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We generalize, for arbitrary initial fields, the Glauber-Mista theorem of classical-
like evolution of the frequency converter. We show, by solving completely the
Orlov-Vedenyapin diagonalization problem, that the initially nonclassical fields
remain nonclassical during the evolution of the frequency converter. We give
a general expression for the two-mode Husimi Q-function and examples of its
marginal (single-mode) quasidistributions for initial coherent states, Fock states
and two-state superposition of Fock states. We find their graphical representations.

1. Introduction

Parametric frequency converter (PFC) is one of the most fundamental models of
quantum optics from both experimental and theoretical points of view. A quantum -
description of the PFC was given by Louisell [1]. The model has been successfully
applied to describe various optical phenomena. In particular, there have been found
analogies between the PFC and a beam splitter (see, e.g., [2]), the PFC and a two-
level atom driven by a single mode electromagnetic field [3], or the PFC and Raman
scattering models [2,4]. By simple generalization of the model various more complicated
processes can be described, e.g., coherent or incoherent spontaneous emission from a
system of N two-level atoms. There have been great advances in the constfuction of
frequency converters for over 30 years. The PFC devices are based on the coupling of
light waves in, e.g., nonlinear dielectric crystals such as LiNbOj.
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2. Model

The parametric frequency converter (PFC) can be modelled by a process of exchang-
ing photons between two optical fields of different frequencies: signal mode at frequency
wy and idler mode at frequency we. The interaction Hamiltonian for the PFC is [1]:

Hing = hs[ala, exp(—iAwt) + a1} exp(iAwt)], | (1)

where Aw = w + ws — wy; @y and @, are the annihilation operators for the signal
and idler modes, respectively, and « is the real coupling constant. Hamiltonian (1)
describes a coupling of three optical modes at different frequencies: signal mode at
frequency ws, idler mode at frequency ws, and pump mode at w. However, in order to
derive the Hamiltonian (1) from first principles it is necessary to apply the parametric
approximation. This approximation effectively reduces a description of three-mode
interaction to a two-mode problem. The pump mode is treated classically since its
intensity can be assumed to be much greater than the intensities of the signal and idler
modes. The frequency converter (1) is formally equivalent to a beam splitter. For
simplicity, we will analyze a resonance case (Aw = 0) only. Solutions of the Heisenberg
equations of motion for the signal (1) and idler (2) modes are [1}:

@) (t) = @19 cos kt — idyg sin kt, Qg (t) = dap cos Kt — i@y sin ki, (2)

respectively, where @19 = @;{0) and @y¢ = @2(0) are the annihilation operators at initial
moment t = 0. The total number of photons is the constant of motion, 7 (t) + 7 (t) =
711 (0} + 7i2(0) = const. The solutions of the classical equations of motion for the PFC
are [1]:

@1 (10, (20, t) = q1p cOS Kt — lagg sin kt, Pa(ar0,@20,t) = agg cos kt — iajgsinkt. (3)

3. Diagonalization problem: Sheffer polynomials

Hamiltonian (1) describes a special case of Raman-type models analyzed in the
sound paper of Orlov and Vedenyapin [4] on special polynomials in problems of quantum
optics. We would like to solve completely their diagonalization problem, H nt|Y) = YY),
for the PFC model.

Let us assume that the total number of photons in the signal and idler modes is V.
Hamiltonian (1) in Fock basis of the idler mode is

0 fo O
fo 0 f 0

ﬁmt = Ai(n]:) = ' . ) (4)
0 v
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where f (M) = (N —n—-1,n+1a,a;|N —n,n) = \/(n + 1)(N — n). The eigenvalues are
Y = 'y,(cN) =2k — N, where k = 0,..., N. The eigenvectors

N N
) =) = S CMy)iny,  spanming B =3 wlmdinl, ()

n=0

can be determined from the recurrence formula
1M = M) + ri el | (6)

for n =0,...,N. Eq. (6) simplifies to the recurrence formula

dy =7d) —n(N -n+1dl),  where M = CMn! (]:) "

which we recognize as a definition of a special class of the Sheffer orthogonal polynomials
[7]. The generating function for the Sheffer polynomials (7) is

