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§ 1. Introduction

In classical optics, the concepts of intensity and phase of optical fields have a
well-defined meaning. The oscillating real electromagnetic field associated with
one mode, E=A4 cos(P), has a well defined amplitude and phase. Apart from a
constant factor, the squared real amplitude, 42, is the intensity of the field. In
classical electrodynamics, contrary to quantum electrodynamics, there is no real
need to use complex numbers to describe the field. However, it is convenient
to work with exponentials rather than cosine and sine functions, and complex
amplitudes of the field, £ =A exp (- @), are commonly used to describe the field.
The modulus squared of such an amplitude is the intensity of the field and
the argument is the phase. Both the intensity and the phase can be measured
simultaneously in classical optics. In quantum optics, it was quite natural to
associate the photon number operator with the intensity of the field and somehow
construct the phase operator conjugate to the number operator. The latter task,
however, turned out not to be easy.

The first attempts to construct explicitly a quantum phase operator as a
quantity conjugate to the number operator were made by Dirac [1927]. His idea
was to perform a polar decomposition of the annihilation operator, similar to the
polar decomposition of the complex amplitude performed for classical fields. It
turned out later that such a decomposition suffers from serious drawbacks, and
the phase operator introduced in this way cannot be considered as a properly
defined Hermitian phase operator. Susskind and Glogower [1964] exposed the
contradictions inherent in Dirac’s polar decomposition and introduced, instead of
the phase operator that appeared to be non-Hermitian, the operators cos ®sg and
sin ®Psc corresponding to the cosine and sine of the phase. Unfortunately, these
¢os Psg and sin Psg operators, although Hermitian, do not commute, so that
they cannot represent a single phase angle. Historically, the idea to use ¢os Pgg
and sin @ as Hermitian operators describing the phase, was first raised by
Louisell [1963] in his short Letter, but he did not construct the explicit form
of these operators. Carruthers and Nieto [1968] in their review paper, gave a
detailed record of the problems encountered on the way to constructing the
Hermitian phase operator and discussed thoroughly the properties of ¢os @i and
sin @gi operators. From their analysis it became clear that it is the boundedness
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358 QUANTUM PHASE PROPERTIES VL, § 1

of the photon number spectrum which does not allow for negative values and
which precludes the existence of a properly defined Hermitian phase operator
in the infinite-dimensional Hilbert space. The difficulty in finding the form
of the Hermitian phase operator led to the widespread belief that no such
operator exists, although there were a number of ingenious attempts to construct
a suitable operator within the infinite-dimensional Hilbert space (Garrison and
Wong [1970], Turski [1972], Popov and Yarunin [1973, 1992], Paul [1974],
Damaskinsky and Yarunin {1978], Galindo [1984a,b]). It was known (Newton
[1980], Barnett and Pegg [1986], Luks and Pefinova [1991], Luks, Pefinova and
Kiepelka [1992a]) that extension of the oscillator energy spectrum to negative
values allows for the mathematical construction of the Hermitian phase operator,
but this solution was unsatisfactory because of its recourse to unphysical states.

Recently, Pegg and Barnett [1988, 1989] (see also Barnett and Pegg [1989,
1990, 1992, 1993], Pegg, Barnett and Vaccaro [1989], Barnett, Pegg and Vaccaro
[1990], Pegg, Vaccaro and Barnett [1990], Vaccaro and Pegg [1990a,b, 1993],
Vaccaro, Barnett and Pegg [1992]) have found a way out of the difficulties with
construction of a Hermitian phase operator. The key idea in the development
of the Hermitian optical phase operator was abandonment of the conventional
infinite dimensional Hilbert space for the description of quantum states of a
single-field mode. They introduced, instead, a state space H9 of formally
finite dimension together with a prescription for taking the infinite-dimensional
limit only after c-number expectation values and moments have been calculated.
This idea reintroduced a symmetry to the photon number spectrum, which
became bounded not only from below but also from above, and removed
the main obstacle in constructing a Hermitian phase operator. An essential
and indispensable ingredient of the Pegg—Barnett construction is the way the
infinite dimensional limit is taken, which distinguishes it from the quantum-
mechanical constructions based on finite-dimensional spaces that have been
studied before (Lévy-Leblond [1973, 1976, 1977], Santhanam and Tekumalla
[1976], Santhanam [1976, 1977a,b], Santhanam and Sinha [1978], Goldhirsh
[1980]), but in which, when the limiting procedure has been applied for the
phase operator, the original problems reappeared. The consequences of the
limiting procedure in the Pegg-Barnett approach have been discussed by Barnett
and Pegg [1992] and Gantsog, Miranowicz and Tana$ [1992]. The proposal of
the Pegg—Barnett approach has renewed interest in the problem of the proper
description of the quantum-optical phase.

Almost at the same time, Shapiro, Shepard and Wong {1989] (sec also
Shapiro and Shepard [1991]) used an alternative approach based on the quantum
estimation theory and probability operator measures (Helstrom [1976]) to
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describe the phase properties of optical fields. This approach does not rely on
the existence of the Hermitian phase operator but rather on the existence of
the eigenstates of the Susskind—Glogower nonunitary exponential phase operator
(Susskind and Glogower [1964]). The eigenstates of the Susskind-Glogower
phase operators form a basis for the probability operator measures. The Shapiro,
Shepard and Wong [1989] idea has gained some popularity (Hall {1991, 1993],
Hall and Fuss [1991], Schleich, Dowling and Horowicz [1991], Braunstein,
Lane and Caves [1992], Braunstein [1992], Hradil [1992a,b], Hradil and Shapiro
[1992], Lane, Braunstein and Caves [1993], Jones [1993], Shapiro [1993]). It
turned out, however, that it gives for physical states [i.e., states with a finite mean
number of photons (finite energy and its higher moments)], the same results as
the Pegg-Barnett approach after the limit transition to the infinite-dimensional
space. The eigenkets of the Susskind—Glogower exponential phase operators can
be used in a similar fashion as coherent states (eigenkets of the annihilation
operator) to define the resolution of the system operators; e.g., the phase operator
(Luk$ and Pefinova [1991, 1993b], Brif and Ben-Aryeh [1994a,b], Vaccaro and
Ben-Aryeh [1995]. In this case the ordering of the phase exponentials is relevant,
and, if the antinormal ordering is taken, the results agree with those obtained
from the Pegg—Barnett formalism.

Another way to describe the phase properties of the field is to use quasiproba-
bility distribution functions. The idea behind this approach is relatively simple: to
integrate the suitable quasiprobability distribution function, such as the Glauber—
Sudarshan P-function, Wigner function, or Husimi Q-function, over the “radial”
variable and getting in this way a corresponding phase distribution, which can
then be applied in calculations of the mean values of the phase-dependent
quantities. Since the quasiprobability description of the quantum state of the
system can be in some cases associated with realistic measurements performed
on the system, this approach to the phase problem has focused the attention
of many authors (see §2.2). The phase distribution functions obtained by
integrating the quasidistributions are different for different quasidistributions,
and they are all different from the Pegg—Barnett phase distribution. The
situation is even worse, because for some states of the field the P-function
and the Wigner function take on negative values, and the corresponding phase
distribution can also be negative. This means that such phase distributions must
be used with some care, but in many cases this approach gives results describing
properly the phase properties of the field.

Noh, Fougéres and Mandel [1991, 1992a,b, 1993a—¢] (see also Fougeres,
Monken and Mandel [1994], Barnett and Pegg [1993], Hradil [1993a, 1995],
Hradil and Bajer [1993]) presented an operational approach to the quantum
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phase problem. Their idea is to define phase in terms of what actually is, or
can be, measured. They do not search for a phase operator which would satisfy
some mathematical criteria, but start their considerations from the experimental
schemes usual in classical phase measurements. Examining various measuring
schemes, they identify certain operators, Cwm and Sy, corresponding to the
measured cosine and sine of the phase difference between two fields. As a
result, Noh, Fougéres and Mandel came to the conclusion that there is no unique
phase operator, and that different measuring schemes correspond to different
operators. Nevertheless, recent theoretical studies (Riegler and Wadkiewicz
[1994], Englert and Wodkiewicz [1995], Englert, Wodkiewicz and Riegler
[1995]) show that the intrinsic Hermitian phase operator associated with the Noh,
Fougéres and Mandel apparatus can be found. The phase distribution measured
in this experiment, under some conditions, is the radius-integrated Q-function
(Freyberger and Schleich [1993], Leonhardt and Paul [1993a], Freyberger, Vogel
and Schleich [1993a,b], Bandilla [1993], Khan and Chaudhry [1994]). The
measurements of Noh, Fougéres and Mandel are important since until then only
isolated phase measurements were available performed by Gerhardt, Biichler and
Litfin [1974] (Gerhardt, Welling and Frolich [1973], and for theoretical analysis
see also Nieto [1977], Lévy-Leblond [1977], Lynch [1987, 1990, 1993, 1995],
Gerry and Urbanski [1990], Bandilla [1991], Tsui and Reid [1992]), Matthys
and Jaynes [1980], and Walker and Carroll [1984, 1986].

Quite recently, another experimental technique, optical homodyne tomography,
was invented and applied to measurements of the quantum state of the field
(Smithey, Faridani and Raymer [1993], Beck, Smithey and Raymer [1993],
Beck, Smithey, Cooper and Raymer [1993], Smithey, Beck, Cooper and Raymer
[1993], Smithey, Beck, Cooper, Raymer and Faridani [1993]) allowing quantum
phase mean values to be calculated from the measured field density matrix.
This technique opens new possibilities for quantum measurements. Overviews
of various techniques for measuring phase distributions are presented by, e.g.,
Leonhardt and Paul [1993b], Paul and Leonhardt [1994], Pefina, Hradil and Juréo
[1994], and Lynch [1995].

Another interesting approach to the phase problem was presented by Bergou
and Englert [1991]. They introduced the idea of phasors and phasor bases that
can be used for studying possible candidates for the quantum phase operators.
Different phasor bases lead to different phase operators, and according to Bergou
and Englert [1991] extrapolation of the classical concept of phase to the quantum
regime is not unique.

Since the absolute phase of the single-mode field is not accessible for
measurements, and it is always the difference with respect to a reference phase
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that we are forced to deal with in real measurements, it is tempting to define the
phase-difference operator as a fundamental quantity describing the optical phase.
Luis and Sanchez-Soto [1993c¢, 1994] have defined a Hermitian phase-difference
operator, which is in fact a polar decomposition of the Stokes operators for
the two-mode field, and it is not the same as the difference of the two Pegg—
Barnett operators. The difference between the two is most pronounced for weak
fields. Ban [1991a—c, 1992] has introduced yet another phase operator, based on
the two-mode description of the field. In recent years, many different aspects
of the quantum phase problem have been studied (Barnett, Stenholm and Pegg
[1989], Nath and Kumar [1989, 1990, 1991b], Chaichian and Ellinas [1990],
Lakshmi and Swain [1990], Summy and Pegg [1990], Hradil [1990, 1993b],
Luk$ and Pefinova [1990, 1992, 1993a, 1994], Vourdas [1990, 1992, 1993],
Adam, Janszky and Vinogradov [1991], Cibils, Cuche, Marvulle and Wreszinski
[1991], Dowling [1991], Ellinas [1991a,b, 1992], Gantsog and Tanas [1991d],
Nath and Kumar [1991a), Orszag and Saavedra [1991a,b], Paul [1991], Tanas
[1991], Wilson-Gordon, Buzek and Knight [1991], Agarwal, Chaturvedi, Tara
and Srinivasan [1992], Bandilla [1992], Burak and Wddkiewicz [1992], Janszky,
Adam, Bertolotti and Sibilia [1992], Luks, Pefinova and Kfepelka [1992b, 1994],
Ritze [1992], Smith, Dubin and Hennings [1992], Tsui and Reid [1992], Agarwal
[1993], Agarwal, Scully and Walther [1993], Ban [1993], Biatynicki-Birula,
Freyberger and Schleich [1993], Chizhov, Gantsog and Murzakhmetov [1993],
Chizhov and Murzakhmetov [1993], Daeubler, Miller, Risken and Schoendorff
[1993], D’Ariano and Paris [1993, 1994], Jex and Drobny [1993], Luis and
Sanchez-Soto [1993a], Stenholm [1993], Schieve and McGowan [1993], Tu
and Gong [1993], Agarwal, Graf, Orszag, Scully and Walther [1994], Belavkin
and Bendjaballah [1994], Vaccaro and Pegg [1994a—], Bialynicka-Birula and
Biatynicki-Birula [1994, 1995], Das [1994], Franson [1994], Gennaro, Leonardi,
Lillo, Vaglica and Vetri [1994], Opatrny [1994], Sanchez-Soto and Luis {1994],
Schaufler, Freyberger and Schieich [1994]), and the number of publications on
the subject is growing steadily. Various conceptions of the quantum-optical phase
have been described by Barnett and Dalton [1993] in a special issue of Physica
Scripta devoted to “Quantum phase and phase dependent measurements”, and
in the same issue one can find very interesting historical facts, given by Nieto
[1993], concerning the development of our knowledge on quantum phase.
Nowadays, although the quantum phase is still a subject of some controversy,
significant progress has been achieved in clarifying the status of the quantum-
mechanical phase operator, describing the phase properties of optical fields in
terms of various phase distribution functions, and measuring phase-dependent
physical quantities. We can now risk the statement that, despite the existence
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of various different conceptions of phase, we are en route to unified view and
understanding of the quantum-optical phase.

It is not our aim in this review article to give a detailed account of different
descriptions of the quantum phase showing their similarities and differences.
We will not focus our attention on the quantum phase formalisms, which are
interesting on their own right and deserve separate treatment. We shall instead
concentrate on the description of the quantum properties of real-field states
which are generated in various nonlinear optical processes. Nonlinear optical
phenomena are sources of optical fields, the statistical properties of which
have been changed in a nontrivial way as a result of nonlinear transformation.
Quantum phase properties are among those statistical properties which undergo
nonlinear changes, and fields generated in different nonlinear processes have
different phase properties. With the existing phase formalisms, the quantum
phase properties of such fields can be studied in a systematic way, and
quantitative comparisons between different quantum-field states can be made.
Using the Pegg—Barnett phase formalism and the phase formalism based on the s-
parametrized quasidistribution functions, we will study a number of both single-
and two-mode field states from the point of view of their phase properties.

§ 2. Phase formalisms
At the very beginning of quantum electrodynamics, Dirac [1927] raised the
idea that the optical phase should be described by a Hermitian phase oper. tor

canonically conjugate to the number operator; that is, for the one-mode field the
two operators should obey the canonical commutation relation:

[E), n] - @.1)

This commutation relation implies directly the “traditional” Heisenberg uncer-
tainty relation

(@n?) <(AE>)2> > 1 2.2)

which appeared to be wrong (Susskind and Glogower [1964], Carruthers and
Nieto [1968]). Closer investigation of the commutator (2.1) showed that the
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matrix elements of the phase operator @ in a number-state basis are undefined
(Louisell [1963]);

(n—n') <n' n> T (2.3)
Since it was suggested that the problems in eq. (2.3) are due to the multivalued
nature of <P Louisell [1963] introduced the operators ¢os @ and sin @ which
should, as he suggested, satisfy the commutation relations

(603 @,4) =isin®, [sin®,i] =i . 2.4)

However, Louisell [1963] did not give the explicit form of the cosine and
sine operators; thus, his idea did not help much in solving the phase problem.
Moreover, it turned out that the problem expressed in eq. (2.3) was not due
to the multivalued nature of @, but rather to the improper application of the
correspondence between the Poisson bracket and the commutator. Susskind and
Glogower [1964] returned to the original Dirac idea of polar decomposition of
the creation and annihilation operators and introduced the exponential phase
operators:

&plidse) = ) In) (n+ 1], @5)
and
&p(-idsa) = [Xp(iPsa)]’ (26)

From egs. (2.5) and (2.6), one obtains:
exp(iPsc) exp(—iPsg) = 1,  &xp(-iPsg) Exp(iPsg) = 1-10) (0], (2.7

which explicitly shows the non-unitarity of the Susskind-Glogower phase
operator.

The Susskind-Glogower exponential operators (2.5) and (2.6) allow con-
struction of two Hermitian combinations corresponding to cosine and sine of
the phase. However, the two combinations do not commute, so they cannot
be considered as describing a single phase angle. Despite this deficiency, the
Susskind—Glogower phase operators were widely used in description of optical
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fields until recently. The eigenkets of the Susskind-Glogower operator (2.5),
given by

(o)

Z exp(in8) |n), 2.8)

n=0

|||

generate the resolution of the identity, and, despite their nonorthogonality, they
can be used to form the probability operator measure applied to the phase
description by Shapiro and Shepard [1991].

Garrison and Wong [1970] made an attempt to construct a Hermitian phase
operator in the infinite-dimensional Hilbert space which, as they demanded,
should satisfy the canonical commutation relation (2.1). Their work was almost
completely forgotten. Bergou and Englert [1991] have made a comparison of
the Garrison—Wong and Pegg-Barnett phase operators, pointing out that if the
limit to infinite-dimensional space is performed on the latter operator (but not
on the expectation values), the former operator is obtained. In their view the
Pegg—Barnett phase formalism is only an approximation to the “correct” phase
formalism. Bergou and Englert [1991] introduced their own quantum phase
description, which has not gained broader acceptance. Nevertheless, their paper
is an essential contribution which clarifies a number of points in the quantum
phase problem. The Garrison—-Wong approach turned out to lead to phase
distributions which are asymmetric and difficult to accept on physical grounds
(Gantsog, Miranowicz and Tana$ [1992]); e.g., even the vacuum is phase-
anisotropic. For reference, we give a sketch of their approach in Appendix A.

