n > s are absent, then the real phase probability
distribution 1s obviously continuous. Let us here briefly discuss its connection to
the obtained discrete distribution. If s i1s greater than or equal to the largest Fock
state component of a given state, which by definition is our case, then the discrete
probabilities (from the discrete Wigner phase marginal) are proportional to the
values of the continuous phase probability distribution in the discrete set of points
8, = [2n(s + 1)]m + 8,. Nevertheless, we could easily obtain the other values also,
even though not directly. We could use a finite-dimensional version of the sampling
theorem—if the n-distribution is limited, then to describe a state in the phase
representation only a discrete set of phase amplitudes is necessary. Anyway, it is
clear that the (s + 1)? real values of the discrete W-function yield the same
information as the (s + 1) real non-zero parameters of the related density matrix.
The discrete phase distribution (i.e. the discrete Wigner phase marginal) for a
finite-dimensional coherent state and the continuous Pegg—Barnett phase probability
distribution for an ordinary coherent state were compared in detail by Miranowicz

et al. [9].

3. Finite-dimensional states and their Wigner functions

3.1. Truncated coherent states in FDHS

Kuang et al. [10] defined the normalized finite-dimensional CS truncating the
Fock base expansion of the Glauber infinite-dimensional CS, |a) ,, or equivalently
by the action of the operator exp (&4') (with proper normalization) on the vacuum
state. We shall pay some attention to the Kuang et al. approach because it is the
most similar to the Vaccaro—Pegg treatment [13] of the coherent states Wigner
function. The states |&),, where & = || exp (i9), can be defined as follows in the
Fock expansion [10]:

3

|20y = A exp (dd")|0) = 3 exp (in@)b}|n), (9)

n=0
where

b = A Oa"(nl) "2 (10)

Here, we rewrite the normalization constant in the form

s Ia-IZM -1/2
JV“} = ( Z ) — {(-—-1)SLS_S—1(|O?|2)}_ 1/2 (]1)

n=0 n'

in terms of generalized Laguerre polynomials L}(x). For future reference, we shall
use the concept of truncated coherent states for the states |d), defined by (9). Let
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5
lal lod

(a) (b)

Figure 2. The superposition coefficients b4, as a function of the parameter |a| = |4] for
Glauber coherent states |),,), (21), and truncated coherent states |[X),, (10), in finite-
dimensional Hilbert spaces: (a) #'! and (b)) #"®; by for |a),,—solid lines, b for
|a)y—dashed lines, b§ for |&@),—dot-dashed lines, 57 for |&),—dot-dot-dashed
lines.

us note that the normalization constant A", (11), can readily be expressed in a
compact form using generalized Laguerre polynomials (or, equivalently, incom-
plete gamma functions, etc.) without the necessity of introducing any extra
functions as, for example, the one in [10]. In figure 2, the superposition coefficients
b§),, (10), of the truncated coherent states {@), are presented as a function of the
parameter |@] = |« in the finite-dimensional Hilbert spaces #! and #%. We
stress that the coefficients b, (10), are aperiodic functions of |&|.

By definition, the truncated coherent states @) ,, (9), go over into the usual
(i.e. infinite-dimensional) Glauber coherent states |a), in the limit s —» c0.
Nevertheless, for better comparison with the finite-dimensional Glauber coherent
states |a)(,), we show this property explicitly by expanding the scalar products
between |}, and |0}, In a series of |a|. We have

el @y =1 —lal*/4 + |2|°/6 — O(«l®), (12)
(X0 Dy =1 —[l®/12 + |o*/16 — O(1=|'°), (13)
@& D@y =1 —[al®/48 + |a]'°/60 — 6(la|'?), (14)

where we assume that & = 4. We have found that with increasing dimension (s + 1),

3 4 5 6 10 12 14

- 8

(a) ledd ) laxl

Figure 3. The dependence on |x| =14 of the squared scalar products between the
finite-dimensional Glauber coherent states |a),, (20), and truncated coherent states
|y, (9), and the usual (i.e. infinite-dimensional) Glauber coherent states |2, for
(@ s=1 and (b) s=18: |, {x|3))|*—solid lines; boe){2) 2D y|*—dashed lines;
l(x)$2| &)yl —dash—dotted lines.
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the truncated CS |a), approach the usual CS |o) ., in a form

|a|2(5+ 1)

(m)<a|i>(s‘) =1- ' + @(|a|2(s+z))- (15)

2(s + 1)!

