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ABSTRACT

Number and phase correlations of fields in a two-mode Raman scattering model
are analyzed. The exjstence of nonclassical two-mode effects including violations
of the Cauchy-Schwarz inequality and Muirhead inequality, negative values of
the normally ordered number-difference variance and intermode photon anticor-
relations are investigated applying four criteria. We distinguish 16 cases and
show explicitly that 6 of them are forbidden whereas the remaining 10 occur.
Some general relationships between various criteria for the intermode number
correlations are derived. Optical phase correlations are studied within the Pegg-
Barnett phase formalism. A general expression for the phase-difference variance
1s obtained. '

1. Model of Raman scattering

Models of Raman scattering of few radiation modes have attracted much
interest’~=*. In the Raman effect, photons of the pump field at frequency w;
are annihilated emitting photons of the Stokes mode at frequency w; and of
the anti-Stokes mode at frequency w;. The few-mode assumption implies that
the theory is the best suited for scattering in a tuned cavity. The model can
describe scattering from a gas of two-level atoms? or from a large number of
phonon modes, that is, a phonon bath®*, We are interested in the nonlinear
problem describing also depletion of the pump field. Thus we do not apply the
parametric approximation®, which would effectively linearize the problem. But
for simplicity, we neglect anti-Stokes generation, which is physically justified for
a scattering medium at low temperatures!. The master equation for the reduced
density operator p, describing the Raman effect under Markov approximation,
was given by McNeil and Walls in the form®

2 = 2 (@abpaten) + (), pala)) - 2 (1) afe] + ), ala),
(1)
where the subscript “1” denotes the pump operators, and “2” is for the Stokes
variables; @ » (E{ﬂ) are the annihilation (creation) operators; 7 is the rescaled
time ~t, where v is the gain constant for the Stokes mode. By considering
the process at low temperature, the second term in eq. (1) can be neglected
(B2 = 0), whereas the first term remains with 8 ~ 1.

The complete solution of the master equation (1) was given by Miranowicz
and Kielich®. Here, we rewrite their solution more compactly. We find the
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elements of p(7) in Fock basis in the form

iy = e () (47 (7) ()]

(n1 + ”Pl(o)Inl + 1) (na = U|p2(0)Iny — 1), (2)
where the function Fy;, for 0 < A < [, 1s

{

Fu=3" 3 TIU® - f@1 I @) - f@) (3)

g=0 ¢/=A+1 p=0 p=2+1
P¥q P'#d

X <T5f(q>f(q') exp[—f(g)7] + (65(g)1(s) = 1)

exp[—f(g)7] — exp[—~f (q’)T]>
flg) - f(g)

and for other values of A

i

Fu = Y expl-f@r []F(®) - f(@) (4)

=

where f(z) = [(n1 + z)(ne —z + 1) + (n} + z)(ny — = + 1)]. The coefficient
A = [(ng + nb)/4 — (n1 + ny)/4] is given in terms of the integer-value function
[z] (the maximum integer < z). We assume that the Stokes and pump beams
are initially independent. Eq. (2) holds for n/ greater than n,. Nonetheless,
the time-dependence of the complete density matrix p(7) is determined since
the elements (ning|p(7)|nin,) for ny < n, are given by the complex conjugate
of (2) with interchanged n; « n{ and n, — n)}. The solution of eq. (1)
for the diagonal matrix elements (niny|p(7)|n1n,), being a special case of the
solution (2) for n; = n} and n, = n), was obtained by McNeil and Walls! and,
for arbitrary initial fields, by Simaan®? . The solution (2) provides a complete
specification of all measurable properties of the light field. Here, we analyze
number and phase photon correlations only.

2. Photon-number correlations

Various criteria for the existence of nonclassical intermode phenomena in
the two-mode radiation fields have been proposed®~7. However, the complete
set of their interrelations has, as yet, not been established. We demonstrate
some general properties of the four criteria by way of their comparison in the
two-mode model of Raman scattering.

