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Abstract—*“Time evolution™ of cohcre:_nt states defined in a _ﬁnitc—dimcnsioqal Hilbert space 1S copsidert_:d.
Such states can be generated using the model comprising a cavity filled with the nonhnear medium with

the (2q -

1)th nonlinearity Y~ 1. Two definitions of the finite-dimensional coherent states are considered:

(1) Glauber-like coherent states and (11) truncated coherent states. Wc concentrate our attention on the penodic
and quasi- penodlc features in the evolution of these states.

1. INTRODUCTION

The states that are most commonly used in quantum
optics are Glauber coherent states [1]. These states are
defined in an infinite-dimensional Hilbert space. Quite
recently, Pegg and Bamett [2-4] have introduced a Her-
mitian phase operator defined in a finite-dimensional
Hilbert space (FDHS), and finite-dimensional Hilbert
spaces became themselves a subject of studies. Because
of wide interest in FDHS, a number of authors tried to
adapt the definition of Glauber coherent states to the

finite-dimensional spaces. Therc are different possibil-

“1ties to do this. In this paper we will concentrate on two
-of them. One definition 1s based on the treatment of the
coherent states as a result of the action of the displace-
ment operator on the vacuum state, where the displace-

ment operator has the same form as in the Glauber

definition [1], but it is spanned in the FDHS. This def-
Inition was applied and discussed by a number of
authors, e.g., BuZek et al. {5] and Miranowicz et al. [6].
An altemative attempt to define coherent states in
FDHS is based on the truncation of the number state
decomposition of the ordinary coherent state (defined
in the infinite-dimensional space) to a finite number of
Fock states with properly normalized amplitudes. This
method was proposed by Kuang et al. {7, 8)]. In this
paper, similarly to {9], the FDHS coherent states defined
according to the first definiion will be referred to as
finite-dimensional Glauber coherent states (FDGCS),
whereas the states defined according to the second one,
as 1n [7, 8], will be called truncated coherent states
(TCS). We will show that the two types of coherent
states evolve differently. We will focus our attention on
their quasi-periodic and periodic properties.

2. DEFINITIONS

In this paper we will consider the “time evolution”
of coherent states defined in a finite-dimensional Hil-
bert space. Such states can be generated in a model
compnsing a cavity filled with the nonlinear medium

exhibiting the (2¢ — 1)th nonlinearity %~ [10]. This
model is governed by the following Hamiltoman (in the
interaction picture):

re(@ +a), ()

where € denotes the strength of the coupling between
the external driving field and the cavity field, and the
driving field is assumed to be tuned exactly to the cavity

frequency. Assuming that the external field excitation1s

weak, € < x2‘1 I and that the field inside the cavity 1s -

mmally in the vacuum state {0), this system can gener-
ate a very specific state of the field. Namely, the time

‘evolution of the system 1s restricted to a finite set of the

first g number states. Applying the perturbation theory, -

- we can derive the appropriate formulas for the ampli-
‘tudes corresponding to the subsequent number states.
‘For instance, for the case of g = 3 discussed 1n [10], we |
‘can write thc solutions for the amphtudcs in the form

| co(t) = 3(2+ cos(ﬁe:))+0(e),

c,(t)' . —J_gsm(,,/'j’;er) + O(E)

5 (2)
c,(t) = —;(cos(ﬁet)—-l)-l-ﬁ(e),
C4(t) = —21e (cos(ﬁet) -1)+ 0(6 ).

3y J6

It 1s seen that for weak external excitation the influence
of the three-photon state [3) on the dynamics of the system
1s negligible. The amplitudes ¢, ¢,, ¢, appeanng in (2)
correspond to the probability amplitudes derived 1n {6] for
the coherent states defined in the three-dimensional
space. Thus, with the high accuracy, we can treat the
resulting state as an example of the coherent state in
FDHS. The argument of the cosine and sine functions

126



QUASI-PERIODIC AND PERIODIC EVOLUTION OF CAVITY FTRT N o 197

f:lppe_aring in (2) is related to t_he parameter |o| appear-
ing in the formulas for the finite-dimensional coherent
state expansion derived in [6]. In fact, when we com-

pare our formulas, given by (2), with those of [6] we-

find a simple relation between the parameter |
appearing in [6] and the quantities appearing in (2), 1.e.,

|a| = er. This relation can be helpful in the physical

interpretation of |o introduced in the definitions for
finite-dimensional Hilbert spaces. We will refer to this
relation in our discussion of “time evolution” of coher-
ent states in FDHS.