In figure 3, among other functions, we have depicted squared scalar products
|(Jo)<oz|of)(s)|2 between the usual Glauber coherent states |a).,, and truncated
coherent states |&),), (9), as a function of the parameter |«| for two cases of s = 1
and s = 18. The higher the s, the greater is the range of |«| where the scalar product
tends to unity. It is clearly seen that for |«|* « s, the states |¢), and |&@),, approach
each other. However, for values |¢|*> & s or greater than s, the differences between
the states become essential.
Substituting expression (7) into equation (8) we get

Wn, 0, < 2 5 18" [i2k — MY, )]
n,0,) = exp [#(2k — -
s+ 1S RM—RR T v
mz N |a—|M+s+1

* : 16
s+ 1a=hier (RIM — k + 5 + 1)1]'72 (16)

where M = 2nmod (s + 1) and, for simplicity, we drop the superscript in the
normalization constant. Equation (16) can be written in a form providing for a
simple comparison with the Vaccaro—Pegg result:

W(?'l, Bm) = (S + 1)—1/11("’ l&|)¢l(n’ an (P) + (S + 1)_ l/12(”!’ |i|)¢2(n’ Bm: (p)r (17)

where
Ay(n, @) = A 2a™/I,
M cos [(2k — M)(6,, — ¢)]
=
®,(n, 0, ) =1 kgo HOT — R (18)
and
Ay(n, |a) = A3@M 54 e,
O,(n. 0, ¢) = ¢! i cos [(2k— M — s — 1)(08,, — ©)] (19)

k=M+1 [RY(M — k + s+ 1]

Here, [/ = [M/2] is the largest integer not exceeding M/2, and similarly 1 =
[(M + 1 + 5)/2]. We note that the functions A; do not depend upon the phase ¢
of & and similarly the functions @, do not depend upon its amplitude |d|. In the
Vaccaro—Pegg treatment, |@|> was always much less than s, so that the second term
of equation (17) could be neglected. Then the Wigner function was factorizable
into the amplitude-dependent function A, and the phase-dependent function &,
the normalizing constant A4 being approximated by exp (—|a|?/2). It can be seen
that for general values of & of the truncated coherent states this factorization is no
longer feasible. Moreover, for too large |{d|, the second term of equation (17)
becomes predominant. We compare the different shapes of the W-functions for
various & in figure 4. The functions are computed for s = 18. We find that for
small || the shape is essentially the same as in [13]: for n < 5/2 there are two peaks
for opposite phases, whereas for n > s/2 we observe a peak and an anti-peak. The
peaks or anti-peaks are located at such positions that on summing the W-function
with constant n (or 8,) over 8,, (or n), we get the probability distribution of n (or
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(a)

{c) (d)

Figure 4. Wigner function of truncated coherent states |%),,,, (9), for s = 18, 1 = || exp (i¢),
¢ =0: (a) |2] = 1-47; (b) |Z] = 2:93; (c) |a| = 4-40; and (d) = 8:80. These values were
chosen the same as for the Glauber coherent states (figure 5 (a), (b), (¢), (f)) for

comparison. The darker a region the higher is the value of the W-function. Negative
values are marked by crosses.

g,,, respectively). If |d]* > s/2, the situation is the inverse: the seond term of
equation (17) is now predominant and we observe two peaks for #n > 5/2 and a
peak-anti-peak structure for n < 5/2. In the case when |d|? ~ s/2, the W-function
has a more general shape. With increasing |&| the two-peak structure shifts to larger
values of n, while the peak—-anti-peak structure vanishes at n = s and reappears at
n = 0. The shape 1s still comparatively simple because the function (17) is a sum
of only two factorizable terms.