The renewed interest in quantum phase problems has resulted in a re-
examination of some of the earlier approaches and the creation of other,
completely new descriptions. From a number of different phase formalisms that
are now available, we choose only two, which we shall apply for the description
of the phase properties of fields generated in various nonlinear optical processes.
These are: the Pegg—Barnett phase formalism, which represents the canonical
phase formalism based on the idea of finding a Hermitian phase operator, and
another formalism based on the description of the optical phase through s-
parametrized phase distributions, which for some values of s represents the
experimentally measured phase probability distributions.

2.1. PEGG-BARNETT PHASE FORMALISM

Pegg and Barnett [1988, 1989] (and Barnett and Pegg [1989]) introduced
the Hetmitian phase formalism, which is based on the observation that in a
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finite-dimensional state space, the states with well-defined phase exist (Loudon
[1973]). Thus, they restrict the state space to a finite (0 + 1)-dimensional
Hilbert space H‘?) spanned by the number states [0), |1), ..., |0). In this space
they define a complete orthonormal set of phase states by:

1 ag
0,) = exp(inBy) |n), m=01,...,0, 2.9
6n) = 7oy 2., cxp(in0m) ) 29)
where the values of 8,, are given by
27m
0n,=0 . 2.10
m o+ o+ 1 ( )

The value of 6 is arbitrary and defines a particular basis set of (¢ + 1) mutually
orthogonal phase states. The number state |n) can be expanded in terms of the
|8,) phase-state basis as:

Z [Oe) (O |n) = ——\/—(}1—_;— Z exp(=inB,) |0m) . (2.1

From egs. (2.9) and (2.11) we see that a system in a number state is equally
likely to be found in any state |8,,), and a system in a phase state is equally
likely to be found in any number state |n).

The Pegg-Barnett (PB) Hermitian phase operator is defined as:

By (“”) Ze 16) 2.12)

Of course, the phase states (2.9) are eigenstates of the phase operator (2.12)
with the eigenvalues 0,, restricted to lie within a phase window between 6y and
0 +270/(0 + 1). The Pegg—Barnett prescription is to evaluate any observable of
interest in the finite basis (2.9), and only after that to take the limit 0 — oo.

Since the phase states (2.9) are orthonormal, (6|6, ) = Oy, the kth power
of the Pegg—Barnett phase operator (2.12) can be written as:

=2 0710m) (Onl. (2.13)

Substituting eqs. (2.9) and (2.10) into eq. (2.12) and performing summation over
m yields explicitly the phase operator in the Fock basis:
on 2 Z exp[i(n —n")6o] |n) (n'|

o+1 g+ 1 2~ expli(n—my2n/(o + D] -1

Dy = 0 + (2.14)

n

It is readily apparent that the Hermitian phase operator <’139 has well-defined
matrix elements in the number-state basis and does not suffer from such problems
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as the original Dirac phase operator. A detailed analysis of the properties of the
Hermitian phase operator was given by Pegg and Barnett [1989] and Barnett and
Pegg [1989].

The unitary phase operator exp(l(Dg) can be defined as the exponential func-
tion of the Hermitian operator @,. This operator acting on the eigenstate |6,,)
gives the eigenvalue exp(if,,), and can be written as (Pegg and Barnett [1988,
19891):

0-1
exp(i®g) = Y _ |n) (n+ 1] +expli(o + 1)6o] |0) (0] (2.15)
n=0
Its Hermitian conjugate is

—~ i ~
[exp(id)g)] — exp(=i®g), (2.16)

with the same set of eigenstates |6,,) but with eigenvalues exp(-i6,). This is
the last term in eq. (2.15) that distinguishes the unitary phase operator from
the Susskind—Glogower phase operator (Susskind and Glogower [1964]). The
first sum in eq. (2.15) reproduces the Susskind-Glogower phase operator if the
limit 0 — oo is taken. In contrast to the Pegg-Barnett unitary phase operator,
the Susskind—Glogower exponential operator (2.5) is defined as a whole and is
not unitary, as is apparent from eq. (2.7). The sine and cosine operators in the
Pegg—Barnett formalism are the sine and cosine functions of the Hermitian phase
operator CDg They are more consistent with the classical notion of phase than
their counterparts in the Susskind—Glogower phase formalism. In particular, they
satisfy the “natural” relations:

cos’ Zig + sin? 559 =1, 2.17)
[cos @g, sin &)9] =0, (2.18)
< ‘cos cbg\ > < \sm 459‘ >=%. (2.19)

The last relation is also true for the vacuum state, in sharp contrast to the
Susskind-Glogower phase operators. This is consistent with the phase of vacuum
being random, as well as for any other number state.

The Pegg—Barnett phase operator (2.14), expressed in the Fock basis, readily
gives the phase-number commutator (Pegg and Barnett [1989]):

~ 1 2m (n—n")exp[i(n—n")0q] ,
[(pﬁ’n} o+l Z expli(n — n)2n/(0 + 1)] -1 ) ('] (2.20)

n=n'

Equation (2.20) looks very different from the famous Dirac postulate of
the phase-number commutator (2.1). Santhanam [1976] and Pegg, Vaccaro
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and Barnett [1990] examined canonically conjugate operators in the finite-
dimensional Hilbert space. According to the generalized definition by Pegg,
Vaccaro and Barnett, the photon number and phase are indeed canonically
conjugate variables, similar to momentum and position or angular momentum
and azimuthal phase angle.

As the Hermitian phase operator is defined, one can calculate the expectation
value and variance of this operator for a given state of the field | /). Moreover, the
Pegg—Barnett phase formalism allows the introduction of the continuous phase
probability distribution which is a representation of the quantum state of the field
and describes the phase properties of the field in a very spectacular fashion.
Examples of such phase distributions for particular states of the field will be
given later.

A general pure state of the field mode with a decomposition

g

)= cnln), @2.21)

n=0

can be re-expressed in the phase-state basis, according to eq. (2.11), as:

7)== 3 3 coenpl-ind) [6n). 222)
n m
We should remark here that the coefficients ¢, in the decomposition (2.21) in
a finite-dimensional space should differ from the coefficients in the infinite-
dimensional space if the state |f) is to be normalized. A short discussion of
this problem is given in Appendix B.
The phase probability distribution is given by (Pegg and Barnett [1989]);

2

1
2 _ .
[(Om| )" = P z,,: cnexp(=inby)| , (2.23)
which leads to the expectation value and variance of the phase operator
(f | @6 £) =3 Oml(Oal )P, (2.24)

(@802) = 3 (8- (B0)) (6N (2.29)

If the field state | f) is a partial phase state, i.e., if the amplitude has the form

Cp = bye?, (2.26)
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the phase probability distribution (2.23) becomes:

2

{8 = 1 [ brexplin( - 6]
1 " ) (2.27)
=t Zk buby cos{(n = k)(¢ = O]

o+l o

The mean and variance of (59 will depend on the chosen value of 6.
Judge [1964], in his description of the uncertainty relation for angle variables,
suggested that the choice of phase window which minimizes the variance can be
used to specify uniquely the mean or variance. For the partial phase state, the
most convenient and physically transparent way of choosing 6y is to symmetrize
the phase window with respect to the phase ¢. This means the choice

0= ——, (2.28)

and after introducing a new phase label,

w=m- g (2.29)

the phase probability distribution (2.27) becomes

1 27U

|<6u|f>|2 =— O—i—l Z bpby cos [(n —k)m] (2.30)
n>k

with u, which goes in integer steps from —0/2 to 0/2. Since the distribu-

tion (2.30) is symmetrical in u, we immediately get, according to egs. (2.28)-
(2.30),

(fl®slf) = . (2.31)

This result means that for a partial phase state with phase ¢, the choice of 6
as in eq. (2.28) relates directly the expectation value of the phase operator with
the phase @. With this choice of 6, the variance of the phase operator has a
particularly simple form:

4]_[2 /2

(0Bor)= = 30 w0 @32
u=-0/2

So-called physical states play a significant role in the Pegg—Barnett formalism.
Physical states |p) are defined by Pegg and Barnett [1989] as the states of finite
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energy. Most of the expressions in the Pegg—Barnett formalism take a much
simpler form for physical states. For example, the commutator (2.20) reduces
to

[@o, Al = =i [1 = (0 + 1)|60) (o], (2.33)

a form more similar to the standard canonical commutation relation (2.1). On the
other hand, when physical states are considered, we can simplify the calculation
of the sum in eqs. (2.24) and (2.25) by replacing it by the integral in the limit
as o tends to infinity. Since the density of states is (0 + 1)/27, we can write the
expectation value of the kth power of the phase operator as:

Go+2m

<f ]ag\ f> = / 46 6*P(6), (2.34)

[

where the continuous-phase distribution P(8) is introduced by
. o+1
P(8) = Ppp(8) = lim —— [(0u| /). (235)
og—o0 27T

and 6,, has been replaced by the continuous-phase variable 6. If the state | /) has
the number-state decomposition (2.21), then the Pegg~Barnett phase distribution
is (Pegg and Barnett [1989]):

1 .
PO = > 1 +2Re ; cme) expl—i(m —n)0] . (2.36)
m’>n
In the case of fields being in mixed states described by the density matrix p,
formula (2.36) generalizes to

P(6) = % {1 +2Re > pyn exp[-i(m ~ n)e]} , (2.37)

m>n

where p,,, = (m |p| n) are the density matrix elements in the number-state basis.
Formulas (2.36) or (2.37) can be used for calculations of the Pegg—Barnett phase
distribution for any state with known amplitudes ¢, or matrix elements Py.
Despite the fact that they are exact, they can rarely be summed up into a closed
form, and usually numerical summation must be performed to find the phase
distribution. Such numerical summations have been widely applied in studying
the phase properties of optical fields. The Pegg—Barnett phase distribution,
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eqs. (2.36) or (2.37), is obviously 2s-periodic, and for all states with the density
matrix diagonal in the number states, the phase distribution is uniform over the
25-wide phase window. These are nondiagonal elements of the density matrix
that lead to the structure of the phase distribution. The Pegg—Barnett distribution
is positive definite and normalized.

After introducing the continuous-phase distribution P(6), formula (2.32) for
the phase variance, if the symmetrization is performed, can be rewritten into the
form:

<(A€bg)z> = [ " 62p(6) do. (2.38)

This means that as the phase distribution function P(8) is known, all quantum-
mechanical phase characteristics can be calculated with this function in a
classical-like manner. The result for the variance (2.38) is (Barnett and Pegg
[1989]):

. 2 _ 1k
<(Aq>9)2> - i;— a4y bnbk%. (2.39)
n>k

The value 72/3 is the variance for the uniformly distributed phase, as in the case
of a single-number state.

For physical states there are some additional useful relations between the
expectation values of the Pegg—Barnett phase operators and of the Susskind-
Glogower phase operators. For example, the following relations hold (Vaccaro
and Pegg [1989]):

(explim®o)) = (&p(imPsa)), (2:40)
<cos <’150>p = (658 Psc), » (2.41)
(sin) = (o) )
(cos” @p) = (0" @s) +5 ((0) (0D (243)
(sin® @) = (sin’ @s6) +4 (10} (0D), (2:44)

where the subscript p refers to a physical state expectation value.
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2.2. PHASE DISTRIBUTIONS FROM S-PARAMETRIZED QUASIDISTRIBUTIONS

According to Cahill and Glauber [1969a,b], the s-parametrized quasidistribution
function W (a) describing a field state, can be derived from the formula

1

WE(a) = ETr{ﬁT(S)(a)} , (2.45)

where the operator T(S)(a) is given by:
79 =5 [ eplas - DG &L, (2.46)
and

B(S)(E) = oslE72 B(E)’ (2.47)

with 5(5) being the displacement operator; p is the density matrix of the field,
and we have introduced the extra 1/7t factor with respect to the original definition
of Cahill and Glauber [1969b]. The operator 7)(a) can be rewritten in the form
(Cahill and Glauber [1969a]):

S

()= =3 Bla)In) st " B, (2.48)
l-s s 1

which gives explicitly its s-dependence. So, the s-parametrized quasidistribution
function W@(a) has the following form in the number-state basis:

W9(a) = % > Pn (n| T(@) |m) (2.49)

where the matrix elements of the operator (2.46) are given by (Cahill and Glauber
[1969a]):

172 m-n+l1 n
oo (2)" () ()

5 X (2.50)
O g7 o (_21 o] ) Lo <? |a|2> ’
- S )

in terms of the associate Laguerre polynomials L™"(x). In eq. (2.50) we have
also separated explicitly the phase of the complex number a by writing:

a=|ale®. (2.51)

In the following, the phase 6 will be treated as the quantity representing the field
phase.



372 QUANTUM PHASE PROPERTIES [VI, §2

With the quasiprobability distributions W)(a), the expectation values of the
s-ordered products of the creation and annihilation operators can be obtained by
proper integrations in the complex a plane. In particular, for s=1,0,— 1, the s-
ordered products are normal, symmetrical, and antinormal ordered products of
the creation and annihilation operators, and the corresponding quasiprobability
distributions are the Glauber—Sudarshan P-function, Wigner function, and
Husimi Q-function.

By virtue of the relation inverse to eq. (2.49), given by (Cahill and Glauber
[1969b])

p= / d2a T (a) W) (), (2.52)

the Pegg-Barnett phase distribution (2.37) can be related to the s-parametrized
quasidistribution function (2.45) as follows (Eiselt and Risken [1991]):

P(8) = / d?>a K a, ) WO(a), (2.53)
where the kernel is given by

K9(a, 0) = 5% S <n ‘?H)(a)‘ m> expli(m — m8], (2.54)

in terms of the matrix elements (2.50) for (-s). The kernel (2.54) is convergent
for s >—1 only. Nevertheless, the remaining relation between the Husimi Q-
function and the Pegg—Barnett distribution can also be expressed by eq. (2.53),
albeit with the following kernel (Miranowicz [1994]):

K(a,6)= 7 Z / (a+ﬁ)'”(ortn !—ﬁ*)" e

X exp [i(n -m)f - |a| +aff* - a*ﬁ} .

On integrating the quasiprobability distribution W)(a) over the “radial”
variable | a|, we get the “phase distribution” associated with this quasiprobability
distribution. The s-parametrized phase distribution is thus given by:

PY(G) = / ” WO (a)|ald|al, (2.56)
0
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or equivalently by
1 o
POYG) = 3 / WO, 0)dw, (2.57)
0

where integration is performed over the intensity W =|a|?. Inserting eq. (2.49)
into eq. (2.56) yields:

1/2 m-n+1 n
©)(g) n 2 SN ionmo
N C men( ) <l—s> (s—l ¢

o) 2
< [ lam exp<—ﬂ> L:,"'"<4|al )| |dla].
0 1-s 1

If the definition of the Laguerre polynomial is invoked, the integrations in
eq. (2.58) can be performed explicitly, and we get for the s-parametrized phase
distribution a formula similar to the Pegg—Barnett phase distribution (2.37),
which reads:

(2.58)

PEY(0) = {1 +2Re Y Py & G (m, n)} (2.59)

m>n A here, we've corrected

editors' misprint

The difference between eqs. (2.37) and (2.59) lies in the coefficients G*)(m,n),
which are given by:

2 (m+n)/2 min(m,n) l+s !
G(s)(m, n) = (T—-_.s") Z (—1)1 (T)

=0 (2.60)
() () vzis
L)\ ) \Jfim=D\(n=1)1
The s-parametrized coefficients G®(m,n) [eq. (2.60)] can be rewritten in a

compact form (Miranowicz [1994], Leonhardt, Vaccaro, Béhmer and Paul
[1995)) (m = n):

(m—n)/2
G, n) = \f(jj}) (%)
(m—n—i(m+n)) s—3
( 2 1>P <s+1)

(2.61)
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in terms of the Jacobi polynomials PS”*(x), or equivalently as

n (m—-n)/2
©) _ m 1 s+1 2
G m, n) n! (m—n)! (s—l l1-s

m-n m-—n 2
xF( 5 +1) 2F1<—n,~—§——+1,m—n+l,m),

(2.62)

using the hypergeometric (Gauss) function »F(a, b, ¢, x).

For s=0, we have the coefficients for the Wigner phase distribution P©)(6);
i.e., the phase distribution associated with the Wigner function. In this special
case of =0, eq. (2.60) reduces to the expression obtained by Tanas, Murza-
khmetov, Gantsog and Chizhov [1992], whereas eq. (2.62) goes over into the
expression of Garraway and Knight [1992, 1993]:

(m-ny2 /n_! I'(m/2+1)
2 por _—(n 72)! n even,

n! I'((m+1)/2)
m! [(n—1)/2]!

Equations (2.61)~(2.63) are given for m >n. Otherwise the indices m and
n should be interchanged.