. From now on, we abandon the discussion concern-

ing methods of generation of the FDHS coherent states,
and we will concentrate on their periodical properties.
In particular, we will compare the properties of the
coherent states in FDHS defined in two different ways.
As it has been mentioned earlier, Kuang et al. [7, 8]
defined the coherent states in FDHS by the ttuncation
of the Fock decomposition of the Glauber infinite-
dimensional coherent state {0)..). This is equivalent to

the action of a nonunitary operator cxp((':i&f) on the
vacuum state. Of course, proper normalization of the
states is required. The states obtained in this way are
referred to as truncated coherent states (TCS). We can
rewrite the expansion of this state in the number states

basis as 1n [9]:
@ = Nexp(@a)io) = Y exp(ind)b,”In), (3)
- n=0 - '

where |
5 = Nl ()™ “

The normalization constant N appf.:aring in (4) can be
- written in the following form:

-1/2
- =112

= {(-1°L;"7 (lah)

l2ﬂ

G

- where the quantity L

3

, (3)

-s-1 .

1s a generalized Laguerre

polynomial. Obviously, the dimension of the Hilbert

space 1s equal to (s + 1).

The other type of FDHS coherent states are those
referred to as finite-dimensional Glauber coherent
states. They are defined, in the same way as the appro-
priate states in infinite-dimensional Hilbert space, by
the action of the displacement operator on the vacuum,
except for the fact that the Glauber unitary displace-

ment operator f::-:xp(t:)u“':'fr — *a ) 1s defined in the FDHS.

Thus, for the (s + 1)-dimensional Hilbert space, the
expansion of the FDGCS can be written as follows [6]:

o), = exp(a&% ~a*a)l0) = Zexp(inq))cff)ln),
n =)

(6)
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where

(s) - st l—l/I Wh ~ .
= 1) —{ €X L X, | O
cn = g (m) ),2, p(ixdal)

, ()
X ch(xk)He;z(xk)' L

The factors He,(x,) are the modified Hermite polyno-
mials, and x, are the roots of the Hermite polynomial of
order (s + 1): (He, ., 1y(xx) = 0). The modified Hermuite.
polynomials He,(x) are related to the Hermute polyno-
mials H, by -

He, (x) = Z_HQHH(I/ZHZ). : | (8)

3. QUASI-PERIODIC AND PERIODIC BEHAVIOR

OF THE FDHS COHERENT STATES

Since in this paper we deal with problems of the
quasi-periodicity and periodicity for the FDHS coher-
ent states, we should clarify what kind of penodicity
we have in mind. Exploiting the relation between the
FDGCS and the state of the field in a cavity with the
nonlinear medium discussed earlier, we can treat the
FDHS as the space in which the state evolves, where
the quantity o plays the role of scaled time €z. In conse-

quence, we can study the evolution of the states defined

in FDHS as a function of the scaled time o.. Hence, we
will use the two*quantities & and ¢ equivalently. It 1s
seen from the definitions of the expansion coefficients

- b@ and ¢ given by (2) and (5) that periodic functions

of o appear in the FDGCS coefficient ¢). The coeffi-
cients b® do not exhibit such periodic properties.
Therefore, we will focus our attention mainly on the

As it is seen from (4) and (5), FDGCS can be
expressed as a sum of cos(xa)/x, and sin(x)/xe,
where (I = 1, 2), and the factor x, 1s a root of the Hermite
polynomial He. Due to symmetry, we can take into
account positive x; only, i.e., 0 <x; <x, < .... We are
searching for the pertod 7= & fulfilling the relation

T = ?‘-’-‘(k =1,2,..). (9)
X; |

Due to the properties of the roots of the Hermite poly-
nomials, we can write

(10)

Using the appropriate approximation for the roots of
the Hermite polynomials we obtain the following for-
mula for the period T:

T = .J4s5+ 6. (11)

As we will show, the value of T obtained from (9) 1s
particularly close to the exact value of the period for
even s.
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Fig. 1. The scalar product ({c(0)|0(T))(s) for s = 18, 19,
100, 101: (dotted line) TCS, (solid hine) FDGCS.

To show the occurrence of the periodicity in the sys-
tem (0. is treated as a scaled time), we plot the product
of two FDHS coherent states (,{0u(#;)|0(t2)) ). Assum-
ing that o € R this product becomes

(:)(a(flna(tz))(,) = f(a(fz)f'a(f;__n)) = f(t). (12)

We plot in Fig. 1 this product as a function of the ame T,
assuming that o(z,) = 0. We see that for short times both
FDGCS and TCS behave almost identically. For longer
times, however, a significant difference between the

two states occurs. TCS asymptotically falls down to
zero. whereas FDGCS exhibits quasi-periodic behav-
ior. Moreover, we see that for higher dimensions (s + 1)
of the space this quasi-periodicity becomes almost ide-
ally periodic. Figure 1 shows the “time evolution™ of
the product (12) for both even and odd values of s. Itis
seen that, for odd s, the periodicity is weaker—after
each quasi-period additional, nonperiodic features
become more and more visible. Nevertheless, they are
negligible for higher values of s. In addition, for odd s,
the value of the quasi-period T is approximately two
times greater than that for its even counterpart. This fact
originates from the phase reversal effect. For this case,
the value of the scalar product reaches —1. We see that the
product reaches the same value as for the initial time but
with the opposite sign, contrary to even s, where the
product reaches approximately the same value and s1gn
as for the initial time. Moreover, for some values of T,
the scalar product is equal to zero, so the initial state and
the state for the time T are orthogonal.