3.2 Glauber coherent states in FDHS

The coherent states |2 ), in the (s + 1)-dimensional Hilbert space of a harmonic
oscillator can be defined in the Glauber sense by the action of the analogue of the
Glauber displacement operator D¥(a) = exp (xd' — «*4) on the vacuum state, as
was suggested by BuzZek et al. [8]. The coherent states |a),, are the close analogues
of usual (i.e. infinite-dimensional) Glauber coherent states |a),,. They were
introduced and discussed by BuZek et al. [8] and their general explicit form was
found by Miranowicz et al. [9]. In Fock base, the finite-dimensional Glauber
coherent state |o),,, with a = |a| exp (1¢), is [9]

lay,, = D)0 = exp (ad" — a*@)|0> = ¥ exp (in@)b¥|n), (20)

=0
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where
5! s

b = —— x) "V —=1)" Y exp (ixg|a)He,(x,)He, 2(xy) (21)
s+1 k=0

Here, x, = x¥*" are the roots of the so-called modified Hermite polynomial of

order (s + 1), He,, (xz) = 0, and He,(x) = 27"?He,(x/2'?). In figure 2 we have
presented the coefficients ! (21) of the (s + 1)-dimensional (s = 1, 18) Glauber
coherent states |a), in their dependence upon the parameter |a|. The coefficients
by (21) for |o), are periodic (for s = 1, 2) or quasi-periodic (for higher s5) functions
of |d]. We emphasize this essential difference between the finite-dimensional
Glauber coherent states (20) and the truncated coherent states (9). Nevertheless,
both o), and |}, go over into the usual (i.e. infinite-dimensional) Glauber
coherent states |, in the limit s — co0. In order to prove this property for o), let
us expand the scalar products between |a), and |}, in a series of a parameter
||, analogously to the expansions (12)—(15) of the truncated coherent states |&) .
We find the following power series for particular values of s {equal to 1, 2, 3):

(x)<a|a>(l) =1-—|u|/4+ |a|6/9 - @(|°‘|a8)s (22)
olladg =1 —1a°/12 + 3|a|®/64 — C(|a|*®), (23)
olaladay =1 —[a*/48 + |«|'°/75 — O(lal'?). (24)

Again we see that the finite-dimensional Glauber CS [a),, approach the usual CS
|ot) ) with increasing dimension in a form (15), i.e.

‘all(s+l)

ooy =1 — ——— + 0o 26+ 2, 25
RIS 261 D! (Jor] ) (25)

However, the states |a), approach |a) ., slower than |&@),, do, since the respective
terms C(|¢|?“*?) are smaller in equations (12)—(15) than in equations (22)—(25).

Finally, let us expand in a power series of |a| = |d] the scalar products between
> and |a>, for s =1, 2, 3. We find for o = & that
)@y =1 —|of®/18 + |af/15 — O(|a)'?), (26)
@<a| &gy =1 — |«®/64 + 9]a|'°/800 — C(la|'?), (27)
Bl @y =1 —|a|'%/300 + 13]a|'2/5040 — C(|o]'*). (28)
We conclude that
N Joe 267 205+ 3)
@l =1— Wi 1 2)° + C(|o| ). (29)
In figure 3, we have shown the dependence on |¢| = |a| of squared scalar products

Lot @ o|? (solid lines), | ., (x| cx)miz (dashed) and | ,{o| @) ,|* (dash—dotted), i.e.
between the usual Glauber coherent states |a) ,,, the truncated coherent states
[} (9) and the finite-dimensional Glauber coherent states |0}, (20). All these
states approximately equal for |x|? « s since the scalar products between them tend
to unity. However, the states are significantly different for values |a|? = s, becoming
orthogonal for |a{> > 5. By comparison with equations (25) and (29) and as clearly
shown in figure 3, we note that the finite-dimensional coherent states |}, and
|o>(;, approach each other faster than the usual coherent state |0, ,.
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On insertion of the coefficients from equation (21) into the general formula (8),
we get for the states |o), the expression:

_ M exp [1(2k — M)(®6,, — ¢ + 7/2)]
Win, 0,) = ,,go [KI(M — B2

. Z exp [i(2k — M — s — 1)(8,, — ¢ + 7/2)]

k=M+1 [RI(M — k + s + 1)1]'?