For s=-1, only the term with /=0 survives in eq. (2.60), and we get the
coefficients for the Husimi phase distribution PCV(8); i.e., the phase distribution
associated with the O-function. Now, eq. (2.60) reduces to (Paul [1974], Tanas,
Gantsog, Miranowicz and Kielich [1991], Tana$ and Gantsog [1992b]):

_r¢EE+

GO (m, n) = — (2.64)
n.m:

GO(m,n) = (2.63)

2m-ny2 odd.

It is apparent from eqgs. (2.59)2.62) that for the phase distribution associated
with the P-function (s=1), the coefficients G*(m, n) become infinity, and one
can conclude that the phase distribution P)(6) is indeterminate. However, at
least for a special class of states, summation can be performed numerically or
even analytically for P?)(6). For instance, for the states described by the density
matrix p of the form

DPmn = |Pmn] exp[—i(m — n)do], (2.65)

the s-parametrized phase distribution P)(6) can be rewritten as (Miranowicz
[1994]):

PYY(6) = 51]; { 142> d) cos[m(6 - 190)]} , (2.66)

m=1
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with the coefficients

00
a9 =" |Pminal G(m +n,n). (2.67)

n=0
Equations (2.66) and (2.67), for s=0 and % =0, go over into expressions

obtained by Bandilla and Ritze [1993]. Numerical calculation of lim,_, a$)

is usually straightforward. For coherent states, the coefficients a\)) are equal to
unity. Hence, ngl((?), given by eq. (2.66), is the Dirac delta function 6(8 — )
{see §3.1].

Formulas (2.59)(2.62) allow calculation of the s-parametrized phase distri-
butions for any state with known p,,, and their comparison with the Pegg-
Barnett phase distribution, for which G®(m,n)=1. The phase distributions
associated with particular quasiprobability distributions have been used widely
in the literature to describe the phase properties of field states. For example,
the Husimi phase distribution PCD(6) was used by Bandilla and Paul [1969],
Paul [1974], Freyberger and Schleich [1993], Freyberger, Vogel and Schleich
[1993a,b], Leonhardt and Paul [1993a], Bandilla [1993], and Khan and Chaudhry
[1994], in their schemes for phase measurement. Braunstein and Caves [1990]
applied PCD(0) to describe the phase properties of generalized squeezed states.
The Wigner phase distribution P©O)(8) was used by Schleich, Horowicz and Varro
[1989a,b] in their description of the phase probability distribution for highly
squeezed states. Herzog, Paul and Richter [1993] showed in general that the
Wigner phase distribution can be interpreted as an approximation of the Pegg—
Barnett distribution. To estimate the difference between the P¥(6) and P(6),
they analyzed the deviation of the Wigner function W(©(q) for a phase state from
Dirac’s delta function. Recently, Hillery, Freyberger and Schleich [1995] have
compared the Pegg—Barnett, Husimi, and Wigner phase distributions for large-
amplitude classical states. Eiselt and Risken [1991] applied the s-parametrized
quasiprobability distributions to study properties of the Jaynes—Cummings model
with cavity damping.

For some field states the quasiprobability distribution functions W®)(a) can be
found in a closed form via direct integrations according to the definitions (2.45)—
(2.47), and sometimes the next integration leading to the s-parametrized phase
distributions can also be performed according to definition (2.56).

In the next sections, we shall illustrate the differences between the Pegg—
Barnett phase distribution and the s-parametrized phase distributions obtained
by integrating the s-parametrized quasiprobability distribution functions. For any
field with known number-state matrix elements p, of the density matrix, the s-
parametrized phase distribution can be calculated according to formula (2.59)
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Fig. 1. The coefficients G®(m, n) for (a) s=0, and (b) s=-1.

with the coefficients G®)(m, n) given by eq. (2.60). The distribution of the
coefficients G®)(m, n), for s=0,—1, is illustrated in fig. 1. It is apparent that for
the Husimi phase distribution the coefficients decrease monotonically as we go
further away from the diagonal. This means that all nondiagonal elements p,,,
are weighted with numbers that are less than unity, and the phase distribution
for s=—1 is always broader than the Pegg-Barnett phase distribution (for
which G¥)(m,n)=1). For s=0 the situation is not so simple, because the
coefficients G©(m, n) show even-odd oscillations with values that are both
smaller and larger than unity. This usually leads to a phase structure sharper than
the Pegg—Barnett distribution. Moreover, since the Wigner function (s=0) can
take negative values, the positive definiteness of the Wigner phase distribution
is not guaranteed. Also, the oscillatory behavior of the coefficient GO(m, n)
suggests that, at least for some states, the Wigner phase distribution PO(B) can
exhibit negative values. This nonclassical feature of P©(6) was shown explicitly
by Garraway and Knight [1992, 1993] for the simple example of the number state
superposition (only for convenience, we assume that m > n):

|w) =27%(|n) + |m)). (2.68)

In a straightforward manner, the general expressions for the phase distribu-
tions P(6) [eq. (2.37)] and P¥)(6) [eq. (2.59)] reduce to:

P(6) = Ely—r(l + cos[(m — n)0)), (2.69)
and
PO = -21} (1 + G¥(m, n) cos[(m - n)6]), (2.70)

respectively. The Pegg-Barnett, P(6), and Husimi, PC"(6), phase distributions
are obviously positive definite for any superposition (2.68). As seen in fig. 2,



Vi, § 2] PHASE FORMALISMS 377

0.05-'é
[ )
2
.
~.0.00 : 3 3 ! 888381!“5“5
S 8 8t
g P
A4-0.05
= .
» i
E x + > +Intl>
010 o e In>+In+2> |
x in>+ In+3>
o In>+ In+4>
15—t
0 2 4 6 8 10 12 14 16 18 20

n

Fig. 2. The minima of the Wigner phase distributions P(0(8), eq. (2.70), for the superpositions of
two number states (2.68) for various values of n and m—n=1, 2, 3, 4,

the Wigner phase distribution P((0) is positive for superpositions with odd ».
However, it takes negative values for even n. In this case, the smaller is n for
fixed m —n, or the higher is the value of m—n for a given n, the minimum of
the Wigner phase distribution is more strongly negative. Hence, one obtains the
greatest negativity for the superposition (|0) + [2m))/+/2 in the limit of m — oco.
As was emphasized by Garraway and Knight [1993] (see also fig. 2), for large
values of n the Pegg—Barnett distribution is approached for both even and odd m.

It is highly illustrative to consider analytically the special case of eq. (2.68)
when m —n=2 (Garraway and Knight [1992, 1993]). These results will be helpful
in the analysis presented in §3.2 for even and odd coherent states. Now, the
coefficients G¥)(m, n), given by eqgs. (2.60)—(2.62), can be rewritten in a much
simpler form:

S ~ -5 s+1\"? n+2\"?
G()(n+2,n)—2 IR [(s—l) _1]+<n+1> . 2.71)

For s=0, eq. (2.71) goes over into (Garraway and Knight [1992, 1993}):

2\ 172
GOn+2,n) = (:i 1) : @72)
and for s=~1 one obtains
n+1 172
G+ 2,m) = <n : 2) . @n)

Equation (2.72) provides direct proof of the oscillatory behavior of G®(n+2, n)
with increasing n. For even n, the right-hand side of eq. (2.72) is greater than
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unity, which implies a negative minimum of the Wigner phase distribution (2.70)
[solid circles in fig. 2]. However, for odd n, the coefficients GO(n+2, n) are
less than unity and equal to G©P(n+2, n). Hence the Husimi and Wigner phase
distributions for such states (with odd n) are equal and positive definite.

From the form of the coefficients G*)(m, n) it is evident that there is no s such
that G¥)(m,n)=1 for all m,n. This means that there is no “phase ordering” of
the field operators; that is, the ordering for which P®(8) would be equal to
P(0). However, for a given state of the field one can find s such that the two
distributions are “almost identical”. Formula (2.59) is quite general, and it was
used in earlier studies of the phase properties of the anharmonic oscillator (Tanas,
Gantsog, Miranowicz and Kielich [1991]), parametric down conversion (Tana$
and Gantsog [1992b]), and displaced number states (Tanas, Murzakhmetov,
Gantsog and Chizhov [1992]). A disadvantage of formula (2.59) is the fact
that the numerical summations can be time consuming and even difficult to
perform for field states with slowly converging number-state expansions. This,
for example, is the case for highly squeezed states. In some cases, instead of
using the number-state expansions, we can find analytical formulas for PE)(H)
via direct integrations, as shown in § 3. In many cases such formulas can be
treated as good approximations to the Pegg—Barnett phase distribution.

§ 3. Phase properties of single-mode optical fields

Optical fields produced in nonlinear optical processes have specific phase
properties which depend on the nonlinear process in which the field is produced
and on the state of the field before it undergoes the nonlinear transformation.
Since there is a large variety of nonlinear optical processes, there is the
possibility to generate fields with different phase properties. Here, some
examples of such field states will be given and their phase properties discussed
briefly.

3.1. COHERENT STATES

The most common single-mode field in quantum optics is a Glauber coherent
state. Its phase properties have probably been analyzed within each known phase
formalism. We shall focus our attention on two of them only.
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The s-parametrized quasiprobability distribution function for a coherent state,
|ao) = D(ao) |0}, 3.1)
can be calculated from eqs. (2.45)«2.47) as:

W) = — em(@h—%+'ﬂ><wﬁmwm®m%ﬂ®d%
| <51 o |5e) )
== wp%a a)E" — (o — ak + == | (0|D(®)| 0) &’
%-ewkr%ﬁ w—%w+@"@]¥s

I 2 2
T aTos {_1—s|a_a0|}'
(3.2)

The corresponding s-parametrized phase distribution is (Tana$, Miranowicz and
Gantsog [1993]; for s=0, see also Garraway and Knight [1993] and Bandilla
and Ritze [1993]):

PW@=AwWW®MMM
(3.3)

Ely—rexp [~(X3 - X*)] {exp(=X?) + VA X(1 + erf(X))},
where

X =X90) =4/ l—i—s || cos(B — ), (3.4)

and Xo=X®(); ¥ is the phase of ay. The phase distribution P)(6)
associated with the P-function can be obtained from egs. (3.3) and (3.4) in the
limit of s — 1:

PUO(O) = 5(8 - 1y), (3.5)

which is the Dirac delta function. This result can also be achieved from
(1)

eq. (2.66). As was shown by Miranowicz [1994], the coefficients a;, are unity
for arbitrary m. Hence, eq. (2.66) reduces to:
PO(O) = {1 +2Z cos[m(8 — 190)]} = 6(0 — ), (3.6)
m=1

which is the desired function (3.5). This example shows that the general
expression (2.59) for the s-parametrized phase distributions is also valid in the
special case of s=1.
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Fig. 3. Phase distributions for the coherent states with the mean number of photons: (a) |a0|2 =2,
and (b) |0!0|2 = 0.01; the Pegg—Barnett distribution (solid line), the Wigner phase function PO)(8)
(dashed line), and the Husimi phase distribution PC1(0) (dotted—dashed line).

Formula (3.3) is exact, it is 2;r-periodic, positive definite and normalized, so it
satisfies all requirements for the phase distribution. Moreover, formula (3.3) has
a quite simple and transparent structure. For small |ag|, the first term in braces
plays an essential role, and for |ag| — O we get a uniform phase distribution. For
large |ap| , the second term in the braces predominates, and if we replace erf(X)
by unity, we obtain the approximate asymptotic formula given by Schleich,
Dowling, Horowicz and Varro [1990] (for s=0):

PO(O) ~ \/% |ao| cos(B - Bo) exp [-z |ao|? sin2 (6 — 190)] : G.7)

which however, can be applied only for —37r < (6 — %) < 17. After lineariza-
tion of formula (3.7) with respect to 0, the approximate formula for coherent
states with large mean number of photons obtained by Barnett and Pegg [1989]
is recovered. The presence of the error function in eq. (3.3) handles properly the
phase behavior in the whole range of phase values — < (60— %) < 7.

The Pegg-Barnett distribution P(0) for the coherent state |op) can be
calculated from eq. (2.36) with the superposition coefficients

_ . _ |aof” ) |aol”
cn = b, exp(inddy), b, =exp <_T W (3.8)

The exact formula for the s-parametrized phase distributions P*)(6) for coherent
states is given by eqgs. (3.3) and (3.4). Alternatively, the P®)(6) are given by
eq. (2.59) after insertion of ¢, given by eq. (3.8). In fig. 3 we show the
phase distributions P(8), P©(6), and PCV(0) for a coherent state with the
mean number of photons |0!0|2 =2 (a), and lao|2 =0.01 (b). It is seen that
the Pegg—Barnett phase distribution is located somewhere between the Wigner
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and Husimi phase distributions. It becomes closer to P©(6) for |ag|* > 1, and
closer to PCV(6) for |ag|* < 1. For |ap|* — oo, the Pegg—Barnett distribution
tends to the Wigner phase distribution (Schleich, Horowicz and Varro [1989a],
Barnett and Pegg [1989]), and for |ao|* — 0 all the distributions tend to the
uniform distribution, but the Pegg—Barnett distribution in this region tends to
the Husimi phase distribution. This means that for coherent states with large
mean numbers of photons, P() is a good approximation to the Pegg—Barnett
phase distribution, while for small numbers of photons P""(6) becomes a good
approximation to the Pegg—Barnett distribution.

3.2. SUPERPOSITIONS OF COHERENT STATES

Superpositions of macroscopically distinguishable coherent states have attracted
much interest (see, for example, Buzek and Knight [1995] and references therein)
due to their property of being prototypes for the Schrodinger cats, and important
nonclassical properties, such as sub-Poissonian photon statistics, quadrature
squeezing, higher-order squeezing, etc. Their phase properties have also been
a subject of interest.

Let us consider the normalized superposition |1} of coherent states defined
as:

N
[w) = cx | exp(igh)to) - (3.9)
k=1

This superposition of two well-separated components is called a Schrddinger
cat, whereas for N > 2 the notions Schridinger cat-like state or kitten states are
often used. The phase distributions P(6) [eq. (2.37)] and P©)(6) [eq. (2.59)] for
the state (3.9) can be rewritten in a form showing explicitly the superposition
structure (Tana$, Gantsog, Miranowicz and Kielich [1991], Garraway and Knight
[1992, 1993], BuZek, Gantsog and Kim [1993], Buzek, Kim and Gantsog [1993],
Tara, Agarwal and Chaturvedi [1993], Hach III and Gerry {1993], Buzek [1993],
Miranowicz [1994], BuZek and Knight [1995]).

The Pegg—Bamnett phase distribution P(6) splits into two terms (Tanas,
Gantsog, Miranowicz and Kielich [1991]):

P(0) = Po(6) + Pim(0), (3.10)
where
N
Po(0) =) _ leel” Pu(6) (3.11)

k=1
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is the sum of phase distributions

1
Pi(6) = 5~ {1 +2m§ Bby cos[(m — n)(@x + B — 0)]} (3.12)
for the coherent states of the superposition, and the second distribution
N
Pin(0)= > ciciPui(6), (3.13)
ki=1
k=l
1 . .
P(0) = 5~ ; bubuexplim(@y + 00— 0) = in(¢ + - 6)],  (.14)

represents interference terms emerging from the quantum interference between
the component states of the superposition. In fig. 4, the phase distributions (3.10)
and (3.11) are presented in polar coordinates for the discrete superpositions of
coherent states in the anharmonic oscillator model [see §3.5, eq. (3.57)]. It
is evident from fig. 4 that as the number of components in the superposition
becomes larger, the interference terms play an increasing role and the symmetry
of the Pegg-Barnett distribution [eq. (3.10)] is destroyed. These terms are
negligible for well-separated components of the superposition only (Tanas,
Gantsog, Miranowicz and Kielich [1991]).

