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Photon antibunching defined by two-time correlation functions has hitherto, to
our best knowledge, been considered to constitute a unique, well defined effect.
We show exphcitly that this 1s by no means the case. We analyze two of the
most famous definitions showing that both antibunching and bunching effects
according to one defimtion can be accompanied by arbitrary photon correlation
eflects according to another. As an example we discuss a model of parametric

frequency conversion.

1. Introduction

Photon antibunching, apart from sub-Poissonian photon-number statistics and
squeezing, 1s the foremost manifestation of the quantum nature of light. Since the classic
experiments of Kimble, Dagenais and Mandel [1], antibunching has been in the fore-
front of both theoretical and experimental research of quantum opticians [2-9]. Singh
[5], and Zhou and Mandel [6] have shown that antibunching need not be associated
with sub-Poisson counting statistics and vice versa. However, it has been thought that
definitions based on the unnormalized and normalized two-time correlation functions
describe essentially the same effect. We show that these are two distinct phenomena

which need not necessarily occur together.

2. Definitions

Photon antibunching for a single-mode radiation field i1s usually defined in two ways
(see e.g. [1-7] and references therein). These definitions are interchangeably used in

both theoretical and experimental research.
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2.1 Antibunching |

A first approach to antibunching is based on the unnormalized two-time hght inten-
sity correlation function (second-order correlation function, coincidence ratey

GOt +7) = (T AW +7) ) = @ W& ¢+ al+7a@w), ()

where the operator product is written in normal order and in time order. According
to this definition (see e.g. Ref. [2 ]) antlbunchmg occurs if the two-time hght intensity
correlation function G(2)(t,t + 7) increases from its initial value at 7 = 0, i.e.,

Def.1: GO,t+7)>634t) (2)
or, equivalently, for a well-behaved function G2 (t,t + 1), if its derivative

I'(t) =T®(1) = %_—G(2)(t,t+ M >0 - (3)

T=0

is positive. Similarly, bunching occurs for 1"(2) (¢) < 0, and unbunchmg occurs for a
vanishing derivative I'(?)(t) = 0.

2.2 Antibunching ||

According to another definition (see e.g. [1]), antibunching takes place if the two-
time light intensity correlation function g(®)(t,t + 7) increases from its initial value at

T =0, 1.e,, _ |
Def.2: ¢, t+71)> g3 (,1) (4)

in terms of the normalized version of functlon G(2)(t,t + 1), viz. the normalized coin-
cidence rate

G)(¢,t + 1) .
GG+ 1)’ ®)

for 7 increasing from 7 = 0. In Eq. (5) the first-order correlation function G(l)( ) =
(n(t)) = (at(t)a(t)) intervenes. Def. 2, for a well-behaved g{?)(¢,¢ + 7), can be given in

terms of its positive derivative |7]

g(z)(f,t +7) S At t47) +1 =

v(t) =+ () = ;T @), 7| >0 (6)

=0

Again, bunching is said to exist for v(2)(t) < 0, and unbunching for v(3) () =
2.3 Other definitions

Sometimes, different normalization of G3(t,t + 7) is used in general case, which
leads yet to another definition of photon antibunching [8]:

GA(t,t + T)

o "

Def. 3 : 7t t+ 1) > g2 (t,t), where g(z)( t+7) =

(s
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or, alternatively, for its derivative. It is clear that Def. 3, except for the cases G(1)(t) = 0
and GV (t) — oo, is equivalent to Def. 1.

For completeness, we 1nvoke the definition of antibunching based on the single-time
correlation function or, equivalently, on the Mandel Q-parameter. The conditions

Def. 4 Q) = (n(®) (9™ (t,t) - 1) <0 or ¢Pu)<1  (8)

express sub-Poissonian photon-number statistics sometimes also called “antibunching”
[3,4]. It is now well known, as was shown explicitly by Singh [5], and Zhou and Mandel
[6] and others, that Def. 4 based on single-time correlation function is essentially dif-
ferent from Definitions 1-3 based on two-time correlation functions {or its single-time
derivatives).

3. Comparison of antibunching | and |

Definitions 1 and 2 are equivalent for stationary fields for which (n(¢)) = (n(t + 7))
holds. We claim, contrary to common belief, that Defs. 1 and 2 describe different effects
for nonstationary fields. The difference is a result of mathematical properties of deriva-
tives, namely [f1(7)/f2(7)}) is not equal to f{(7)/f2(7) for any 7-dependent function
f2. As an example we discuss a simple model of parametric frequency conversion as
described by the interaction Hamiltonian:

i,

Hmt — hg (ATEE + h.c. ) (9)
The well known solutions for the first and second modes are, respectively,
ai1{t) = aycos(gl)—iazsin(gt), a3(t) = ascos{gt) — ia; sin(gt). (10)

Just for b.revity we present formulas for the first mode only. Due to symnietry of
solutions (11), expressions for the second mode are given by those for the first mode
albeit with interchanged subscripts 1 and 2. For initial Fock states |N;) and |N;) we
find

I‘l(t) = g— sin(2gt) {NQ(N2 — 1) — N1 (N1 —-.1)

~ [N1(Ny — 1) —~ 4N Na + No(Ny —~ 1)] cos{(2¢t) },

Nt) = 9 sty sin(2gt) (Vs + 1) cos®(gt) - (N + Dsin(g0] , (11

§

where the mean photon number in the first mode is {n(t)) = N; cos?(gt) + Ny sin®(gt).
Let us analyze a few simplest cases. For Ny = N; = 1, Egs. (12) reduce to T';(t) =
v1{t) = gsin{4gt), which implies that antibunching | and antibunching !l occur together.
For Ny = 2, Ny = 0, one obtains

Iy (1) = —2¢ cos(gt)?sin{2gt), m{t) =0, (1)
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which shows that (anti)bunching | is associated Wlth unbunching Il. Finally, for Ny = 2,
No = 1 we have |

'y (t) g sin(2gt) {3 cos(2gt) — 1},
vi(t) = 89[3+ cos(2gt)]~° sin(2gt) {5 cos(2gt) + 1} . (13)

It is clearly seen, that I';(¢) and +;(¢) can have opposite signs due different expressions
in curly brackets in Egs. (14). We conclude that for properly chosen initial fields
and evolution times, light can exhibit either (i) antibunching | concomitantly with
antibunching 11, (ii) bunching | concomitantly with bunching 1I; (iii) antibunching |
concomitantly with bunching 1l; or (iv) vice versa — bunching | concomitantly with
antibunching ll. Due to a limited number of pages we cannot include other examples
like, e.g., higher harmonics and subharmonics generation. A deeper analysis of the
problem will be presented elsewhere [9].

4. Conclusion

We have compared the most famous definitions (Defs. 1 and 2) of photon antibunch-
ing. These definitions of photon antibunching have till now, to our best knowledge, been
considered to describe a unique, well defined effect. Defs. 1 and 2 are equivalent for
stationary fields. However, this is by no means the case for arbitrary fields. Def. 1
based on the unnormalized function G(®)(¢,¢ + 7) and Def. 2 in terms of g(®)(t,¢ + 7)
describe distinct quantum phenomena, and it seems to be highly important that these
definitions shall not be confused. Therefore we address the question: “Is the photon
antibunching really the photon antibunching?”
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