0k

G, (30

where

2 s 5
(s!) Z Z exp [i(xq _ xp)|0€|] Hek(xp)HeM*k+n(s+ 1)(xq)

G, =GY =
nk ﬂz(lal) (S + 1)3 p=04¢=0 [Hes(xP)Hes(xq)]z

(31)

with n =0, 1. Writing equation (30) in a form more similar to the Vaccaro—Pegg
expression, we arrive at

2n
o~ o \k-p COS [(2k — 2n)(06,, — ©)]
Wi, 67) = k;) (=1 [k!(2n — B)I]'72

,sin [(2k — 2n — s — 1)(6,, — )]

0k

+ i (_1)k—n—s/

G 32
k=2n+1 [k!(2n — k+s+1)!]l/2 1k (32)
for n < 5/2, and
W(n, 0,,) = 2"_‘2_1 (—qye-n-sz S0 [k — 20 + 5 + D0y — 9)]
» Y'm k=0 [k!(zn-—k——s-—l)!]”-’- 0k
- _ 2k — 2n)(6,, — )]
+ —1 k nCOS [( m G 33
k=22n'-s( ) [k'(2n—k)l]‘/2 1% ( )

for n > s/2. As readily seen, we cannot generally factorize this function into a
product of amplitude || dependent and phase ¢ dependent parts; the behaviour
of the W-functions of these states s much more complicated than in the case of
truncated coherent states.

From our numerical results we note (figure 5) that for |o* « s/2 the W-function
1s similar to that for truncated coherent states (figure 4). Studying the numerical
results for s = 18, we observed the following behaviour of the W-function. The
shape of the respective graph is approximately periodic (‘quasi-periodic’) in the
parameter || with quasi-period T = 8'8. At |a| increasing from zero, the shape of
the Glauber coherent states was initially very similar to that of the truncated
coherent states (see figure 4) up to the peak—anti-peak transition from n =75 to
n =0 around the value || & T/3 (figure 5(b)). Then interesting oscillations in
photon number appear, culminating for |a| = T/2 (figure 5{(c)), where only even
photon numbers are present. For this value of a the Glauber coherent state
approaches an even CS, i.e. the case of a Schrodinger cat state. Further increasing
of |«| returns the W-function to its previous shapes through the transition regime
(for | = 2T/3—figure 5 (d)) to the case of the inner two-peak and outer peak—anti-
peak structure, similar to the Vaccaro—Pegg results. For |a| = 5T/6 (figure 5 (e))
the W-function graph is very similar to the |o) = T/6 (figure 5(a)) graph but the
phase is opposite. Finally, for |} = T (figure 5 (f)) we arrive at an almost vacuum
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(a) ()

(c) (d)

() (f)

Figure 5. Wigner function of Glauber coherent states |2}, (20), for s = 18, 2 = |a| exp (1¢),
@ =0:(a) x=(1/6)T; (b) x = (2/6)T; (c) » = (3/6)T; (d) o = (4/6)T; (e) 2 = (5/6)T;
{(f) 2= (6/6)T and the quasi-period T = 88.

state. Increasing || further, these shapes of the W-function graph reappeared for
several quasi-periods 7". Similar behaviour was observed also for other values of s.

This situation can be explained as follows. By applying the fitting procedure,
based on the WKB method 1dea, we have found that the smallest positive root
x; = x§ 7V of the modified Hermite polynomial He,, ,(x) is approximately equal to

x§TD x 2n(ds + 6) 712 (34)

(for even s5). Besides, it is well known that the nearest-to-zero roots of the Hermite
polynomials are approximately equidistant. Thus, their difference Ax = x,,, — x,
is approximately given by (34) which is 071 for s = 18. The predominant terms
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of the sum in (21) depend upon || approximately as exp (igAx|«|), where g =0,
+1, +2.... These exponential functions are periodic with approximately mean
period (‘quasi-period’):

T~ (45 + 6)12 (35)

for even s. By equation (35), the quasi-period for s = 18 is approximately 88.
Because for 7 odd He,(—x,) = (—1)"He,(x,), the odd coefficients 7 in the sum
(24) contain sine functions, which are zero in the middle of their period. Therefore
for |a| = T/2 the odd n terms almost disappear and we approximately get an even
coherent state. We analyse in detail W-functions for even s only. Nonetheless, for
completeness of our discussion we find the explicit approximate expression for the
quasi-period

T = 2(4s + 6)'/? (36)

for odd s, which 1s twice as large as (35) for a given s.