To show the behavior of the FDGCS dunng the
“time evolution,” we plot in (Fig. 2) the distribution of

the probability amplitudes ¢ f:) for such states with var-

ious values of a (treated as the time T), and for s = 50.
The evolution starts from the vacuum state |0), and, as
the value of a increases, we observe the wave-packet
style distribution moving towards higher values of n.
As this “packet” reaches the border of the space, inter-
ference effects occur. This is an effect of the reflection
of the “packet” from the border of the space. After this

reflection, the packet moves towards n = 0. During this

1.0
0.5
0

1.0
0.5

0

i

N

l.OI = l' ﬁl—' I
0‘5: ' | |
0 500 500 500 500 500 50

Fig. 2. Distribution of the probability amplitudes cf:} for various values of T = a (& = 0, ..., 30 with the step Aa = 1) and 5 = 50.
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Fig. 3. The same as for Fig. 1 but for s = 51.

motion, it changes its shape and becomes a vacuum
state distribution again, as for T = 0. This effect can be
referred to as ping effect. For further times, we observe
the same behavior as for T < T (for s = 50 the periodicity
is nearly perfect). '

Figure 3 shows the same situation but for an odd
value of s (s = 51). It is seen that for short times the sys-
tem behaves identically as for the case of s = 50. How-
ever, as the distribution reaches the second border of the
space it changes its sign. This is the same phase reversal
effect as for the situation shown in Fig. 1. As a conse-
quence, the interference effect appearing at the space
border remains visible during the way of the distribu-
tion towards the n = O state. Moreover, the period T
becomes approximately two times greater than that for
the case of the even value of s. It is seen that the behav-
ior of the probability distribution depends strongly not
only on the value of s, but also on its panty.

Figure 4 shows the function j{o(s)|ods + T)ol?
plotted for various values of s. We have presented plots
corresponding to various methods of finding the peniod T.
We compare the results for T found numerically to those
derived from our approximate formula (9). We see that
for s = 1, 2 the FDGCS exhibit perfectly pernodic
behavior. Nevertheless, as the dimension of the space
increases, this periodicity changes to quasi-periodicity.
This is a result of the form of the Fock states expansion

of the FDGCS. The coefficients cf,ﬂ are defined by the
sum of periodic functions. The “frequencies” inside

LLASER PHYSICS Vol.7 No. | 1997

these functions are determined by the roots of the
Hermite polynomials. For s > 2, the “frequencies’ are
not identical and their quotient is not a rational num-
ber. In consequence, periodicity 1s lost. Nevertheless,
as s increases, the quasi-periodic behavior tends to be
ideally periodic. Moreover, Fig. 4 shows that foreven s
we achieve better agreement between the approximate
solution (9) and T obtained from the numerical calcula-
tions. This fact agrees with our earlier discussion con-
cerning derivation of the approximate formula for 7.

095 °

090 { | i ! ;. i i 1

Fig. 4. The quantity | {o]o(T + T))(s)l?' for vanous values

of 5. Circles correspond to even values of s square marks,
to odd values of s; empty marks, to approximate values of T;
and filled marks, to T found numencally.
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4. FINAL REMARKS

We have discussed the properties of the finite-dimen-
sional Glauber coherent states and the truncated coher-
ent states. We have paid attention to the quasi-periodic
and periodic properties of those states. We have shown
that only the FDGCS exhibit such properties. More-
over, the behavior of this kind of states depends on the
dimension of the space. For s = 1, 2 the states are peri-
odic, whereas for higher values of s they are quasi-peri-

odic. Nevertheless, as s increases, their behavior tends
~ to be penodic. This tendency is more prominent for
even values of s. Additionally, we have shown that for
odd s the phase reversal effect occurs. We have also
shown that the dynamics of the FDGCS expressed in a
Fock-state basis exhibits behavior that we have referred
to as the ping effect. We have derived an approximate
analytical formula for the period T of the quasi-penodic
behavior of the system. Our formula is particularly well
suited for even s, and agreement between the analytical
result and the numerical result becomes better as the
value of s becomes greater and greater.
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