Z dM )t = (1+ t)(N+")/2 (1- t)(N—'v)/2 _ ®)
n=0

Orlov and Vedenyapin [4] found slightly modified form of the generating function (8),
however after normalization both functions lead to the same eigenvectors. We complete
the analysis of Ref. [4] by finding the explicit solution of the recurrence relation (7) in

the form
Z j n—j

Normalization constant can be calculated from the Christoffel-Darboux identity for the

orthogonal polynomials. By retaining the original coefficients C(N)( k) = Cg\,?, and
putting v = 2k — N, we arrive at the normalized superposition coefficients (6) in the

form
-l () () Lo () (2w

Knowing the eigenvalues and eigenvectors of the Hamiltonian (4) we readily find the
wave function of the frequency converter for initial Fock states |N — ng,ng) as

N
(1) = oI @)IN —n,m), (11)

n=0

where

bVl (¢ Z exp(—inest) ) (v) OV () (12)
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or, explicitly,

it () (e (2) (5) () o

j=0
(13)
where n' = min(n, ng) or, equivalently, n’ = n or n' = ny. We can rewrlte the wave
function (11) in a more compact form as

iy = ACYTTECOm,,
VN =ngl  Vng! 7
_ (@locoskt +ia}ysinkt)N=" (@b, cos st +ialy sin st)o 0,0). (14)

\/(N—no)! Vno!

4. Quasidistributions

The two-mode Husimi Q-function for arbitrary initial statistics, described by Q{a1, a2,0)
= Qo{o0,a20), can be obtained from the explicit form of bS,N'"")(t), given by Eq.
(13). With the help of the mathematical identities |a;|? + |a2|? = |®1(ay, a2, t))® +
[®2(a1, az,t)|? and

N

~ N - L ,

BN (0, ay, —t) = E ( o :0> (a1 cos k)N " (iary sin kt)" 770, (15)
)

n=0

for N > np, we show that the following property
(w(t)lal ) Gﬁ2) = (N — Ny, nOlq)l (al, az, _t)7 (1)2(01, az, —t» (16)

holds for any initial Fock states, |#(0)) = |N — ng,no). By virtue of Eq. (16), we con-
clude the two-mode Husimi @Q-function for arbitrary initial statistics can be expressed
in a compact form as

Qay,a,t) = Q{®7 (a1, a2,t), 85" (a1, z,t),0}
= Q{(I)l(aha?r-t)’q)?(alaa% ):0}7 (17)
where
@fl(al,az,t) = aq cos Kt + 1o sin k¢, <I>2_1(a1,a2,t) = ag cos kt + iay sinkt  (18)

are the relations inverse to the classical solutions ®;(c;, a2, 1), given by (3). Obviously,
the property holds for any s-parametrized quasidistributions, including the two-mode
Glauber-Sudarshan P-function, P{a; az,t), as was analyzed by Mista [6] for coherent
initial fields.

Eq. (17) has a clear physical interpretation: a two-mode Husimi @-function for
the PFC remains constant along classical trajectories. If the signal and idler fields are
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initially classical, i.e., if they are described by a regular and non-negative Glauber-
Sudarshan P-function, they are classical at any evolution times of the PFC. However,
if the fields are initially nonclassical (with singular and/or negative P-function) they
remain nonclassical during the evolution. It seems that Glauber [5] and Mista [6] have
proved the property (17) for the model with initial coherent fields only.

In order to find a graphical representation of the PFC evolution is useful to calculate
the marginal 3D Q-functions. E.g., the marginal distribution for the signal mode is
defined as

Q1(a,t) =/Q(al,az,t)d2042 =/Q{<I>1‘1(a1,a2,t),(I>2"1(a1,a2,t),0} d’ay. (19)

The idler-mode Husimi function @Q2(as,t) is defined analogously. Let us analyze in
detail evolution of the PFC for three different initial conditions.