4. Two-level coherent states and their properties

The simplest case of a finite-dimensional Hilbert space system is the two-level
system, i.e. with s = 1. States in such a system have been intensively studied by
authors dealing with the general problem (s finite) [8, 10, 117; here we would like
to discuss this problem from other points of view. Two-level systems are well
known from other branches of physics, and we can thus apply the results and
concepts to describe our situation. Examples of realizations of such a system can
be given by the spin projection of a spin-1 particle, or a two-level atom. Hence, the
coherent states in #!) (see equations (38) and (40)) can in fact be identified with
the coherent spin-{ state [20] or equivalently with the two-level atomic coherent
state [21]. In the case of s =1, the terms ‘photon number’, ‘phase’ and
‘finite-dimensional harmonic oscillator’ are a bit confusing and should be under-
stood, for example, as in [12]: ‘z component of spin divided by A’ ‘angle of
orientation about the 2z axis’ and ‘spin’, respectively, or equivalently as atomic
quantities [21, 8]. Also, we do not use the notions two-dimensional space or states.
This terminology could be misleading even though it is consistent with our
terminology applied in former sections. In this section we shall use a Poincaré
sphere representation for the description of the states discussed and their properties,
like various operator averages and squeezing degrees. Finally, we present the
W -function for two-level coherent states.

It 1s well known that states in a two-level system can be described by means
of the Stokes parameters and visualized by means of the Poincaré sphere. The
density matrix of any two-state system can be written in the form

_1(1+5f; 5’;+i5/;)

2\% i, 1-9,

(37)
where &, &, and ¥, are the Stokes parameters. Using these parameters as
coordinates of a point in three-dimensional space, any state corresponds to a point
on a unit radius sphere, the so-called Poincaré sphere. Pure states are represented
by points on the surface, while mixed-state points lie inside the sphere. Now, using
this tool, we can display both the two-level Glauber and truncated CS and compare
their expressions.
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Writing for the coherent states (20)
[a)(1y = cos [« [0> + exp (ip) sin |« |1), (38)
we find that the Stokes parameters are
&, = sin 2|a| cos ¢,

&, = ~—sin 2|« sin ¢, (39)

3!
&, = cos 2|a].

We now note that any pure state in #V is coherent. The interpretation of the
parameter o 1s very simple: its modulus is proportional to the polar coordinate,
while 1ts argument ¢ is the azimuthal coordinate of the representative Poincaré
sphere point.

Similarly, we find the Stokes parameters for the truncated coherent states |a),,
(9). The two-level state {@),,, with the parameter & = |d| exp (i@), is expressed by

_ 1 : ||
0y =——75I100 + — 1
| >(l) (l + |of|z)”2| > exp (1§0) (1 + Ia_|2)1/2| >
= cos (arctan |a])]0) + exp (i@) sin (arctan [@])|1). (40)

The Stokes parameters are now

—2 o,
1+ |a?

X

la] .
S =—2———sin @, (41)
? 1+ |a?
-’
1+ |&?
The function of the argument ¢ is the same as for the Glauber coherent state (38),
while the modulus |#| has a different meaning to || (we observe, for example, that
there 1s neither periodicity nor quasi-periodicity in |d]). To interpret |&|, we write
the last equation in {41) in the form |&|/(1 — 232 =1/(1 + &%,). Thus, for a
given &, we can construct the corresponding Poincareé sphere point in the following
way (see figure 6): first we locate the complex number ¢ in the &%, plane so that

Figure 6. Poincaré sphere representation of a two-level Glauber coherent state |x),, and
truncated coherent state |x};,. For simplicity, ¢ was chosen as zero.
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the &, (—%,) coordinate is the real (imaginary) part of &, respectively. We now
connect this point with the lower pole of the Poincaré sphere by a straight line;
the other intersection of the line and the sphere is then the point representing the
coherent state.