Analogously, the s-parametrized quasidistribution W(a) for the superposi-
tion state (3.9) is represented as (Miranowicz {1994]; for s=—1, see Miranowicz,
Tana$ and Kielich {1990}, and for s=0, see also Buzek and Knight [1995]):

WO(a) = WS(@) + Wel(a), (3.15)

int

where the sum of coherent terms is
W(a) = Z lex W (), (3.16)
with
(s) — 2 i9)
Wi(a)=—= e p ——la—e ‘aol (3.17)

The interference part is given by:

Wal(@) =2 Z x| le)l Wi(a), (3.18)
k,1

k> l
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Fig. 4. The Pegg—Barnett phase distributions in polar coordinates for the discrete superpositions of

coherent states (3.57) with N =2-7 components in the anharmonic oscillator model for the initial

mean photon number |Olo|2 = 4; the exact phase distributions P(8), eq. (3.10) [solid lines], and the
functions Py(0), eq. (3.11) [dashed lines), without interference contribution.

with

W@ = =

exp{ L (|a~ei¢"a0|2 + |a—ei¢'a0]2>
l1-s l—-s

+21—E|0!0| (¢k ¢1)}
1-s

1+s .
X COS{Vk —vi-1s |lao|* sin(dy — ¢1)

+Ti_s lal |aol cos(¢k ¢I - 0) sm<¢k—¢l>}

In eq. (3.19) the phases are y;, =Argc,, 0=Arg a, %= Arg oy, and @, appears
in the definition (3.9). On integration, we obtain the following form of the s-
parametrized phase distribution P)(6) (Miranowicz [1994]):

P9(8) = PY(6) + PL)(6); (3.20)

nt

(3.19)

i.e., a simple sum

N
POO) =" lesl PY(6) (3.21)

k=1
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of coherent terms

P;cs)(O) = % exp[- (X5-X3)] {exp(=X3) + VX, [1 +erf(Xe)]},

(3.22)
where
Xy = X8(0) = 1/ = |ao] cos(8— B - ¢u)
e 1-s ’ (3.23)
Xo =X @+ ¢x),
and the sum
PO =" ckciPNO) (3.24)
k=l
of the interference terms
1
P;csl)(e) = 57 P [~ (XK X3 (3.25)
x {eXP(—Xil) + VI X [1 +ef(X i1},
with
Xe1=X8)0) = 2/ = Lo {expli(@e + B0 — 6)]
k! Kl V15 0 k 0 (3.26)
+exp[-i(g; + Do - 0)]},
1-s5s 1+s .
Kr1 = T + Texp{1(¢k - ¢1)} . (3.27)
The Schrodinger cat of the form
) = la,v) = Ny (|la) +exp(iv) |-a)), (3.28)
with the normalization
~1/2
N, = [2 (1 + cos Y exp (—2 |a|2))] , (3.29)

is a special case of the superposition state (3.9). The cat (3.28) consists of two
coherent states |a) and |-a), which are ¢ =7 out of phase with respect to each
other. The state (3.28) is not only of theoretical interest, since several methods
were proposed for generation and measurement of this Schrédinger cat (e.g.,
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Brune, Haroche, Raimond, Davidovich and Zagury [1992], Garraway, Sherman,
Moya-Cessa, Knight and Kurizki [1994]). The state |a, ;) (i.e., for y=1m)
is called the Yurke—Stoler coherent state (Yurke and Stoler [1986, 1988]). This
state can be generated in the anharmonic oscillator model (see § 3.5). For other
choices of v, the state (3.28) goes over into the even coherent state |@,0) or the
odd coherent state |a, ) , which have the following Fock representations (Pefina
[1991]):

IR S
|a, 0) = cosh (|a| ) §=O: (2n)' (3.30)
12 oo 2n+]
|a, ) = sinh (|a| ) §=0: \/(2_”__ 27+ 1). (3.31)

The dissimilar phase properties of the even/odd coherent states were analyzed
by Garraway and Knight [1993] (see also Buzek and Knight [1995]). Their
phase distributions P(6) and P®)(6) can be obtained readily from the general
expressions (3.10) and (3.20), respectively. Obviously, they consist of the
normalized sum of the phase distributions P;»(8) [or P(ls,)z(())] for coherent
states located at @ and (—a) in the phase space plane, together with an
additional interference term Pi5(0) [or P(ISZ,)(O)]. As was shown by Garraway
and Knight [1993], the Wigner phase distribution P(%(8) for the even coherent
state [eq. (3.30)] can exhibit negative values, in contrast to P(6) for the odd
coherent state [eq. (3.31)], which never does. The Fock expansion [eq. (3.30)]
of the even coherent state contains only even photon numbers, similar to the
SUperposition |Meven) + |Heven + 2) discussed in §2.1 [see eq. (2.68) and fig. 2].
Analogously, the odd coherent state [eq. (3.31)] and |nggq) + |Roda + 2) contain
only odd number states. Hence, these dissimilar features of the functions P(O(6)
for |@,0) and |a, ) are well understood for the same reasons as those given in
§2.1 in the analysis of the Wigner phase distribution for the superposition of
the two number states and the interpretation of the oscillatory behavior of the
coefficients GO(m,n) [fig. 1a].

3.3. SQUEEZED STATES

Squeezed states have phase-sensitive noise properties, and it is particularly
interesting to study their phase properties. Sanders, Barnett and Knight [1986],
Yao [1987], Loudon and Knight [1987], and Fan and Zaidi [1988] used the
Susskind—-Glogower formalism in a description of the phase fluctuations of
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squeezed states. Lynch [1987] applied the measured-phase formalism of Barnett
and Pegg [1986]. Vaccaro and Pegg [1989] and Vaccaro, Barnett and Pegg [1992]
investigated phase properties of a single-mode squeezed state from the point of
view of the new Pegg—Barnett phase formalism. Grenbech-Jensen, Christiansen
and Ramanujam [1989] made comparisons of the phase properties of a single-
mode squeezed state obtained according to different phase formalisms, including
that of Pegg and Barnett. Burak and Wodkiewicz [1992] introduced a phase-
space propensity description of quantum phase fluctuations and analyzed, in
particular, squeezed vacuum. The phase properties of the squeezed states have
recently been studied by Cohen, Ben-Aryeh and Mann [1992], and by Collett
[1993a,b]. Various measures of phase uncertainty and their dependence on the
average number of photons were studied by Freyberger and Schleich [1994].

Squeezed states (ideal squeezed states, two-photon coherent states) are defined
by (see Loudon and Knight [1987]):

|0, £) = D(a0) 5(2) [0), (332)
where §(C) is the squeezing operator

5@ = exp(leta® - 1ta?), (3.33)
and ¢ is the complex squeeze parameter

E=refn,  r=|g. (3.34)

The direct integrations lead to the s-parametrized quasiprobability distribution
(for n=0):

W(s)(a) = l 2

TA/(u—s)u! -s)

X exp{—% [Im(a — cto)]2 -

[Re(a—ao)l’ ¢,
(3.35)
where we have used the notation p=exp(2r). After integration over |qaf,

assuming that ¢, is real, we arrive at the formula (Tanas, Miranowicz and
Gantsog [1993]):

pt—s

1 (n=s)u'-s)
27 (t — 5)cos? 6+ (u~! — 5)sin? 0 (3.36)

x exp[~(X3 - X*)] {exp(-X?) + VT X (1 +erf(X))},

p(s)(g) -
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X = X9(6) - Qo /=5 cos 6 (3.37)
—5\/(u—s)cos? O+ (u' —5)sin2

Although the variable X is slightly different, the main structure of the phase
distribution is preserved. Formula (3.36) is valid for both small and large ag. For

= () we have the result for squeezed vacuum. After appropriate approximations,
one easily obtains the formula derived by Schleich, Horowicz and Varro [1989a]
for a highly squeezed state.

The exact analytical formula for the s-parametrized phase distribution for
squeezed states, as given by eqgs. (3.36) and (3.37), for the squeezed vacuum
takes the form

where

(u—s)p!' =)
Zn (u—s)cos? O+ (u! —s)sin2 @’

PO(6) = (3.38)

where p=exp (2r). This formula exhibits a two-peak structure with peaks for
0= j:%:r (for r > 0). It is easy to find that the peak heights are:

PO(Lm) = H’f — (3.39)
meaning that for s=0, the peak height is proportional to u. One can easily
check that the Pegg—Barnett result lies between the s=0 and s=-1 results.
Qualitatively, all three distributions give the same two-peak phase distributions,
but they differ quantitatively: the sharpest peaks are those of P)(6), and the
broadest those of PCD(6).

For squeezed states with non-zero displacement y, an additional factor of a
form identical with that for coherent states, except for the different meaning of
X(0), appears in the phase distribution P)(6). Since this extra factor shows
a peak at 6=0, a competition arises between the two-peak structure of the
squeezed vacuum and the single-peak structure of the coherent component.
This competition leads to the bifurcation in the phase distribution discussed by
Schleich, Horowicz and Varro [1989a,b]. Figure 5 illustrates such a bifurcation
for ap=1, as exhibited by the Wigner and Husimi phase distributions plotted
on the same scale to visualize the differences. Qualitatively, the figures are quite
similar, and differ only in the widths of the peaks. The Pegg—Barnett distribution
in this case is very close to the Wigner phase distribution, and for this reason
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)

Fig. 5. Pictures of the phase bifurcation for the squeezed state with the mean number of photons
lot()|2 = 1. The distributions are: (a) P((8), and (b) PCD)(0). The Pegg—Barnett distribution is very
close to (a).

we omit it here. To calculate the Pegg—Barnett phase distribution one can apply
formula (2.36) with ¢, given by (see Loudon and Knight [1987]):

1 | 2 w2 [ ao+ayertanhr
cp = (n|ag, &) = ———=|5e""tanhr| H {—
n =l ) n!coshr [2 ] "l V2eXtanhr

X exp{—% [|a0]2 + ape?in tanhr] } ,
(3.40)
assuming 7=0 (results for n= %7[ can be obtained on replacing r by ).
Approximate analytical formulas for the phase variance as well as cosine
and sine variances were obtained by Vaccaro and Pegg [1989] for weakly
squeezed vacuum. For large squeezing, the squeezed vacuum phase variance
asymptotically approaches 77%/4, which corresponds to the phase distribution
with two symmetrically placed delta functions:

P(6) =1 [8(6 - 3m)+&(6+ 3m)]. (3.41)

Ideal squeezed vacuum is generated in the parametric down-conversion process,
in which the pump field is treated as a constant classical quantity. Taking into
account the quantum character of the pump, one finds that the signal field is no
longer the ideal squeezed vacuum and its phase properties are different (Tanas
and Gantsog [1992a]) [see § 4.5].

3.4. JAYNES-CUMMINGS MODEL

The Jaynes—Cummings model (Jaynes and Cummings [1963]) (see reviews by
Yoo and Eberly [1985] and Shore and Knight [1993]) is the most popular
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model used to describe the resonant interaction of one two-level atom with one
mode of the electromagnetic field. One of the most remarkable effects predicted
theoretically (Eberly, Narozhny and Sanchez-Mondragon [1980], Narozhny,
Sanchez-Mondragon and Eberly [1981]) and then observed experimentally
(Rempe, Walther and Klein [1987]) in the Jaynes—Cummings model are collapses
and revivals of the atomic inversion. Eiselt and Risken [1989], using the Q-
function, have shown that the collapses and revivals can be understood in terms
of interferences in phase space. Phoenix and Knight [1990] mentioned the
splitting of the phase probability distribution into two counter-rotating satellite
distributions in a model consisting of two degenerate atomic levels, coupled
through a virtual level by a Raman-type transition. Dung, Tanas and Shumovsky
[1990] discussed the collapses and revivals in this model from the point of view
of the field-mode phase properties studied in the framework of the Pegg—Barnett
formalism.
The model is described by the Hamiltonian (at exact resonance):

H=now(a'a+R) +hg(R'a+Rah, (3.42)

where @' and 4 are the creation and annihilation operators for the field mode;
the two-level atom is described by the raising, R, and lowering, R, operators
and the inversion operator R?, and g is the coupling constant.

To study the phase properties of the field mode, we must know the state
evolution of the system. After dropping the free evolution terms, which change
the phase in a trivial way, and assuming that the atom is initially in its ground
state and that the field is in a coherent state |ag) , the state of the system is found
to be:

lw(t)) = Z baexp(indo) [ cos(vngt) |n,g) —isin(vngt) |n—1,e)],  (3.43)

n=0

where |g) and |e) denote the ground and excited states of the atom, the
coefficients b, are given by eq. (3.8), and ¢ is the coherent state phase.

According to the Pegg—Barnett formalism, one gets the phase distribution P(8)
in the form (Dung, Tana$ and Shumovsky {1990])

P(O)= % {1 +2 " buby cos[(n— k)6] cos [(\/ﬁ - \/E) gt] } . (349

n>k

This formula can be rewritten into the form

P(6) = 5 [P.(6) + P_(0)], (3.45)
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Fig. 6. The Pegg-Barnett phase distribution (3.44) of the Jaynes-Cummings model as a function of
scaled time 7' = gt/(27 |agl) for the initial mean photon number lagl?® = 20.

where
P.(0)= {1+zz b bkcos[(n k)0 ¥ (f f) gt]} (3.46)

which shows explicitly that as time elapses, the phase distribution P(6) splits into
two distinct, right and left rotating, distributions in the polar coordinate system.
Polar plots of the phase distribution are shown in fig. 6 (the time 7' = gt/(27 |ao|)
is scaled in the revival times). So, after a certain interval of time, the two counter-
rotating distributions “collide”, and at that time the components of the field
oscillate in phase and one can expect the revival of the atomic inversion. The
numerical calculations corroborate this statement (Dung, Tana$ and Shumovsky
[1990]). This behavior of the phase distribution resembles the behavior of the
Q-function studied by Eiselt and Risken [1991]. The time behavior of the phase
variance together with the phase-probability density distribution carries certain
information about the collapses and revivals. To show this, we first give the
explicit expression for the variance. Using eqgs. (2.36) and (3.44), one obtains:

<(Aq>0)2> - 42 - 1)k)2b bkcos[(f-\/’) gt} (3.47)

Variance (3.47) is illustrated graphically in fig. 7 for |ozo|2 = 20. The variance
goes up initially and reaches a maximum at the scaled time 7'=1, which is
the first revival time. The revival times correspond to the extrema of the phase
variance. In this way, the well-known phenomenon of collapses and revivals has
obtained clear interpretation in terms of the cavity-mode phase. More details can
be found in the paper by Dung, Tanas and Shumovsky [1990]. The dynamical
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Fig. 7. Evolution of (a) the mean photon number {#) and (b) the variance <(A<39)2> of the Pegg—

Barnett phase operator for the Jaynes—Cummings model as a function of scaled time T = g#/(27 | |)
for |ag)? = 20.

properties of the field phase in the Jaynes—Cummings model were studied by
Dung, Tana$ and Shumovsky [1991a], and the effects of cavity damping by
Dung and Shumovsky [1992]. Some generalizations of this simple model were
also considered from the point of view of their phase properties (Dung, Tanas
and Shumovsky [1991b], Meng and Chai [1991], Meystre, Slosser and Wilkens
[1991], Dung, Huyen and Shumovsky [1992], Meng, Chai and Zhang [1992],
Peng and Li [1992], Peng, Li and Zhou [1992], Wagner, Brecha, Schenzle and
Walther [1992, 1993], Fan [1993], Jex, Matsuoka and Koashi [1993], Drobny,
Gantsog and Jex [1994], Fan and Wang [1994], Meng, Guo and Xing [1994]).

3.5. ANHARMONIC OSCILLATOR MODEL

The anharmonic oscillator model is described by the Hamiltonian

o~

H = hwd'a+ Lnxaa?, (3.48)

where @ and 4' are the annihilation and creation operators of the field mode,
and « is the coupling constant, which is real and can be related to the nonlinear
susceptibility ¥ of the medium if the anharmonic oscillator is used to describe
propagation of laser light (with right or left circular polarization) in a nonlinear
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Kerr medium. If the state of the incoming beam is a coherent state |ap), the
resulting state of the outgoing beam is given by:

9(D) = D@ lao) = exp(- ol /2> Fhoxp[iZn(n=D] ), 349
n=0 )

where T=—xt. In the problem of light propagating in a Kerr medium, one
can make the replacement ¢ =—z/v to describe the spatial evolution of the field
instead of the time evolution. On introducing the notation a = |ag| exp(ithy),
the state (3.49) can be written as

1Y(7)) = i b exp{i [m?o + —;—n(n - 1)] } Iy, (3.50)
n=0

where b, is given by eq. (3.8).

The appearance of the nonlinear phase factor in the state (3.50) modifies
essentially the properties of the field represented by such a state with respect to
the initial coherent state |} . It was shown by Tana$ [1984] that a high degree
of squeezing can be obtained in the anharmonic oscillator model. Squeezing
in the same process was later considered by Kitagawa and Yamamoto [1986],
who used the name crescent squeezing because of the crescent shape of the
quasiprobability distribution contours obtained in the process. The evolution of
the quasiprobability distribution Q(a, @*) in the anharmonic oscillator model
was considered by Milburn [1986], Milburn and Holmes [1986], Pefinova
and Luks [1988, 1990], Daniel and Milburn [1989], and Pefinovd, LukS and
Karska [1990]. The states that differ from coherent states by extra phase
factors, as in eq. (3.50), are the generalized coherent states introduced by
Titulaer and Glauber [1966] and discussed by Stoler [1971]. Biatynicka-Birula
[1968] has shown that, under appropriate periodic conditions, such states
become discrete superpositions of coherent states. Yurke and Stoler [1986], and
Tombesi and Mecozzi [1987] discussed the possibility of generating quantum-
mechanical superpositions of macroscopically distinguishable states in the course
of evolution for the anharmonic oscillator. Miranowicz, Tanas and Kielich [1990]
have shown that superpositions with not only even but also odd numbers of
components can be obtained.

The Pegg—Barnett Hermitian phase formalism has been applied to the study
of the phase properties of the states (3.50) by Gerry [1990], who discussed the
limiting cases of very low and very high light intensities, and by Gantsog and
Tana$ [1991f], who gave a more systematic discussion of the exact results. Phase
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fluctuations in the anharmonic oscillator model were also analyzed within former
phase formalisms (Gerry [1987], Lynch [1987]).