- To examine the intermode photon anticorrelation (a.ntlbunchmg) we calcu-
late the second-order cross-correlation function @2,

(ARAR,) (i)

o= T m) G (5)
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The function Qi, vanishes for uncorrelated states; it is positive for correlated
and negative for anticorrelated states. To check whether the intermode statistics
are nonclassical we study violations of the classical inequalities. Violation of the
Muirhead inequality can be measured by Lee’s Dy, parameter®

Dy = (:72:) + (72 1) — 2(Ri7y). (6)
Negative values of the normally ordered number-difference variance
Vie = ([AFR — @))% :) = ( AR + (: AR ) — 2(ARAR,) (7)

can be interpreted as number-difference sub-Poissonian behavior in the two-
mode radiation, whereas positive values of (7) will be referred to as number-
difference super-Poissonian statistics. We omit the analysis of the number-sum
variance® (: [A(R; + R3)]? @), since this quantity is time independent in the
Raman model. Violation of the Cauchy-Schwarz inequality can be determined
by Agarwal’s I;; parameter’

Iy = ViR O(GR:) (8)

Py

Negative values of either D, Vi3, or Ij; occur only for a not well-behaved
Glauber-Sudarshan P function of the field, and hence these three parameters
can be treated as criteria for the existence of nonclassical correlations®*~7. We

find that

D = 2 he = (/713 - 72 >) >0, ©)

D1z = Via = ((f) — (R2))* 2 0. (10)

‘We conclude from eq. (9) that violation of the Muirhead inequality, in the for-
m D;; < 0, implies the violation of the Cauchy-Schwarz inequality, [;2 < 0,
and by eq. (10) implies number-difference sub-Poissonian statistics of the field,
Vi, < 0. Moreover, we find that intermode photon anticorrelation (@12 < 0)
can occur for two-mode states both satisfying and violating the Cauchy-Schwarz
inequality and Muirhead inequality, and for both number-difference sub- and
super-Poissonian behavior. We briefly analyze photon-number correlations in
the two-mode model of Raman scattering. The correlation parameters (5)-(8)
for the pump (subscript “1”) and Stokes (“2”) modes can be positive or negative
for different initial conditions and evolution times 7. Analyzing the signs of any
4 parameters, one can distinguish 16 cases. However for the parameters (5)-(8),
6 cases cannot occur due to our constraints (9) and (10). All the remaining ten
cases are observed in Fig.1. Using the notation (sign(Qi2), sign(Dy2), sign(Vi2),
sign([12)), we observe the following cases: 1. all four parameters positive, i.e.
(+,+,+,4), for 0 < 7 < 0.71 in Fig.1b and for 0.14 < 7 < 0.47 in Fig.1f
for initially chaotic pump field of intensity initially dominant over the intensi-
ty of the Stokes mode. Four cases where only one parameter is negative: 2.
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Fig.1. Evolution of Q2 (thick solid lines), Dy, (dashed lines), Vi, (dot-dashed
lines) and I;; (dot-dot-dashed lines) for various initial fields with mean number
of photons in the pump, (7;), and Stokes, (R;), modes: (a) (f;) = 1 in coherent
state and n; = 0 in vacuum; (b) (R,) = 1 in chaotic state and ny; = 0 vacuum;
(c) (R1) = 1 in coherent and n; = 1 in Fock state; (d) (®1) = 1 in chaotic
and n; = 1 in Fock state; (e) n; = 1 in Fock and (R;) = 1 in coherent state;
(f) (R1) = 2 chaotic and ny = 1 in Fock state.
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(+,+,+,=) for 0 < 7 < 0.14 in Fig.1f; 8. (—,+,+,+) for 7 > 0 in Fig.la,
7 > 0.71 in Fig.1b, 7 > 0.65 in Fig.1d and 7 > 0.47 in Fig.1f; 4. (+,+,—, +) for
0.29 < 7 < 0.65 in Fig.1d. The last case of that kind, i.e. 5. (+,~,+,+), does
not occur since it is related to states which violate the Muirhead inequality and
simultaneously fulfil the Cauchy-Schwarz inequality. Such a case is excluded
by our constraint (9). Also in this case, violation of the Muirhead inequality
is accompanied by number-difference super-Poissonian statistics, which in turn
is forbidden by relation (10). One can distinguish six cases where exactly two
parameters are negative: 6. (—,+,—,+) for 0.57 < 7 in Fig.1¢; 7. (4, +,—, —)
for 0.22 < 7 < 0.29 in Fig.1d and 8. (—,+,+,—) for 0.11 < 7 < 1.12 in Fig.le.