If the PFC is initially in a two-mode coherent state [1(0)) = |a10, a20), it remains
a coherent state at all times [5,6]. From Eq. (17) follows

1 -
Qan,a2,t) = — H exp(—|<I>j1(a1,a2,t)—ajolz)
4 j=1,2
1 .
= — [ exp(-loj — ®j(a10,020,8)1"). (20)
3=1,2

The single-mode marginals of Q(a;, az,t) are simply
1 - ,
Qj(ajrt) = ;exp(_la]' - (b]'(alova207t)|z) ) (.7 = 1a2) (21)

Let us note that Q;(oy,t) differs from %exp(—l@;l(al,ag,t) - ajo}*). Eq. (21) shows
that the single-mode Husimi functions Q;(«a;,t) do not change their shape during evo-
lution of initially coherent states (see Fig.1). For better comparison, we present the
evolution of the signal and idler modes in the same phase space, i.e., &3 = az. We have
analyzed evolution of initial coherent states, with the same amplitudes |aio| = |aol,
but different phases of Ap = Arg(aip) and Arg(ase) = 0. If Ap = 0, then both signal
and idler modes evolve along the same circular trajectory given by Eq. (3) with the
same phase. However, even by changing slightly Ay from, e.g., 0 to 0.1, the differences
in the evolution of the modes are well pronounced (see Fig.la). If Ay = 7, then the
modes evolve out-of-phase along the same circular trajectory (see Fig.1d). For phases
A different from 0 and 7, the trajectories for the signal and idler modes are different
(Fig. 1b,c). In particular, for Ap = 7/2 (Fig. 1c) and 3x/2, the elliptical trajectories
go over into mutually perpendicular linear trajectories.

If the signal mode is initially in a single-photon Fock state and the idler mode in
a vacuum state, the wave function is given by |1()) = cos«t|1,0) — isin«t|0,1). The
two-mode @Q-function is

Qar,a2,8) = = exp(—ou? = fas) 27" (a1, )P 2
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Fig. 1. Contours of the Husimi Q-functions: Q1(Rea1,Imay,t) for the signal mode (thick solid
circles) and Q2(Reaz,Imas,t) for the idler mode (thick dashed circles) for initial coherent
states [1(0)) = |ai0,a20) with a10 = 2exp(iAy), a0 = 2: (a) Ap = 0.1, (b) Ap = 2, (c)
Agp = % and (d) Ap = 7 at evolution times xt = 0,1 - %>2- §. Classical trajectories for the
signal mode (thin solid ellipses) and for the idler mode (thin dashed ellipses) are given by
Eq.(3).

Its signal-mode marginal is
1
Qi(ay,t) = — exp(—|ou|?) (Jou|? cos® t + sin® kt) (23)

whereas the idler-mode marginal Q2(e2,t) can be obtained from (23) by replacing
a1 ¢ a2 and sinkt < coskt. The Fig. 2 presents the evolution of the signal-mode
Husimi function Qi(ay,t) for kt = 0,m,2m,... (Fig. 2a) and for kt = 7/2,37/2,...
(Fig. 2b) or equivalently the evolution of the idler-mode Husimi function Q2(ay,t) for
Kkt = m/2,3r/2,... (Fig. 2a) and for xt = 0,m, 2, ... (Fig. 2b). For kt = (14 2n)n/4
(n=0,1,...) the Husimi functions coincide, Q(a,t) = Q2(a,t) = ;l—ﬁexp(—|a[2)(l +
|?) (by assuming the same phase space for both modes). Contrary to the evolution of
initially coherent states presented in Fig.1, the Husimi functions Qj(aj,t) for initially
Fock states are centered at a; = 0 for all evolution times, however they change their
shape.

If the signal mode is initially in a superposition of a vacuum and single-photon Fock
state, and the idler mode is in a vacuum state, i.e., [)(0)) = % (10,0) + |1,0)), the
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Fig. 2. Husimi Q-functions for initial Fock states [1(0)) = |1,0): (a) Q1(Rear,Imay, 25) or

R

Q2(Reaz, Ima, (1 + 2n) ), (b) Qi(Rean,Iman, (1 + 2n) =) or Q2(Reaz, Imas, 2X), where
n=20,1,...

two-mode @-function is

1 -
Q(a1,a2,t) = =— exp(~|a1}* — |az|?) [1+|®7 (a1, az,t)]? + 2Red; l(al,ag,t)] .