The continuous Pegg—Barnett phase probability distribution (2.36) for the field
state (3.50) takes the following form:

P(6) = % {1 +2>" buby cos[(n—k)@— % [n(n— 1) — k(k - 1)]] } (3.51)
n>k

and the s-parametrized quasiprobability distribution function is now given by
(Miranowicz [1994]):

1 2 2 1+s
(s) _1 2 2 2 2 I+s 2
WS (a, 7) nl_sexp{ l_s(|ao| +|a|)}{2exp(1_s|ao|>
la'm‘n |0! ln+m 2 m-n s+1 n ~ 4 '(1’2
ST e 2L
sz;n 1-s s—1 " 1—s2

X s [(m — ) - 0) + -;- [m(m — 1) - n(n ~ 1)]]

+Jo (ili_s la| |a0|) }
(3.52)

where J(x) is the Bessel function. For 7=0, W®)(q), given by eq. (3.52), is the
coherent-state distribution [eq. (3.2)]. In the special case, for Q-function (s=-1),
eq. (3.52) reduces to:

2
ata
O(a,7) = —exp( la? — aoP) Z ( exp(l n(n — 1)) (3.53)
n=0
The s-parametrized phase distribution resulting from eq. (3.52) is:
P(ﬂ(e)— {1 +2) " bubaG(m,n)
T
X cos [(m—n)(e— 9o) 5 [m(m — 1)~ n(n - 1)]]
(3.54)

where the coefficients G (m,n) are given by eq. (2.60). Symmetrization of
the phase window with respect to the phase ¥y as done for the Pegg—Barnett
phase distribution [eq. (3.51)] is equivalent to introduction of the relative phase
variable 0 -9, and the two formulas differ only by the coefficients G (m, n),
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as in eq. (2.59). For 1=0, eqgs. (3.51) and (3.54) describe the phase probability
distributions for the initial coherent state |ag). When the nonlinear evolution
is on (7 #0), the distributions P(6) and P¥)(0) acquire some new and very
interesting features. A systematic discussion of the properties as well as the
plots of P(6) and PC(6) are given by Tana$, Gantsog, Miranowicz and Kielich
{1991], and by Gantsog and Tana$ [1991f].

The phase distribution P(8) can be used to calculate the mean and the variance
of the phase operator, defined by eqs. (2.24) and (2.25). The results are (Gantsog
and Tanas [1991f]):

(0 [@4] wi0)) =00+ [ 6P@)a0

_1ynk
=-2Y b,,bk%— sin {-21- [n(n — 1) — k(k - 1)]},
(3.55)

n>k

<(A&>9)Z>= / " 62P(8)d - [ / ! GP(G)dO]Z

n—k
% +4 Z b bk ) cos{% [n(n—1) - k(k - 1)]} (3.56)

{22171),,

n>k

)nk

2
sm{% [n(n— 1) — k(k — 1)]}} .

For 7 =0, we recover the results for a coherent state with the phase %% [egs. (2.31)
and (2.39)]. The nonlinear evolution of the system leads to a nonlinear shift of
the mean phase and essentially modifies the variance. An example is illustrated
in fig. 8, where the evolution of the mean phase (fig. 8a) and its variance (fig. 8b)
are plotted against 7 for various values of |0£0|2 . We have assumed %) =0, and the
window of the phase values is taken between — and 7. The evolution is periodic
with the period 27, so the initial values are restored for T=_2. Figure 8a shows
the intensity-dependent phase shift. The amplitude of the mean-phase oscillation
becomes larger with increasing mean number of photons. The line 7%/3 in
fig. 8b marks the variance for the state with random distribution of phase. It
is seen clearly from fig. 8b that the stronger the initial field, the higher the phase
variance. For |0¢0|2 = 4, the phase variance increases rapidly and most of the
period oscillates around 712/3 — the value for uniform phase distribution. This
means that the phase is randomized during the evolution, although it periodically
reproduces its initial values. This tendency is even more pronounced when the
mean number of photons increases. The periodicity of the evolution is destroyed
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Fig. 8. Evolution of (a) the mean phase (3.55) and (b) the phase variance (3.56) for the anharmonic
oscillator model.

by damping (Gantsog and Tana$ [1991b]). The sine and cosine functions of
the phase were also calculated and the results compared with other approaches
(Gantsog and Tana$ [1991f]).

The local minima in <(A59)2> apparent in fig. 8 indicate the points in the
evolution in which superpositions of coherent states are formed, and the phase
variance decreases at these points. This occurs for T=27M/N (N=2,3,4, ...,
and M, N are mutually prime numbers), for which the P(6) and P)(6) plotted in
polar coordinates show N-fold symmetry, confirming the generation of discrete

superpositions of coherent states with 2, 3, 4, ..., components:
M 2N
v (=2 ) = 2ol ewtiooe), (.57

where the phases ¢4 are simply
or = —k, k=1,...,2N, (3.58)

and the superposition coefficients ¢, representing the so-called fractional
revivals, are given by (Averbukh and Perelman [1989], Tanas, Gantsog, Mira-
nowicz and Kielich [1991])

2N

= E%V— 2 exp <—i% [nk — Mn(n — 1)]) . (3.59)

Such superpositions, created during the evolution of the anharmonic oscillator
model, have very specific phase properties discussed in § 3.2. Plots of the phase
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distributions (3.10) and (3.11) (where N should be replaced by 2N) for the
superpositions (3.58) with several components are presented in fig. 4. The phase
distribution indicates the superpositions in a very spectacular way, as shown by
Tana$, Gantsog, Miranowicz and Kielich [1991], Gantsog and Tana$ [1991f] and
Sanders [1992] for the anharmonic oscillator model, and by Paprzycka and Tana$
[1992] for the model with higher nonlinearities.

3.6. DISPLACED NUMBER STATES

Other states which are interesting from the point of view of their phase
properties are the displaced number states |ag,np) generated by the action of
the displacement operator 13(0!0) on a Fock state |ng) (see De Oliveira, Kim,
Knight and Buzek [1990]);

|0, 0) = D(ato) |mo) . (3.60)

In a special case, when ny=0, the states (3.60) become a coherent state |ap).
The s-parametrized quasiprobability distribution for the state (3.60) is

Wi - ey (1)

S

3.61
2 2 4|a—a0|2 ( )
X exp _I_—S Ia—a()l L,, 1——32 s

whereas the s-parametrized phase distribution becomes (Tana$, Miranowicz and
Gantsog [1993]):

o (&) £ (3 ()

k l (3.62)
—_2
1=0
here,
N,
Pa(X) =5 2.0 (3.63)

x {exp(-X?)0u(X) + VI X(1 + erf(X))},

2 & % 22 k'
o(X)= an) ; F Z (2k)' ) (3.64)
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and the normalization constant is equal to
1 T
Mo =1+ exp-xdo [ 10,00~ 1146
27 ) o

- 2 22(nlf g~ Q0! o N~ Ly
1+ exp(—=Xg) {—1+ ) ,;) 22k(k!)3XO —,; EXO .
(3.65)

The X variable in this case is

X =X90) = ,/& ag cos 6, (3.66)

and we have assumed aqp as real. Despite its more complex structure, for-
mula (3.62) contains phase distributions P,(X) that exhibit the main features
of the previous phase distributions P®)(0); i.e., eq. (3.3) for a coherent state and
eq. (3.36) for a squeezed state.

Displaced number states have the following Fock expansion

@0, 7o) =) _ bue® |n), (3.67)

where the amplitudes b, and phase factors ¢, are:

by = {n| D(|to) |no)

1 n\"? ot mem (3.68)
=exp( 5 laol’ ) (=) (1" ool Ly (laof),
2 n,!
n.=min{n,ny}, ne=n-+ny—n_, (3.69)
Pn = (n—np) Arg ag = (n— no) By, (3.70)

which on insertion into eq. (2.36) give explicitly the Pegg-Barnett distribu-
tion P(6).

Both for coherent states and squeezed states, there was no qualitative
difference between various phase distributions. Thus, one could say that at least
qualitatively, all the phase distributions carried the same phase information.
Here, we give an example of states for which the above statement is no longer
true. These are displaced number states. The phase properties of such states
were discussed earlier by Tanas, Murzakhmetov, Gantsog and Chizhov [1992].
It was shown that there is a qualitative difference between the Husimi phase
distribution on one side, and the Pegg—Barnett and Wigner phase distributions
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Fig. 9. Phase distributions for the displaced number state with n=2 and a9 =3. Meaning of the lines
is the same as in fig. 3.

on the other. There is an essential loss of information in the case of the Husimi
phase distribution. The differences can be interpreted easily when the concept of
the area of overlap in phase space introduced by Schleich and Wheeler [1987]
is invoked. Formula (3.62) provides the possibility of deeper insight into the
structure of the s-parametrized phase distributions. The phase distribution P¢)(6)
is a result of competition between the functions P,(X), which are peaked at =0,
and the functions (X3 — X2)’, which have peaks at ==+/2. For s=-1, only the
term with n— k=0 survives, and there is no modulation due to the (—1)"* factor.
This is the reason why the Husimi phase distribution can have at most two peaks,
no matter how large is 7. Both for the Pegg—Barnett phase distribution and P¥(6)
there are n+ 1 peaks. It is also worth noting that despite the fact that the Wigner
function W© [eq. (3.61)] oscillates between positive and negative values, the
Wigner phase distribution P©(0) [eq. (3.62)] is positive definite. An illustration
of the differences between the phase distributions for the displaced number states
with n=2 and |0t0|2 = 9 is shown in fig. 9. It is seen that the Pegg—Barnett phase
distribution is very close to P(6), and that they carry basically the same phase
information, while there is an essential loss of phase information carried by
PC1(6). The Pegg—Barnett and PO)(0) distributions are very similar for given n,
while PCD(0) has at most two peaks that become broader as n increases. This
example shows the difference between a “pure” canonical phase distribution such
as the Pegg—Barnett distribution, which could be associated with a “pure” phase
measurement, and a “measured” phase distribution such as PC1(6), which can
be associated with the noisy measurement of the phase. The noise introduced
by the measurement process reduces the phase information that can be inferred
from the measured data.
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§ 4. Phase Properties of Two-Mode Optical Fields

The single-mode version of the Pegg—Barnett phase formalism can be extended
easily into the two-mode fields (Barnett and Pegg [1990]) that are often a subject
of consideration in quantum optics. This leads to the joint phase probability
distribution for the phases of the two modes, and allows the study of not only
the individual mode phase characteristics discussed above but also essentially
two-mode phase characteristics such as correlation between the phases of the
two modes. The phase properties of a two-mode field are simply constructed
from the single-mode phases (see § 2.1). The two-mode joint phase distribution
is given by
2

PO = Jim_ (Gr) O 0 1T @
This phase distribution can be applied, similar to the one-mode case, for
calculations of the mean values of the phase-dependent quantities, such as
individual phases, their variances, etc. We are often interested not in the
individual phases corresponding to either mode, but rather in the operators or
distributions representing the sum and difference of the single-mode phases,
which can also be calculated using the joint phase distribution [eq. (4.1)].
However, the phase sum and difference values will cover the 477 range, and the
integrations over the phase sum and difference variable should be performed over
the whole range. This approach, although fully justified, is not compatible with
the idea that the individual phase should be 27-periodic, and there should be a
way to cast the phase sum and difference into the 27 range. Such a casting
procedure was proposed by Barnett and Pegg [1990]. The two approaches,
however, give different values for the phase sum and difference variances, for
example, and one should be aware of the differences. Sometimes the original
calculations based on the joint phase distribution (4.1) have a more transparent
interpretation, especially when one considers the intermode phase correlations.
We shall adduce here examples of both approaches (the quantities obtained with
the use of the casting procedure will be distinguished by the subscript 27). The
casting procedure is described briefly below.

The possible eigenvalues of the phase-sum operator are:

Om, = B0, + Oo, + %m+, 4.2)
where m. =0, 1, ..., 20, and the eigenvalues of the phase-difference operator
are

2n

Qm_ = 00,, - 001, + mm_, (43)
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where m_=-g,-0+1,..., g. Itis seen that the eigenvalue spectra (4.2)—-(4.3) of
the phase sum and difference operators have widths of 47. Since phases differing
by 27t are physically indistinguishable, the phase sum and difference operators
and distributions should be cast into a 27t range (Barnett and Pegg {1990]).
The casting procedure can be applied to the joint continuous-phase distribution,
Par(0,,0-), defined as:

2
Pin(0,0= 3 fim_ (G2) (0n, 00 1117, @)
0:1: = Oa + Bb. (45)

As was stressed by Barnett and Pegg [1990], there are many ways to apply the
casting procedure. However, if the distribution P4z(0., 0-) is sharply peaked, we
must avoid splitting the original single peak into two parts, one at each end of the
27 interval. Such a poor choice of the 25 range leads to the same interpretation
problems encountered for a poor choice of 0y in the single-mode case (Barnett
and Pegg [1989]). The casting procedure can be applied as follows:

P2n(6+, 0_) = P4n(9+, 6_) + P4n(9+ + 51, 0_+ (52), (46)
where the shifts ; and &, are dependent on the values of 8_ and 8,:

0o, + 7, 00, +37),

|6, — 8o, — 27|+ 6. — 27,6y — 1) ;
0o, — 7,00+ 1),

L 6 =27 6,=0, for {

IL 6 =0, 6,=2x, for {

O, + 7, Oo, +37),

O, + 7,27~ 10, = Oy, ~ 27| + Op_) ;
90_ —JT, 00_ +JT> R

4+

0, €

0_ €/

0_€(

0, € {|60--6_| + 60,60, + 7);
8, €

I 6, =-2mn, 6,=0, for
0- €

0_ €

0, €

IV. 6, =0, 6=-2n, for {
60+ +3m,4m — |0_ — 60_' + 60+> .

4.7

This analysis of four regions in the (8., 8_)-plane to be cut and shifted is close
to the original idea of Barnett and Pegg [1990], and can be easily understood
in a geometrical representation of the variable transformation. Moreover, as a

further consequence of the 2m-periodicity of eq. (4.6), one can keep the same
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shifts 8; and &, in the whole (6., 6_)-plane without distinguishing any regions.
Let us only mention some of the possible simplified castings:

P2ﬂ(0+, 6_) = P4][(9+, 0_) + P4n(9+, 0_ i 27[)
- P4JT(0+’ 0-) + P4n(0+ +2m, 6—)

4.8)
= P47I(9+’ 0_) + P4n(9+ j: JI, 9_ :h JT)

and combinations of the shifts satisfying the condition |6,]+|d,| =27 or
161} —|62|| = 2m. The resulting joint distribution P,,(6.,0_) is 2m-periodic
in 6, and 6_. Alternatively, one can apply the casting procedure to phase
distribution (4.1):

1 0.+0_ 0,-0_ 0,+06_ 0.-06_
P2ﬂ(9+’9—): EI:P“JT( +2 £l +2 >+P4ﬂ< +2 ’+61’ +2 +62>:|
4.9

The factor % occurring in eqs. (4.4) and (4.9) comes from the Jacobian of
the transformation (4.5) for the variables. The marginal mod(2:) phase-sum,
P,;(8,), and phase-difference, P»,(6.), distributions are given by:

Gy t2m
Pa0z)= [ Prx(01, 0401, (4.10)
B0+
where
6635 = 60:4: + 7. (4.1 1)

In the above approach, the casting was prior to the integration. There is another
equivalent manner of obtaining mod(27) marginal phase sum and difference
distributions in which the casting is applied after integration. In this approach
(Barnett and Pegg [1990]), one starts from eq. (4.4) to calculate the 47-periodic
marginal distributions P4(01):

27-|6,—60, —27|+80_
Pin(6,) = P4x(6,,0.)d6., (4.12)

|84~80, —27|+69_—27

4]'[-I 6_~6¢_ '*001,
Pan(0-) = P4z(6+,0-)d0,. (4.13)
{6_—6o_|+60,
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Contrary to the former approach, the casting procedure is now applied to the
single-mode distributions P4,(01) (Barnett and Pegg [1990]):

P4n(0+)+P4n(6+ +27L') if 60+ +7T < 9+ < 60+ +2.7T,

P4n(0+) +P4n(6+ - 27[) if 90+ +27 £ 6+ < 0()+ + 3JT,
(4.14)

P(0y) = {

and

P4n(0_) +P4n(9_ +2JT) if 00_ -1 <0< 0()7,

Py (6)= 4.15
2a(0-) {P4,,(6_)+P4,,(6_ —2m) if 6. < 6. < G+ (415)

Again, due to the 2m-periodicity of P»z(6+) in 64, one can simplify the
recipes (4.14) and (4.15) to one of the forms:

P2a(0+) = Pag(0+) + Pan(04 +271) (4.16)
= P4z(01) + P4n(0+ — 270) .
in the whole interval 0p4. < 04 < Ogx +27.
One can analyze analogously the two-mode s-parametrized phase distributions.
Here we give only one expression for the mod(27) s-parametrized phase-
difference distribution for arbitrary density matrix p and any s:

1NN oo Y
P60 - MZZZG (k,)GO(n—k,n—1) @1

n=0 k=0 [/=0
x exp [i(k = 6] (l,n— || k,n— k),

with the coefficients G¥(k, [) given by eq. (2.60). Also, by putting G¥(k,1) — 1,
the mod(2:r) Pegg-Barnett phase-difference distribution is obtained as derived
by Luis, Sanchez-Soto and Tanas [1995].