However, the remaining three cases cannot occur, namely 9. (=, —,+,+) is
forbidden by both relations (9) and (10); 10. (+,—, —, +) is excluded by condi-
tion (9) and 11. (4, -, +, —) is excluded by (10). There are still the following
four cases where exactly 3 parameters are negative, thus 12. (—,+,—,—) for
0.28 < 7 < 0.57 in Fig.1c and for 0.09 < 7 < 0.11 in Fig.1e 13. (+,—,—, —) for
0 <7< 0.22 in Fig.1d, whereas the cases 14. (—, -, —,+) and 15. (—, —, +, =)

are forbidden by conditions (9) and (10), respectively. In the Raman model,
we can also observe the situation, for short-time evolution of fields initially in
a single-photon Fock state (n;2 = 1) and coherent state with |a; ;] = 1, that
16. all four parameters are negative, i.e. (~,—,—, =), for 0 < 7 < 0.28 in Fig.1c |
and for 0 < 7 < 0.09 in Fig.le.

3. Phase correlations

We investigate the quantum phase properties of two-mode radiation Raman
fields within the Pegg-Barnett formalism for the optical phase correlations® as a
generalization of their theory of the single-mode Hermitian optical phase oper-
ator 1%, The phase distributions representing the difference or sum of the two
single-mode phases can be defined in a 27 range with the help of the so-called
casting procedure #1°. Here, we discuss only the phase-difference properties
since, contrary to the phase-sum properties, they can be measured in experi-
ment. The general expression for the mod(27) Pegg-Barnett phase-difference
distribution was obtained by Luis et a].1!+1°

o0

Po(6) = %ZZZexp (k=D8_)(I,n— plk,n —k) (1)

n=0 k=0 (=0

by integration of the joint phase distribution P(6;,6,) over the phase-sum
6+ = 61 + 6, and by application of the casting procedure to the resulting
mod(47) phase distribution Pyr(6_). Eq. (11) can also be derived from the
phase-difference operator!?. ‘
We calculate the second-order moment of the phase-difference operator®1° in
order to make our presentation of the number and phase correlations more self-
consistent. By application of eq. (11), we find the following general expression



505

() (b)

Fig.2. Evolution of (a) the phase-difference distributions P;.(f.) and (b)
phase-difference variances V), for the fields initially coherent: |a;|? = 1, |ay|? =
0 and |a;]® = 0, |ez[* = 1 (line A), |e1]> = 0.1, |az|> = 1 (so0lid line B) and
|1 [? =1, |ag|* = 0.1 (dashed line B), |a;|? =1, |a;]?* = 2 (solid line C and those
in fig. 2(a)) and |eu|® =2, |a;|? = 1 (dashed line B and those in fig. 2(a)).

for the mod(27) phase-difference variance

™

Vi = (A0 = 80)sr = [ 62Pu(6-)e6,

7r2 o ¢} n
= T+2) ).

-

1Yk
Ek}.)l)z%””‘”ﬂk’”“k)‘ (12

n=0 k|l
k#l

The evolution of the mod(27) phase-difference distributions (11) and variances
(12) for the difference between the pump and Stokes phases are presented in
Fig. 2a and Fig. 2b, respectively. We observe randomization of the phase d-
ifference in the evolution of the Raman fields. Indeed, the distributions (11)
for different initial fields, as chosen in Fig. 2a, are almost flat even for 7 = 2.
We obtain a completely flat distribution Pp.(-) = 1/(27) for long evolution
times. Hence in the time limit, the mod(2~) phase-difference variances go over
into 72/3, as is clearly seen in Fig. 2b. This phase-difference randomization
process is typical for various two-mode optical phenomena!®. Moreover, we find
that the mod(27) phase-difference distribution is flat whenever at least one of
the single-mode phase distributions for the pump or Stokes fields is flat. Vacu-
um, Fock and chaotic states have random phase according to the Pegg-Barnett
phase formalism®. So, the phase-difference distributions (11) are also uniform,
and the variances (12) are equal to 72/3 for arbitrary evolution times in all
situations presented in Fig.la-1f. We can generalize this interesting property of
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the mod(27) phase-difference functions for arbitrary two-mode radiation fields.

4. Conclusions

We have presented a quantum-statistical approach to Raman scattering in a
tuned cavity. We have derived a compact complete solution of the master equa-
tion for the model. We have calculated various number and phase correlation
moments and obtained some new general relationships.

On a simple example of the two-mode Raman model, we show that the
criteria of the intermode correlations measured by the parameters (5)-(8) are
not equivalent and exemplify different aspects of photon correlations of the
radiation fields.
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