272
(24)
The signal-mode Husimi function is
1 2 2 2 .2
Q1 (ag,t) = 5 exp(—|a1]?) (Jox[* cos® Kt + 2Recy cos kt + 1 + sin® kt) . (25)

and the idler-mode Husimi function Q2(a,t) comes from (25) by replacing: a; — as,
sinkt ¢+ coskt, and Rea; — Imay. This evolution is (3Z)-periodical contrary to (%)-
periodical evolution of initially Fock states |¢(0) = |N — ng,no) (see, e.g., Fig. 2).
"The signal-mode Husimi function Q;(a1,t) has an apple-shape contour (see Fig. 3 a,b)
for kt = nm and circular contour for kt = (1 + 2n)n/2. The contour of the idler-mode
Husimi function @y (ay,t) is initially a circle and it changes into an apple-shape contour
at st = (14 2n)7/2 but rotated by /2 in comparison to Q;(a;,0). Contrary to former
cases presented in Figs. 1 and 2, the Husimi functions Q (e, t) for initial superposition
of Fock states (Fig.3) change their shape moving along trajectories.

5. Conclusion

Glauber [5] proved a theorem showing classical behavior of some general class of
quantum oscillator systems, including the PFC as a special case. States of the PFC
which are initially coherent remain coherent at all times. The evolution of the system
is classical in nature for initial coherent states. The similar properties of the PFC
were discovered independently by Mista [6]. He found that the Glauber-Sudarshan
P-function is constant along classical trajectories for initial coherent fields.

We have generalized the Glauber-Mista theorem for arbitrary initial fields. By solv-
ing the Orlov-Vedenyapin (4] diagonalization problem completely, we have proved that
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Fig. 3. Husimi Q-functions for initial superposition of Fock states [1(0)) = 27*/2(|1,0)+]0, 0)):
(a) @1(Reas,Imas, 0); (b) contours of @1(Rea:,Imai,t) at xt = 0 [thick solid line - contour
corresponding to case (a)], 1- & (long dash), 2 % (short dash),3- £ (dot dash), 7 (dots). Thin
solid line is given by Eq. (3).

the two-mode Husimi Q-functions (or equivalently, the two-mode Glauber-Sudarshan
P-functions) for the PFC are constant along classical trajectories for arbitrary super-
position of Fock states. It does not imply that the single-mode Husimi @Q-functions are
constant as well. We have shown that if the initial fields of the PFC are nonclassical,
they remain nonclassical during the evolution of the PFC.

We have analyzed in detail three kinds of time evolution of the single-mode Husimi
Q-functions for different initial statistics: for single-photon Fock state, for finite and
infinite superposition of Fock states initially in the signal mode.

Acknowledgements We thank Prof. R. Tanaé and Prof. J. Pefina for their stimulating
discussions. A.M. kindly acknowledges the Japanese Ministry of Education for the
“Monbusho” Scholarship and Osaka University of Foreign Studies for hospitality. This
work was supported by the Polish Research Committee grant No. 2 PO3B 73 13, the
Czech Ministry of Education grant No. VS96028 and the Malaysia S&T IRPA 09-02-
03-0337.

References

[1] W. Louisell: Radiation and Noise in Quantum Electronics (McGraw-Hill, New York, 1964)
p. 274

[2] J. Pefina: Quantum Statistics of Linear and Nonlinear Optical Phenomena, 2™ ed.
(Xluwer, Dordrecht, 1991)

(3] W.J. Mielniczuk, J. Chrostowski: Phys. Rev. A 23 (1981) 1382

[4] Y.N. Orlov, V.V. Vedenyapin: Mod. Phys. Lett. 9 (1993) 291

[5] R.J. Glauber: Phys. Lett. 21 (1966) 650

[6] L. Mista: Czech. J. Phys. B 19 (1969) 443

[7] M. Sheffer: Duke Math. J. 5 (1939) 590