4.1. TWO-MODE SQUEEZED VACUUM

Single-mode squeezed states, discussed in § 3.3, differ essentially from the two-
mode squeezed states discussed extensively by Caves and Schumaker [1985] and
Schumaker and Caves [1985]. The Pegg-Barnett phase formalism was applied
by Barnett and Pegg [1990], and by Gantsog and Tanas [1991g] to study the
phase properties of the two-mode squeezed vacuum, and some of the results are
adduced here.
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The two-mode squeezed vacuum state is defined by applying the two-mode
squeeze operator S(¥, @) on the two mode vacuum, and is given by (Schumaker
and Caves [1985]):
=5(-,9)10,0)
= (coshr)'exp (ez"”tanh rd;'d;) |0, 0)

0, O>(r»<i7)

(4.18)

oo
= (coshr)™! Z (e**tanh r)" |n, n),
n=0

where Ez]; and d; are the creation operators for the two modes, r (0 < r <o00) is
the strength of squeezing, and @ (—7/2 < @ < m/2) is the phase (note the shift
in phase by 77/2 with respect to the usual choice of @).

The state (4.18), when the procedure described earlier is applied to it, leads
to the joint probability distribution for the phases 8; and 8, of the two modes
in the form (Barnett and Pegg [1990]):

P(64, 0,) = (47% cosh? ¥)!(1 + tanh? r — 2 tanh 7 cos (6, + 6,)).  (4.19)
One important property of the two-mode squeezed vacuum, which is apparent
from eq. (4.19), is that P(0;, 6;) depends on the sum of the two phases only.

Integrating P(6,, 6,) over one of the phases gives the marginal phase distribution
P(6,) or P(8,) for the phase 8, or 0,:

PO = [ P61, 02 d0: = PO = 5. 420

meaning that the phases &, and 6, of the individual modes are distributed
uniformly. This gives:

<E>91> o+ /: 0,P(6,)d8, = <&>92> = ¢, (4.21)
and
<6>61 + &92> =2¢, <&>9, - 692> =0, (4.22)

Thus, the phase-sum operator is related to the phase 2¢ defining the two-mode
squeezed vacuum state (4.18).



404 QUANTUM PHASE PROPERTIES [VI, §4

0.10

62)
05

4
’/’?Z”Z/ 7
157 ’l” // {7

1
0

7
)
2

P(

Fig. 10. The joint probability distribution P(8,, 8), eq. (4.19), for the two-mode squeezed vacuum
with r=0.5.

The two-mode squeezed vacuum has very specific phase properties: the
individual phases as well as the phase difference are random, and the only non-
random phase is the phase sum.

Figure 10 shows an example of the joint phase probability distribution
P(61, 8,). The ridge, which is parallel to the diagonal of the phase window
square, reflects the dependence of P(8,, 6;) on 0; + 6, only.

The phase distribution P(8, 6,) [eq. (4.19)] is an explicit function of the phase
sum, but not of the phase difference. This suggests expression of eq. (4.19) in
new variables (6,, 8_). After applying the casting procedure (see introduction to
§ 4) the joint mod(27r) phase distribution is (Barnett and Pegg [1990]):

P(6,,0.) = (4% cosh? r)~'(1 + tanh? 7 — 2 tanh r cos 6,) ", (4.23)

whereas the marginal phase distributions are

Pya(0,) = (27 cosh? ry~'(1 + tanh?  — 2 tanh 7 cos 8,) ", (4.24)
1
Paa(6)= 5. (4.25)

The uniform shape of function (4.25) signifies randomness of the phase
difference in the field [eq. (4.18)]. If the casting procedure is not applied,
the marginal distributions P(64) = P4,(01) have more complicated structures
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Fig. 11. Phase variances V1; = ([A(c7>,,l + 21392)]2>, eq. (4.29), and ¥, = <[A(<3e, + @92)]2>2n,

eq. (4.30), and the phase correlation function Cy;, eq. (4.28), against the squeeze parameter r for
the two-mode squeezed vacuum.

(Barnett and Pegg [1990]). In particular, P4z(0-) is not uniform because of
the integration limits in eq. (4.13). In general, the mod(4:) distribution has no
unique shape signifying randomness of the phase sum or difference. There are
many distributions in the 47 range leading to a flat mod(2s) function.

The two-mode variance of the phase-sum operator can be calculated according
to the general formula:

<|:A(E1591 + 692)]2> = <(Ac7>9,)2> + <(A@92)2> +2C1 (4.26)

in terms of the individual phase variances <(A 691‘2 )2> and the phase correlation
function (correlation coefficient)

Cu= () () (i)

T T
- / 0,0,P(61,6,) 46, d6, @27

T J-T

_< / 01P(01)d91) ( / ezp(ez)dez).

The variances <(AGA§9,’2)2> are simply 712/3 [because of eq. (4.20)], and the phase

correlation function C); is equal to:
n+k

tanh
Ciz =—2(coshr)? Y %“—_17 = —2 dilog(1 - tanh). (4.28)
n>k

k)

This correlation function describes the correlation between the phases of the two
modes of the two-mode squeezed vacuum. In fig. 11 the correlation coefficient
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as well as the phase variances are plotted against the squeeze parameter r.
The correlation is negative and, as r tends to infinity, approaches %3
asymptotically. Finally, phase variance (4.26) has the form:

<[A(cf>9, + 692)]2> = 2”?2 _ 4dilog(1 - tanh ). (4.29)

The strong negative correlation between the two phases lowers the vari-
ance (4.29) of the phase-sum operator. For » — oo, this variance tends asym-
totically to zero, which means that for very high squeezing the sum of the two
phases becomes well-defined (phase-locking effect).

The (“single-mode”) mod(27r) phase-sum variance is (Barnett and Pegg
[1990)):

<[A(&>6, +&>92)]2> ~ / " 62Pya(0,)d0,
. Jom (4.30)

o
= 3 + 4 dilog(1 + tanhr).

As the squeezing parameter r varies from 0 to oo, the mod(2s) variance
[eq. (4.30)] decreases from m%/3 to zero, whereas the two-mode phase-sum
variance [eq. (4.29)] changes from 2:7%/3 to zero with increasing r. Hence,
both variances (4.29) and (4.30), reveal the fact that the phase sum becomes
perfectly locked in the limit of large squeezing (r — oo). The value %/3 of the
variance (4.30) describes random phase sum for zero squeezing. In this case of
r=0, the two-mode variance (4.29) is twice as much as the mod(27) phase-
sum variance (4.30), since it shows randomization of the two phases, &)0, and
692, separately. As was stressed in §4, both the original distributions, given
by egs. (4.19) and (4.20), and the mod(2:1) distributions, given by egs. (4.23)~
(4.25), are valid and useful. However, some care is required when interpreting
the results obtained in both ways. The phase-sum variance has generally different
values, as seen from fig. 11, in the two approaches. The original distributions are
better for understanding the intermode phase correlation, which can be calculated
explicitly from eq. (4.27), while for the mod(2:) distribution the correlation is
concealed in the value of the phase variance (4.30) and is not seen explicitly. On
the other hand, the mod(27) results have a clear interpretation for the sum and
difference of the individual phases treated as single-phase variables.
Generalizing formula (2.15) and taking into account the fact that the two-
mode squeezed vacuum is a “physical state”, we can calculate the expectation
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values of the phase exponential operators in the following way (Gantsog and
Tanas [1991g]):

<exp(im1 (39| ) exp(imz ;1392)> = (e/x\p(lml (D]sg) 6(\p(1m2 @250»
= (coshr)? Z Z (%% tanh 7)™ (1, 1jn, k) (n + my, k + ma|m, m)

nk=0 m]=0
. ;
= (ez“” tanhr)" Oy m,,

4.31)
where for brevity we denote ((-+-)) = (,¢)(0, 0{(- - )| 0,0),, .. The operators
éxp(imy 2 @1,256) = Z ) (n+mz] (4.32)
n=0

are the Susskind-Glogower phase operators for the two modes. Formula (4.31)
is strikingly simple, and shows that only exponentials of the phase sum have
nonzero expectation values.

Using eq. (4.31), the following results for the cosine and sine of the phase-sum
operator are obtained (Gantsog and Tana$ [1991g]):

<cos(@91 + &592)> = tanh r cos 29, <sin(&>9, + 692)> = tanhrsin2g, (4.33)

<cosz(fl\>91 + ZI\?@Z)> = 1 + (tanhr)’ cos4g,
L (434)
<sin2((1>91 + <p92)> = 1~ L(tanh r)? cos 49,

<{A cos(axi(,l + @92)]2> = <[A sin(agl + 6502)]2> = 5(cosh P2 (4.35)

For very large squeezing (r — oo, tanhr — 1, coshr — o), the expectation
values (4.33) and (4.34) of the functions of the phase-sum operator become
asymptotically corresponding functions of the phase 2¢, confirming the relation
between the phase sum and 2¢ that is already apparent from eq. (4.22). It
is interesting that the expectation value of the phase-sum operator is equal to
2@ irrespective of the value of r, whereas for the sine and cosine functions
correspondence is obtained only asymptotically. The variances (4.35) then
become zero and the sine and cosine of the phase sum are well-defined.

It should, however, be emphasized that the expectation values calculated
according to the Pegg—Barnett formalism depend on the choice of the particular
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window of the phase eigenvalues. If a choice different from that made
above were made, the clear picture of the phase properties of the two-mode
squeezed vacuum would be disturbed. For example, the value of the correlation
coefficient (4.28) would be different, and the phase-sum variance (4.26) would
not tend asymtotically to zero. However, formulas (4.31)-(4.35), because of the
way they have been calculated, do not, in fact, depend on the choice of the
phase window. This gives us the opportunity to make a choice which introduces
consistency in the behavior of the phase itself and its sine and cosine functions.
Another way of making the choice is to minimize the variance (4.26) of the
phase-sum operator.

4.2. PAIR COHERENT STATES

Pair coherent states introduced by Agarwal [1986, 1988] are quantum states of
the two-mode electromagnetic field, which are simultancous eigenstates of the
pair annihilation operator and the difference in the number operators of the two
modes of the field. Agarwal [1988] has discussed the nonclassical properties
of such states, showing that they exhibit remarkable quantum features such as
sub-Poissonian statistics, correlations in the number fluctuations, squeezing, and
violations of the Cauchy—Schwarz inequalities. He has also presented results
for fluctuations in the phase of the field using the Susskind-Glogower phase
formalism. The phase properties of such states on the basis of the Pegg—Barnett
formalism were studied by Gantsog and Tana$ [1991e}, and by Gou [1993]. Phase
distributions for squeezed pair coherent states were analyzed by Gerry [1995].

The pair coherent states are defined by Agarwal [1988] as eigenstates of the
pair-annihilation operator:

ab|t,q)=¢1¢,q), (4.36)

where € is a complex eigenvalue and g is the degeneracy parameter, which can
be fixed by the requirement that |, q) is an eigenstate of the difference of the
number operators for the two modes

@a-56'6)\t,q9)=4q1¢,9). (4.37)

The solution to the above eigenvalue problem, assuming ¢ to be positive, is
given by (Agarwal [1988]):

v &
|C1q> _ng \/mln+q9n>, (438)
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where N, is the normalization constant

-1/2
NN )
MeT (Zo n!(n+q)!> = [a1en,@ilen) . (439)

The state |n + ¢, n) is a Fock state with n+¢ photons in mode a and » photons
in mode b. If the complex number ¢ is written in the form

=[] exp(ig), (4.40)

the state (4.38) can be written as

2,q) = bue™ |n+q,n), 4.41)
n=0
where
b, = £ = 0. (4.42)

Now, the phase properties of the state (4.41) can be studied easily using the
Pegg—Barnett formalism in a standard way as described above. The resulting
joint probability distribution for the phases 8, and 0, of the two modes is given
by (Gantsog and Tana$ [1991e])

P(8a,6s) = 7 {1 +2> " bubcos[(n— k)(0q + 0,,)]} (4.43)

n>k

where b, is given by eq. (4.42). For ¢=0, formula (4.43) can be written in the
following simple form:

2

(2N 7 exp(2 || cos(8, + Op)] (4.44)
As in the case of the two-mode squeezed vacuum, the joint phase probability

distribution depends on the sum of the two phases only, which means strong

correlation between the two phases. Again, the only non-uniformly distributed

phase quantity is the phase sum 8, + 0,. This suggests re-expression of the

phase distribution (4.43) in new variables of the phase sum, 0. =0,+0;, and

P(0q, 0) =
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phase difference, 6_ = 0, — 6. After applying the casting procedure, the mod(2s)
Pegg-Barnett distribution Py,(6.,, 6_) takes the form

l O
Pz (0,,0-) = e {1 + 2n§>k bubycos[(n — k)9+]} , (4.45)
and the marginal distributions are
l o0
Py (0,)= i {1 +2 E>k bubicos[(n — k)9+]} , (4.46)
1
)= 4.
Paa(6-)= 5- (447

For completeness of our discussion and by analogy with our presentation of the
singlemode models, we now give expressions for various s-parametrized phase
distributions. Thus, the mod(25r) two-mode s-parametrized phase distribution is
equal to

. 1
P3n(6:,0) =5

00
{ 142 bub GO(n, k) GO(n + g,k + g) cos[(n — k)9+]} ,

n>k
(4.48)
where the coefficients G®)(n, k) are given by egs. (2.60)~(2.62). The mod(27)
marginal s-parametrized phase-sum distribution is

PO = 5= { 142 b,5,GO(n, k) GO(n + g k + ) cos[(n — k)&]} :

T
(4.49)
The mod(27) s-parametrized phase-difference distribution Pgsj)T(B_) and the
single-mode ones, P®)(6,) and P®)(6,), are uniform:
; 1
PEO) = PO(6,) = PO(6y) = 5. (4.50)
The distributions (4.48)~(4.50), similar to the distributions (4.45)—(4.47), reveal
the fundamental phase properties of pair coherent states.
The correlation coefficient Cyp, eq. (4.27), [subscripts 1, 2 should be replaced
by a and b, respectively] is given in this case by the formula

buby

Cab =2 Z m’ (451)

n>k

n>k
where b, is given by eq. (4.42). This correlation is negative and lowers the vari-
ance of the phase-sum operator. For |£| — oo, this coefficient approaches —~7%/3,
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the phase-sum variance becomes zero, and we have the classical situation of
perfectly defined phase sum (the phase-locking effect). This phase-correlation
coefficient can be contrasted with the photon-number correlation coefficient,
considered by Agarwal [1988], which increases as |{| increases. The sine and
cosine functions of the phase-sum operator were also obtained by Gantsog and
Tana$ [1991e] and compared to their counterparts obtained by Agarwal [1988],
who used the Susskind—Glogower approach.

43, ELLIPTICALLY POLARIZED LIGHT PROPAGATING IN A NONLINEAR
KERR MEDIUM

To describe propagation of elliptically polarized light in a nonlinear Kerr
medium, a two-mode description of the field is needed. The quantum nature
of the field results in the appearance of such quantum effects as photon
antibunching (Ritze and Bandilla [1979], Tana$ and Kielich [1979], Ritze [1980])
and squeezing (Tana$ and Kielich [1983, 1984]). Tana$ and Kielich have shown
that as much as 98 percent of squeezing can be obtained when intense light
propagates in a nonlinear Kerr medium. They referred to this effect as self-
squeezing. Agarwal and Puri [1989] re-examined the problem of propagation
of elliptically polarized light through a Kerr medium, considering not only the
Heisenberg equations of motion for the field operators, but also the evolution
of the states themselves. Quantum fluctuations in the Stokes parameters of light
propagating in a Kerr medium were discussed by Tana$ and Kielich [1990], and
by Tana$ and Gantsog [1992b].

The following effective interaction Hamiltonian can be used to describe the
propagation of elliptically polarized light in a Kerr medium (Tana$ and Kielich
[1983, 1984))

Hy = inx(al*a? + al?d + 4dalafaay), (4.52)

where d; and d, are the annihilation operators for the circularly right- (“1”) and
left- (*2”) polarized modes of the field, x is the coupling constant, which is real
and related to the nonlinear susceptibility tensor x® of the medium, and d is
the asymmetry parameter describing the coupling between the two modes. For
a fully symmetrical susceptibility tensor, d =1. Otherwise, d =0 and describes
the asymmetry of the nonlinear properties of the medium (Ritze [1980], Tana$
and Kielich {1983, 1984]).

Using the Hamiltonian (4.52), one can obtain the evolution operator U (7), and
assuming that the initial state of the field is a coherent state of the elliptically
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polarized light, one gets for the resulting state of the field (Agarwal and Puri
[1989]):

WD) = U@, 22)
= Z b, bu,exp{i(n @1 + n22) (4.53)

ny, m

+ %i‘r[nl(nl = 1)+ ny(na — 1) + 4dnym1} |y, ma),,

where 7=n(w)kz/c (with n(w) the refractive index), and the coefficients b,, ,
are given by eq. (3.8) with |a;|* and |0!2|2 as the mean numbers of photons for
the circularly right- and left-polarized modes, respectively, whereas ¢, , are the
phases of the coherent states of the two modes.

The state (4.53) is the two-mode state of the field, and the two-mode
generalization of the Pegg—Barnett formalism used by Gantsog and Tana$
[1991c] leads to the following joint probability distribution for the continuous-
phase variables, 8, and 8,, of the two modes:

[e o]

Z i b"lbnzexp{‘inlel —iny 6,

n =0 ny=0

1

P(6:,06,) =Z§}_)—2

) (4.54)

+ i—;— [m(n — D+ na(np - 1)+ 4d”1”2]}

The phase distribution function P(0;,6,) describes the phase properties of
elliptically polarized light propagating through a Kerr medium, which were
discussed in detail by Gantsog and Tanas [1991c]. Figure 12 shows an example of
the evolution of P(0;, 8,). It is seen that the peak is shifted and broadened during
the evolution. Since the numbers of photons in the two modes are different, one
can see that the shift of the peak and its broadening is asymmetric. The intesity-
dependent phase shift is bigger for the mode with higher number of photons.
This corresponds to the classical effect of self-phase modulation in a nonlinear
Kerr medium. The quantum description shows not only the shift but also the
boadening of the phase distribution (phase diffusion).