For the case of two-level coherent states, quantities have been computed like
the mean values and variances of the various operators, including N, &,, quadra-
tures, their commutators, etc. [8, 10]. Most of these quantities can be easily
displayed on the Poincaré sphere and expressed by means of the Stokes parameters.
We find that the following mean values and variances are given respectively by
(see figure 7 (a))

(NY=(1-%)/2,
(AN = (£2 + #)/4,

(By = (1 — LIn/2,
UAB)?) = (F2 + SHn?/4,

(42)

and the mean value of the N — (59 commutator is

([N, 8;]) = in%,/2. (43)
The degrees of squeezing Sy and Sy defined by
2{(AN)?> — [{[N, &5])|

SN=

N, &,
|<2[ a]>l X (44)
o _ X@AB)? — KIN, &1
q‘) - o~
KIN, $,0)|
can be written in terms of the Stokes parameters by (see figure 7 (4))
192+ 52
NT= - ——— — 1,
T |l
’ (45)
S+ 52
p=N——— — 1
£
S,
Sy

(b)

Figure 7. Poincaré sphere representation of the mean values, uncertainties of N and @,
and mean commutator (a) and squeezings (b). Here AN = ({(AN)?>)'?, and similarly
for A®. The lines of constant squeezing S, in (b) emerge from the poles ¥, = +1
and those of constant phase squeezing .S, emerge from the equatorial points
So= 11,
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We found that in the case s = 1, the averages of the quantum optical quantities
are simply related to the Stokes parameters. The correspondence can also be
expressed in terms of operators—N and @, are related to the Pauli matrices G, and
é,, the quadratures X, and Y, to the matrices ¢, and J,.

Finally, we also find the explicit expression for the Wigner function in n and
8 for these two-level states. Expressing the mean values for the phase space point
operators (4) in the Glauber coherent state |a),,, (20), we get the W-function

Wi(n, 8,,)=>Q/9[1 + (—1)" cos (2|af)
+ (=1)"2"2 sin 2lof) cos (@ — (—1)"n/4)]. (46)

If we simply substitute arctan |&| instead of || into (46), we obtain the W-function
for the truncated coherent states |a);,, (9).

5. Concluding remarks

The expression of different finite-dimensional coherent states by quasi-dis-
tributions enables a very intuitive understanding of some of their properties. Here,
we have tried to propose graphical representations of W-functions for finite-
dimensional coherent states, often discussed in recent works. We have compared
the (s + 1)-dimensional Glauber coherent states [a), (defined by the action of the
generalized finite-dimensional displacement operator on vacuum) with the truncated
coherent states |@), (defined by the normallized truncated Fock expansion of the
usual Glauber coherent states |x}.,,). We have shown both analytically and
graphically that these coherent states constructed in finite-dimensional Hilbert
spaces #¥ exhibit essentially different behaviour: the states |o), are periodic (for
s =1, 2) or quasi-periodic (for higher s < o) functions of the parameter |«f,
whereas the truncated states |¢), are aperiodic in || for any s (even for s = 1).
Both |}, and |&@),, go over into the usual coherent states |}, in the limit of
s — 00, nevertheless, the states |€), approach |a),, faster than the |a), do.
Besides, as a special case, we have compared in detail the two-level coherent states.
There are numerous other interesting finite-dimensional states (like Schrodinger
cats, displaced number states, phase coherent states, etc.) which deserve deeper
study of their properties represented by quasi-distributions. We shall study them
elsewhere [22].

The numerical computations were performed using MATHEMATICA (pro-
cessing analytical expressions, like equation (21), etc.) and MATLAB (for direct
use of the displacement operator as an exponential of matrices and for generating
the W-function graphs).
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