Integration of the distribution function P(6,, 8,) over one of the phases 6, or
0, leads to the marginal distribution P(8;) or P(6,) for the individual phases.
All single-mode phase characteristics of the field can be calculated using these
distributions, and the corresponding formulas were given by Gantsog and Tana$
[1991c].

In addition to the phase properties of the individual modes, it is interesting, in
the two-mode case, to study the behavior of the phase difference between the two
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Fig. 12. Evolution of the joint probability distribution P(6, 6,), eq. (4.54), of light propagating in
a Kerr medium: [allz =0.25, [012|2 =4andd=1; (a) t=0, (b) 7=0.1, (c) T=02, (d) T=0.3.

modes. In the Pegg—Barnett formalism, the phase-difference operator is simply
the difference of the phase operators for the two modes, so the mean value of the
phase-difference operator is the difference of the mean values of the single-mode
phase operators. To calculate the variance of the phase-difference operator, we
can use the relation

<[A(&>6, - 692)]2> = <(A5>0,)2> + <(A<392)2> ~2Cp, (4.55)

where the last term is the correlation coefficient between the phases of the two
modes and can be calculated by integration of P(8y, 8;) according to eq. (4.27).
Thus, the resulting formula is (Gantsog and Tana$ [1991¢]):

CoM= > > fafua-{ . > fib DD fubh ],

m>nj m>nj nm =ny ny>n} nmy=nj ny >nj
(4.56)
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T

Fig. 13. Evolution of the intermode phase correlation function Ci5(7), eq. (4.56), and the phase-

difference variance <[A(</1391 - 3502)]2>, eq. (4.55), of light propagating in a Kerr medium. Thin
solid line: Ja; |2 = 0.25, |ay|* = 4 and d = 1; bold solid line: a;|* = 0.25, |a|? = 4 and d = §; thin

dashed line: |a; |2 = 0.25, |ay|? = 0.25 and d=1; bold dashed line: |a; [ = 0.25, |a|? = 0.25 and
d=1.

where

ni—n;

i = 2bu by %—sin{ %(n,. — ) [+ ] — 1 +2d(m; + )] } . (@d57)
A graphic illustration of the correlation function (4.56) is shown in the left-hand
panel of fig. 13. The strength of the correlation depends crucially on the value of
the asymmetry parameter d. The highest values of the correlation are obtained
ford= % This means that the minimum of the phase-difference variance, in view
of eq. (4.55), is obtained for d = % The phase-difference variance is shown in the
right-hand panel of fig. 13. It was shown (Tanas and Gantsog [1991]) that, similar
to the single-mode case, dissipation destroys the periodicity of the evolution and
broadens the phase distribution.

Recently, the phase properties of light propagating in a Kerr medium have
been reconsidered (Luis, Sanchez-Soto and Tana$ [1995]) from the point of view
of the Hermitian phase-difference operator introduced by Luis and Sanchez-
Soto [1993b, 1994], which is based on the polar decomposition of the Stokes
operators. This example shows clearly the difference between the Pegg-Barnett
and Luis—Sanchez-Soto phase-difference formalism, which is most visible for
weak fields. The Luis—Sanchez-Soto phase-difference operator differs from the
Pegg—Barnett phase-difference operator, which is simply the difference of the
phase operators of the two modes. For strong fields both formalisms give the
same results. The nonlinear Kerr medium appears to be a good testing ground
for different phase approaches.
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Fig. 14. The joint probability distribution P(8}, 6;), eq. (4.54), of light propagating in a Kerr
medium. |a; | = |ay|? = 4, T=27/2, and (a) d=0; (b) d = }.

As shown by Gantsog and Tana$ [1991a], superpositions with any number
of components can be obtained in the process of light propagation in the Kerr
medium (similar to the anharmonic oscillator model described in § 3.5) if the
evolution time 7 is taken as a fraction M/N of the period, where M and N ar¢
mutually prime integers. Exact analytical formulas for finding the superposition
coefficients were given for any N. The joint phase probability distribution
P(8,, 6,) splits into separate peaks if the state of the field becomes a discrete
superposition of coherent states, and this is a very spectacular way of presenting
such superpositions. Some examples are shown in fig. 14.

4.4. SECOND-HARMONIC GENERATION

Second-harmonic generation is probably the best known nonlinear optical
process. In the quantum picture we deal with a nonlinear process in which two
photons are annihilated and one photon with doubled frequency is created. The
quantum states of the field generated in the process exhibit a number of unique
quantum features such as photon antibunching (Kozierowski and Tana$ [1977])
and squeezing (Mandel [1982], Wu, Kimble, Hall and Wu [1986]) for both the
fundamental and second-harmonic modes (for a review and literature see Kielich,
Kozierowski and Tana$§ [1985]). Nikitin and Masalov [1991] discussed the
properties of the quantum state of the fundamental mode, calculating numerically
the quasiprobability distribution function Q(«, a*) for it. They suggested that the
quantum state of the fundamental mode evolves, in the course of the second-
harmonic generation, into a superposition of two macroscopically distinguishable
states, similar to the superpositions obtained for the anharmonic oscillator model
(Yurke and Stoler [1986], Tombesi and Mecozzi [1987], Miranowicz, Tana$ and
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Kielich [1990], Gantsog and Tana$ [1991f]), or a Kerr medium (Agarwal and
Puri [1989], Gantsog and Tana$ [1991a]). Gantsog, Tanas and Zawodny [1991a]
discussed the phase properties of the field produced in the second-harmonic
generation process.

To describe second-harmonic generation, the following model Hamiltonian is
used:

H=Ho+H,=hwd'a+2hwb'b + hg(ba* + ba'?), (4.58)

where @ (a') and b (') are the annihilation (creation) operators of the funda-
mental mode of frequency @ and the second-harmonic mode at frequency 2w,
respectively. The coupling constant g, which is real, describes the coupling
between the two modes. Since H. o and H 1 commute, there are two constants of
motion: H o and H L H o determines the total energy stored in both modes, which
is conserved by the interaction H 1. The free evolution can be thus factored out,
and the resulting state of the field can be written as:

|W (1)) = exp(—iH t/h) | ¥(0)), (4.59)

where |W/(0)) is the initial state of the field. Since the interaction Hamiltonian
H; is not diagonal in the number-state basis, the numerical method of
diagonalization of H; may be applied to find the state evolution (Walls and
Barakat [1970]).

Let us assume that initially there are n photons in the fundamental mode and
no photons in the second-harmonic mode; i.e., the initial state of the field is
|n,0) = |n) |0). Since Hy is a constant of motion, we have the relation:

(d‘\d> +2 <l;Tl;> = constant = n, (4.60)

which implies that the creation of &k photons of the second-harmonic mode
requires annihilation of 2k photons of the fundamental mode. Thus, for given n,
we can introduce the states

'w(")> —n-2kk), k=0,1,...,[n/2], (4.61)

where [n/2] denotes the integer part of n/2, which form a complete basis of states
of the field for given n. We have

<wk1 ’IW’} S Ok (4.62)

meaning that the constant of motion Ho splits the field space into orthogonal
subspaces, which for given n have the number of components equal to [n/2] + 1.



VI, § 4] PHASE PROPERTIES OF TWO-MODE OPTICAL FIELDS 417

In such a basis, the interaction Hamiltonian has the following nonzero matrix
elements:

(n)
< wk+l

ﬁII 1!’5,")> = (H[)g-)l,k = <‘/’§cn) ﬁl‘ w;:i)l> = (ﬁl)gc',ll)m
= tg+/(k + 1)(n - 2k)(n — 2k - 1),

which form a symmetric matrix of the dimension ([n/2] + 1) x ([#/2] + 1) with
real nonzero clements (we have assumed g real) located on the two diagonals
immediately above and below the principal diagonal. Such a matrix can be easily
diagonalized numerically (Walls and Barakat [1970]).

To find the state evolution, we need the matrix elements of the evolution
operator:

dus(®) = (4"

If the matrix U is the unitary matrix that diagonalizes the interaction Hamiltonian
matrix given by eq. (4.63), i.e.,

(4.63)

exp(—ilq It/h)‘ wf)")> (4.64)

U HMU = hg x diag(Ao, A, - - - Apw)), (4.65)
then the coefficients d,(¢) can be written as
[n/2]
dnie(t) =) exp(—igth) UnUg; (4.66)
i=0

where A; are the eigenvalues of the interaction Hamiltonian in units of Ag. Of
course, the matrix U as well as the eigenvalues A; are defined for given n and
should have the additional index n, which we have omitted to shorten the
notation. Moreover, for real g the interaction Hamiltonian matrix is real, and
the transformation matrix U is a real orthogonal matrix, so the asterisk can also
be dropped.

The numerical diagonalization procedure gives the eigenvalues A; as well as
the elements of the matrix U, and thus the coefficients d wk(f) can be calculated
according to eq. (4.66). It is worthwhile to note, however, that due to the
symmetry of the Hamiltonian the eigenvalues A; are distributed symmetrically
with respect to zero, with one eigenvalue equal to zero if there is an odd number
of them. When the eigenvalues are numbered from the lowest to the highest
value, there is an additional symmetry relation:

UrUoi = (-1 U par-iUowar-i» (4.67)

which makes the coefficients d, 4(t) either real (k even) or imaginary (k odd).
This property of the coefficients d,(¢) is very important, and in some cases
allows exact analytical results to be obtained.
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With the coefficients d, x(¢) available, the resulting state of the field (4.59) can
be written, for the initial state |n, 0), as:

[r/2)

W) = du(t) [9). (4.68)
k=0

The typical initial conditions for the second-harmonic generation are: a coherent
state of the fundamental mode and the vacuum of the second-harmonic mode.
The initial state of the field can thus be written as:

oo

W) = _ cxln,0), (4.69)

n=0

where ¢, =b,e"% is the Poissonian weighting factor (3.8) of the coherent state
|ag) with the phase @,=Argag. With these initial conditions, the resulting
state (4.59) is given by

[ore) 00 [n/2]
W) =" ca[¥P@®) =Y cn Y dug®) In—2k,k). (4.70)
n=0 n=0 k=0

Equation (4.70), describing the evolution of the system, is the starting point for
a further discussion of second-harmonic generation. If the initial state of the
fundamental mode is not a coherent state, but has a decomposition into number
states of the form (4.69) with different amplitudes c,, eq. (4.70) is still valid if
appropriate c,’s are taken. This is true, for example, for an initially squeezed
state of the fundamental mode. The coefficients d,;(¢) have been calculated
numerically to find the evolution of the field state (4.59), and consequently, its
phase properties (Tana$, Gantsog and Zawodny [1991a,b], Gantsog, Tana$ and
Zawodny [1991a]).

Repeating the standard procedure of the Pegg—Barnett formalism with the
field state (4.59), the joint phase probability distribution is obtained in the
form

P(6,, 05) = —

@y
o 2] 2
X > ba Y dus(®) exp {-i[(n - 2k) O, + kO — k(294 - %)]}‘ ,
n=0 k=0

4.71)
where 8, and 6, are continuous-phase variables for the fundamental and
second-harmonic modes, and the phases ¢, and ¢, are the initial phases
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with respect to which the distribution is symmetrized. It is interesting that
formula (4.71) depends, in fact, on the difference 2¢, —@;, which reproduces
the classical phase relation for second-harmonic generation. Classically, for the
initial conditions chosen here, this phase difference takes the value %JI, which
turns out to be a good choice to fix the phase windows in the quantum description
as well.

The evolution of the joint probability distribution P(8,,8,), given by
eq. (4.71), is illustrated graphically in fig. 15. At the initial stage of the
evolution the phase distribution in the 6, direction (fundamental mode) is
broadened, while a peak of the second-harmonic mode phase starts to grow. The
emergence of the peak at 6, =0 confirms the classical relation 2¢, — @, = %n,
which has been applied to fix the phase window. The phase distribution in
the 8, direction narrows at the beginning of the evolution, meaning less
uncertainty in the phase of the second harmonic. However, for later times
the distribution P(8,, 6;) splits into two peaks, which resembles the splitting
of the O(a, a*) function found by Nikitin and Masalov [1991]. For still later
times, more and more peaks appear in the distribution P(6,,8;), and this
distribution becomes more and more uniform, which means randomization of
the phase. The route to the random phase distribution, however, goes through
a sequence of increasing numbers of peaks. The splitting of the joint phase
distribution can be understood if one realizes that the mean number of photons
of the second harmonic oscillates and after reaching the maximum the second-
harmonic generation becomes, as a matter of fact, the down-conversion process
which exhibits a two-peak structure of the phase distribution in the direction of
the fundamental mode (see §4.5). The appearance of new peaks may thus be
interpreted as a transition of the process from the second-harmonic to the down-
conversion regime, and vice versa. The phase variances for both modes tend
asymptotically to the value 1%/3 of the randomly distributed phase (Gantsog,
Tana$ and Zawodny [1991a]); however, it has turned out that partial revivals
of the phase structure can be observed during the evolution (Drobny and
Jex [1992]).

It is also interesting to study the phase distribution of the field produced
by second-harmonic generation with other than coherent initial states of the
fundamental mode. Such studies were performed by Tana$, Gantsog and
Zawodny [1991b], showing for example that even for a second harmonic
generated by an initial number state the joint phase probability distribution has
a modulation structure owing to the intermode correlation that develops in the
process of the evolution.
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Fig. 15. Evolution of the joint phase probability distribution P(8,, 8p), eq. (4.71), in the second-
harmonic generation. The initial mean number of photons of the fundamental beam is Iozol2 =4,
and gt is the dimensionless scaled time.
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4.5. PARAMETRIC DOWN CONVERSION WITH QUANTUM PUMP

The parametric down-conversion process with quantum pump, which is a
subharmonic-generation process, can be described by the same model Hamil-
tonian [eq. (4.58)] as the second-harmonic generation. The initial conditions
distinguishing the two processes are the following: For the subharmonic
generation process, mode b is initially populated while mode a is in the vacuum
state. The distinction between the two processes is far from trivial, and the states
generated in the two processes have quite different properties (Gantsog, Tanas
and Zawodny [1991b], Jex, Drobny and Matsuoka [1992], Tanas and Gantsog
[1992a,b], Gantsog, Tana$ and Zawodny [1993]).

Let us assume, in analogy to our analysis of second-harmonic generation,
that initially there are n photons in the pump mode (b) and no photons in the
signal mode (a); i.e., the initial state of the field is |0,#) = |0), |n),. Since H
is a constant of motion, we have the relation:

(a'@) + 2(b'b) = constant = 2n, 4.72)

which implies that the annihilation of k¥ photons of the pump mode requires
creation of 2k photons of the signal mode. Thus, for given n, we can introduce
the states

v =Pkn-k),  k=0,1,.,n, (4.73)

which should be compared to the corresponding expression (4.61) for the second-
harmonic generation.

Proceeding along the same lines as in second-harmonic generation, the
resulting state of the field can be written as

o0 n
W) = baexp(ins) Y dani(t) [2k,n - k), 4.74)
n=0 k=0
where the coefficients dy, ;(f) are given by
dans(t) = (2k,n— k |exp(-iB10)] 0,m), (4.75)
whereas now the ¢, =b, exp(in@;) are the Poissonian weighting factors (3.8) for

the initially coherent state |8y = |Bo| exp(i@s)) of the mode b. Again, the method
of numerical diagonalization is used to calculate the coefficients dy,;(f) and,
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in effect, the phase properties of the state (4.74). The joint phase probability
distribution in this case is given by

P(6a, 00) = (71];)5

o n 2

<3 b S s exp (1260, + (1) 0+ K2 )
e (4.76)

As for the second-harmonic generation, we similarly take 2¢, — ¢p = 1Jr to fix
the phase windows. The evolution of the joint probability distribution P(Ba, 0p)
for parametric down conversion with the mean number of photons |[J’0| =4
is shown in fig. 16. Comparison of figs. 15 and 16 shows immediately a
striking difference between the phase properties of the fields obtained in the
two processes. The state produced in the down-conversion process acquires from
the very beginning the two-peak structure in the 6, direction, which suggests
the appearance of a superposition of two states in the resulting field. The two
peaks which appear at the beginning of the evolution correspond, in fact, to the
two-peak phase distribution of the squeezed states (see § 3.3). At later stages of
the evolution randomization of the two phases takes place, similarly as for the
second harmonic. However, the symmetry with respect to 8, is preserved. The
two-peak structure of the phase distribution has already appeared, although not in
its pure form, in the phase distribution for second-harmonic generation (fig. 15).
Its appearance can be ascribed to the down-conversion process that has overcome
second-harmonic generation at this stage of the evolution. The transition from
the one-peak phase distribution to the two-peak distribution makes a qualitative
difference between the two field states, and is a sort of “phase transition”.

Once the joint phase distribution P(6,, 6) is known, all quantum-mechanical
phase expectation values can be calculated. In particular, the phase variance for
the signal mode can be calculated according to the formula

<(AE>(,,,)2> - / " 46, 02 / " 40, P(6,, 6»)

_ exp [i(n — n)2@a — @p)]
=L + Re Y buby o) (4.77)

n>n'

X Z d2n,k+n—n’(t) d;n’,k(”;

k=0
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Fig. 17. Evolution of the phase variances <(A&>0a)2>, eq. (4.77), and <(A&>9b)2>, eq. (4.78), in the

parametric down conversion. The initial mean number of photons in the mode b is |[30|2 =4.

and for the pump mode we have

((a®4,) = / " 46,6 / " 46, P(0,, 65)

(4.78)

N "
= -? +4Re Z bubyy (( ,)2 Z Aon (1) d 4 (8),

n>n’'

where we have used eq. (4.76), and we take 2@, — @ = %J‘K. The time evolution
of the phase variances can be calculated numerically using these expressions
for given initial field states. The dynamical behavior of the phase variances
calculated from eqgs. (4.77) and (4.78) is illustrated graphically in fig. 17 for
|Bo|* = 4. The dashed line 71%/3 marks the variance for the state with random
distribution of phase. It is apparent that the phase variance of the signal mode
starts from the value 772/3, dips into the minimum, and after a few oscillations
again becomes close to 772/3. For comparison, the phase variance for the ideal
squeezed state is also shown. The two variances are initially indistinguishable,
but the phase variance for the squeezed state approaches monotonically its
asymptotical value 71%/4, while for the quantum pump case the phase variance
of the signal mode begins to oscillate at later times. This confirms the statement
that there a limit is imposed by the quantum fluctuations of the pump on the
applicability of the ideal down-converter model. The phase variance of the
pump mode increases rapidly from its initial value for the coherent state, and
also shows oscillatory behavior approaching the value 72/3 at the long-time
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Fig. 18. Phase distribution P(8,), eq. (4.79), for gt=0.3, in the parametric down conversion.

limit. Thus, the long-time effect of the quantum fluctuations of the pump mode
is the randomization of the phase distribution for both signal and pump modes.
This randomization process is not monotonous, and it turned out that at least
partial revivals of the phase structure are possible during the evolution (Gantsog
[1992], Gantsog, Tana$ and Zawodny [1993]).

Integrating P(6,,0,) over one of the phases leads to the marginal phase
distributions P(6,) and P(8,) for the phases 8, and 8, of the individual modes.
We have:

1 n n
P(0:) =5~ {1 +2Re > buby ¥ > danp(O) 3y p(2) .
n>n' k=0 k'=0 .

x exp[iCk — K)200 + 200 — P5)] Snt st }

1 il
P(6)) =5~ {1 +2Re > bubw Y donk(£)d3y 4(0)
k=0

n>n'

(4.80)
x exp[~i(n —n")6s) }

The phase distribution P(6,) for the signal mode is shown in fig. 18 for g¢=0.3;
i.e., for the time at which the squeezing in the signal mode has its maximum
value. For comparison we show the phase distribution for the squeezed vacuum
for r =2 |fo| gt = 1.2. The effect of quantum fluctuations of the pump is seen
as the broadening of the phase distribution with respect to that for the ideal
squeezed state.
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§ 5. Conclusion

In this article we have reviewed some recent results concerning the quantum
phase description of optical fields. We have focused our attention on the real
fields that can be generated in practice in various nonlinear optical processes. So,
we rather avoided discussions of the phase formalisms as such and tried to exploit
their practical applicability in the description of optical fields. In the description
of the phase properties we used two different, though related formalisms:
the Pegg-Barnett Hermitian phase formalism and the formalism based on s-
parametrized phase distributions. The Pegg—Barnett Hermitian phase formalism
is a good example of the concept of the phase as a physical property of a single
field mode represented by a Hermitian phase operator canonically conjugate one
to the number operator. It allows one to obtain the phase distributions for the
fields, mean values and variances of the phase, and other phase characteristics
of the field in a reasonably simple way, both from the conceptual as well as the
calculational point of view. The phase distributions obtained from this formalism
are 27-periodic, positive definite and normalized. They can be treated as a
good representation of the quantum state of the field and can be referred to as
canonical phase distributions.

Another description of the optical phase used by us is that based on the s-
parametrized quasiprobability distributions, which can give phase distributions
that can be both narrower and broader (depending on s) than the Pegg—Barnett
phase distribution, but these distributions with s <1 can be associated with
some noisy, real measurements of the phase probability distribution and can be
referred to as measured phase distributions. Using the examples of real field
states presented here, we tried to show the similarities and differences that one
encounters when various phase distributions are applied to describe a particular
field state. Qur choice of the field states is, of course, a bit arbitrary, and we
relied to a large extent on our own results. We believe, however, that our review
covers a number of field states important for quantum optics, and that the results
presented here may prove interesting. We have also attempted to give a more or
less complete review of the literature on the subject, but the subject of quantum
phase is still a “hot” one and the literature is growing rapidly.
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Appendix A. Garrison—Wong Phase Formalism

Garrison and Wong [1970] constructed the phase operator Dow using the
relation:

(efaor)= [ aogeore (A

for any g, f € H?, where H? is the Hilbert space in the unit disk of the complex
plane, and 8, is arbitrary. Here, we have changed the sign with respect to the
original Garrison—Wong paper and introduced arbitrary 6y. The inner product in
H? is defined by

6o + 27 ) ]
n=[ e e (A2)
(]
The boundary value of f is given by a convergent Fourier series,

*1(-) _ —1n9
)= \/Z[— Z cne", (A.3)

which does not contain coefficients ¢, with negative n.

Subsequently, Popov and Yarunin [1973] established the connection of this
operator to the Susskind and Glogower [1964] exponential phase operators Ey
of the form

Bgw = O + 7w +i [ln(l — 0 E,)—In(l — "% E_)] . (A.4)

The operators E_and E, = (E_)T are defined by the annihilation and creation
operators d and d' of the mode

E.=('a+ 1)V, E,=a'@a+r1y"? [E,F;] =10y (0], (A.S5)

where |0) is the vacuum state [E. is another notation for the Susskind—Glogower
exponential operator (2.5)].
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Let us consider the “phase states”

16) = \/% ZO exp(in6) ), (A6)

which are the right and left eigenstates of the operators E_and E,:
E_|0) = exp(i6)|60), (6] E. = exp(-i6) (6] (A7)

The states (A.6) are not orthogonal, but allow for the resolution of the identity
operator

Go+2m .
/ do |0) (0| = 1. (A.8)
6o

With the aid of eqs. (A.7) and (A.8) to the operator, eq. (A.4) can be rewritten
in the form (Bergou and Englert {1991])

Bow = o + Jt+i/(:0+2ﬂ o |6) (6 {ln {1 _ eAi(eAeo)] —In [1 _ei(()—ﬂo)]}

0()+2J'[
- / d6 |6) 6(6].
6

o

(A.9)
Since the states (A.6) are not orthogonal, they are not eigenstates of the
Garrison—Wong phase operator.
From eq. (A.9), we have:

~ 90+2J‘[
(e|Bov|ry= [ a6 eloy 6 (011, (A10)
Taking the field states | f) in the form
1)Y= cnln, (A.11)
n=0

we then have:
. 1 & .
O =S = 5= D ene™, (A.12)
n=0

which has the same form as eq. (A.3), and we can consider the phase operators
(A.1) and (A.4) as equivalent. However, we should keep in mind that the
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Garrison—Wong phase operator is defined on a dense set of state vectors,
which for mathematical consistency and the requirement that the number—phase
commutator should be —i, imply f(—1)=0. Unfortunately, when approximating
even simple physical states on this dense set, one finds rather undesirable
properties (Bergou and Englert [1991]).

Since the states (A.6) are not orthogonal, we have

- 00+2.7[
Dk ¢/ do ek |6) (8] (k>1), (A.13)
0o
and for the expectation values
= Go+27 ,
(f |®w| 1) ¢/0 d6 6" |(011) (k> 1) (A.14)
0

This means that the quantity [(8]f)|> cannot be interpreted as a phase
distribution function. To find the Garrison—Wong phase distribution function, we
must calculate the quantity

2

o0

> cnaw(Oln)| (A.15)
n=0
where the vector |0),, is the eigenvector of the Garrison-Wong phase operator.
The function gw (0]n) has a quite complex structure (Garrison and Wong [1970],
Popov and Yarunin [1973, 1992]), but it can be found from the recursive formulas

given by Garrison and Wong [1970], which are

Pow(8) = |ow (81/)] =

1. /6-6
ow(0]n) = Esm( > °) @,(0), (A.16)
where, forn > 1,
n-1
Pu(0) == 3 (1= ) Vn(6) Pu(6), (A.17)
m=0
_ 1 burzm ’ / ind’ 1 infy ind
Y"(e)_ﬁ/eo d6'In|6’ - 6] —E(e ‘e ) (A.18)
and
Po(0) = exp[—vo(O)], (A.19)
Yo(8) = —% + Zlff [(27 + 89— B) In(27r + By — B) + (6 — Op) In(6 — By)].
(A.20)

The formulas (A.16)-(A.20) were used by Gantsog, Miranowicz and Tana$
[1992] to calculate the Garrison—Wong phase distribution for some real states
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of the field, showing that their symmetry is incompatible with the symmetry
of the phase distributions obtained from the Pegg—Barnett as well as the s-
parametrized phase approaches. In the Garrison—Wong approach, even vacuum
has a preferred phase, which is hardly acceptable on physical grounds. The
recursive relation (A.17) has the following solution (Miranowicz [1994]):

(6) = expl-1o(O)] 3 H( D o) (A21)
{ni,m} i=1

where the sum over {n;, m;} is taken under the condition Zf.;l n;m; = n, and
after integration the functions y,(8) [eq. (A.18)] take the form

— infy r _ s
Ya(8) = m{ [In<0_90 1) m]

tein® (Ei[in(27 + 6y — 6)] - Ei[-in(0 - 90)])}

(A.22)

in terms of the exponential integral Ei(x). Equations (A.21)-(A.22) are more
convenient for numerical calculations than egs. (A.17)—(A.18).

Substituting eq. (A.6) into eq. (A.9) and performing the integration over
0 vyields the following number-states expansion for the Garrison-Wong phase
operator [compare to eq. (2.14)]:

exp[i — ) Bo] [n) (|

bw = 60 + 7T+ Z/ 1(n — n/) , (A23)
n#+n
leading to the number—phase commutator
[Bow, ata] =—i(1-27 |60) (8o, (A24)

and for the states for which (6y|f) = 0, the second term on the right-hand side
vanishes, giving the value demanded by Garrison and Wong [1970]. A detailed
comparison of the Garrison-Wong and Pegg—Barnett formalisms was given by
Barnett and Pegg [1992] and by Gantsog, Miranowicz and Tanas [1992]. The
difference between the two formalisms is, in mathematical sense, the difference
between the weak and strong limits for the phase operators that is taken when
0 — oo (Vaccaro and Pegg [1993]).

Appendix B. States for the Pegg—Barnett Phase Formalism

The Pegg—Barnett optical phase operator (2.12) is constructed in a finite (0 + 1)-
dimensional Hilbert space (%) spanned by the number states [0),[1},...,|0).
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Hence, all other quantities, such as states, operators or probability distributions,
analyzed within the Pegg—Barnett formalism, should also be defined in the same
(0 + 1)-dimensional state space H(?). BuZek, Wilson-Gordon, Knight and Lai
[1992] emphasized that it is not strictly correct to apply the definition (2.23) of
the finite-dimensional phase distribution

P(0) = | (0)(Oml /)] (wrong), (B.1)

for the infinite-dimensional state

[o ¢}

) =1 ooy = D Cnln). (B.2)

n=0

The problem of the precise definition of states in H(?) can be overcome by
assuming that ¢ is large enough so that the differences between the states in the
finite-dimensional, H(?), and infinite-dimensional, H, spaces can be arbitrarily
small in the sense of the Cauchy condition (Pegg and Barnett [1989]):

a
VILT-D el <& (B.3)
E O n=0

The precise finite-dimensional phase distribution reads as follows (Buzek,
Wilson-Gordon, Knight and Lai [1992]):

P(Om) = | )(Omlf) o) (B4)

for the (0 + 1)-dimensional state

g
ey =D ¢ In), (B.5)
n=0
which is properly normalized,
7 2
@@= 17 =1, (B.6)
n=0

for arbitrary ¢. The main problem resides in the construction of the nor-
malized (0 + 1)-dimensional states |f )(0). We restrict our attention to finite-
dimensional coherent states only. However, other finite-dimensional states of the
electromagnetic field can be defined in a similar manner; e.g., squeezed states
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(Buzek, Wilson-Gordon, Knight and Lai [1992]), even and odd coherent states
(Zhu and Kuang [1994]), phase coherent states (Kuang and Chen [1994a,b],
Gangopadhyay [1994]) and displaced phase states (Gangopadhyay [1994]).

There exist several generalizations of coherent states comprising the finite-
dimensional case (see Zhang, Feng and Gilmore [1990] and references therein).
It is possible to define coherent states using the concept of Lie group
representations (see, e.g., Pefina, Hradil and Juréo [1994]), or to postulate the
validity of some properties of the infinite-dimensional Hilbert-space coherent
states for the finite-dimensional coherent states. We present two definitions of
the latter case. Firstly, the coherent states |a),, in (0 +1)-dimensional Hilbert
space of a harmonic oscillator can be defined in the Glauber sense by the action
of an analogue of the Glauber displacement operator 5(")(a) on the vacuum
state |0) (BuZek, Wilson-Gordon, Knight and Lai [1992]):

@) = D“A0) |0) = exp(ad’ — a*a) 0), (B.7)
The operator 5(")(0() is given in terms of the modified annihilation operator
G =exp(idg) VN = 0) (11 + V2 |1) (2] + -+ + 3 |o - 1) (0] (B.8)

and modified creation operator d'. The coherent states |a) (o) are close analogues
of Glauber’s (i.e., infinite-dimensional) coherent states |a). They were introduced
and discussed by BuZek, Wilson-Gordon, Knight and Lai [1992], and their
analytical Fock expansion was found by Miranowicz, Piatek and Tana$ [1994]
in the form [eq. (B.5)] |f) = |a), with the superposition coefficients

g

exP[i"% /2] U‘f 1 k:) exp(ixy |a|) Hen(xx) He;2(xk). (B.9)

¢ =

Here, x; = x§°+l) are the roots of the modified Hermite polynomial of order

(o+1), Hegy 1 (x1) = 0, Hen(x) = 2"2H,(x/v/2), and a = |a| exp(i6).

Kuang, Wang and Zhou [1993, 1994] defined the normalized finite-dimen-
sional coherent states in another manner by truncating the Fock-basis expansion
of the Glauber infinite-dimensional coherent states or, equivalently, by the action
of the formally designed “displacement” operator exp(dd')exp(—ad) on the
vacuum state. This approach is close to that of Vaccaro and Pegg [1990b] in
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the construction of a finite-dimensional Wigner function for coherent states. The
states | @) (o) Can be defined as follows (Kuang, Wang and Zhou [1993}):

g
10) (0 = N exp(aaly |0) = Z 9 ny, (B.10)
n=0

where

d'l
(0 = N(")7,

(B.11)

and the normalization constant is (Opatrny, Miranowicz and Bajer [1995])

1
V(DL (@)

in terms of generalized Laguerre polynomials L%(x).

The differences between the finite-dimensional coherent states (B.7) and
(B.10) were discussed in detail by Opatrny, Miranowicz and Bajer [1995] using
the finite-dimensional Wigner function (Wootters [1987], Vaccaro and Pegg
[1990b]) and in terms of the Stokes parameters.

In the limit 0 — oo, the coherent states |a),,,, and |@) ) go over into (& = &):

N = (B.12)

Uli}moo 1) oy = Uli_)moo 10) (o) = |t} (B.13)

as was shown analytically by Opatrny, Miranowicz and Bajer [1995]. How-
ever, the states |a) (0 and |a) (o) are essentially different, particularly for
|al,|@| > ¢"2, from the ordinary (infinite-dimensional) Glauber coherent states
|a) as revealed by their photon-number, squeezing and phase properties (Buzek,
Wilson-Gordon, Knight and Lai [1992], Kuang, Wang and Zhou [1993, 1994],
Miranowicz, Piatek and Tana$ [1994]). Let us only mention that the well-known
property of the ordinary coherent state |@) for the mean photon number is not
fulfilled in the case of the finite-dimensional coherent states:

@{a|i| @)

@@ 4] @)(a)

} = (a|i| a) = |a’. (B.14)

The finite-dimensional states discussed here are not only mathematical
structures. A framework for their physical interpretation is provided by cavity
quantum electrodynamics and atomic physics. Moreover, they can be generated,
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e.g., in a single-mode resonator. Several methods have been proposed for the
preparation of an arbitrary field state (e.g., Vogel, Akulin and Schleich [1993],
Garraway, Sherman, Moya-Cessa, Knight and Kurizki [1994] and references
therein), which can be readily applied for the preparation of these finite-
dimensional states. Recently, Leoniski and Tana$ [1994] have presented a scheme
of field generation in a cavity containing a nonlinear Kerr medium, kicked
periodically with classical pulses. The field generated in this process is actually
the finite-dimensional coherent state |a),, in Hilbert space H() of arbitrary
dimension o+ 1.
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