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Abstract

We analyze the most popular approaches to photon antibunching as exemplified in a sim-
ple model of second-harmonic generation. We find the exact evolution of the fundamental
and harmonic fields for initial Fock states with small photon numbers. We show explicitly
that definitions of photon antibunching based on the unnormalized, G®@ (t,t'), and normal-
ized, g (t,t"), two-time correlation functions describe distinct phenomena for nonstationary
fields. For completeness, we also compare antibunching effects defined by the two-time and
single-time correlations.

1 Photon antibunching

Photon antibunching and sub-Poisson photon statistics (also called antibunching) reveal the quan-
tum nature of light and therefore have received a great deal of attention during the last decades.
The first detection of antibunched light by Kimble, Dagenais and Mandel [1] and first detection of
sub-Poisson light by Short and Mandel [2] are regarded as milestones in the progress in quantum
optics. In spite of many experimental and theoretical achievements, a deeper analysis of these
effects seems to be necessary, particularly in the case of nonstationary fields. We shall clarify some
of these aspects by referring to an example of second-harmonic generation.

There are several commonly used definitions of photon antibunching for a single-mode radiation
field (e.g., Refs. [1]-[9]):

Definition I: The photon antibunching (see, e.g., Ref. [3]) occurs if the two-time light intensity
correlation function G (¢, ¢ + 7) increases from its initial value at 7 = 0,

GOt t+71) > GD(t,t), where GO(t,t+7)=(T :at)A(t+71):). (1)
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The photon number operators 7 in (7 : n(t)n(t + 7) :) are in normal order and in time order.
Alternatively, Eq. (1) can be rewritten into the form [4]

GO(t,t+71)

7t t+71)>73?(tt), where gP(t,t+71)=
g (1 +7) > g (1,1 70t = S

(2)

The normalization of G®)(¢,¢ + 7) contains the first-order correlation function GM(t) = (n(t)) =
(a(t)a(t)) independent of 7. For a well-behaved function G®) (¢, t+7), we propose other definitions,
viz.,

I'(t) >0, where I'(t)=T®() = QG@) (t,t+71)

or ’ (3)

7=0

7(t) >0, where §(t) =7(t) = (fig@)(t,t +7) (4)

7=0

equivalent to Egs. (1) and (2), respectively. Photon bunching occurs for G (¢, t 4+ 1) < G®(t,1),
or negative I'(t) or (t), whereas unbunching occurs for locally 7-independent G (¢,t + 7) or,
equivalently, for vanishing derivatives I'(t) or 7(t).

Definition II: The photon antibunching (see, e.g., Ref. [5]) takes place if the two-time normalized
intensity correlation function

GA(t,t+7)

@)t ¢ = \(t,t 1= 5
increases from its initial value at 7 =0, i.e.,
gDt t+7) > g (t,1). (6)

Eq. (6), for a well-behaved g (¢, + 7), can be given in terms of its positive derivative [5]

A1) >0, where 5(1)=42(0) = SgD(t.t+7)| (7)
T

7=0

Similarly, bunching is said to exist for 7(¢) < 0, and unbunching for v(¢) = 0. For brevity, we refer
to Defs. 1 and II as based, respectively, on unnormalized and normalized correlation functions
stressing only the independence or dependence of the normalization factors of G®)(t,¢ 4 7) on 7.

Definition III: The sub-Poisson photon-number statistics (also called “antibunching” [5, 6]) is
defined by one of the conditions

gPtt) <1  or Q(t) <0 (8)
in terms of the single-time correlation function g®(¢,t) or Mandel Q-parameter

_(papP) )
mw—ﬁw»—l—m@»@“ww—lk (9)

Super-Poisson statistics occurs for opposite inequality signs in the relations (8).
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By having recourse to examples, Zhou and Mandel [7] and others [8, 9] have shown that Def.
IIT based on single-time correlation functions is essentially different from Defs. I and II based on
two-time correlation functions (or their single-time derivatives). However, it has been thought that
Defs. T and II based on the unnormalized and normalized two-time correlation functions describe
essentially the same effect for arbitrary fields. This is the case for stationary fields. We show
by referring to the example of second-harmonic generation in nonstationary régime that photon
antibunching I and II are two distinct phenomena which need not necessarily occur together.
Discrepancies between Def. I and Def. II are more subtle than those between Defs. I-II and III
and stem from the 7-dependent normalization factor in Eq. (5) which may change the correlations
for 7-dependent G (¢ 4 7).

2 Second-harmonic generation

The Hamiltonian in the rotating wave approximation for the process of second-harmonic generation
(SHG) reads as follows

H = Hy+ Hiy = hwity + 2hwiy + hg (76} + hec.) (10)

where @; (a;') are the annihilation (creation) operators for the fundamental mode (i = 1) of
frequency w and for the harmonic mode (i = 2) of frequency 2w; n; (i = 1,2) are the photon
number operators; ¢ is the real coupling constant involving the characteristics of the nonlinear
medium. The long-time evolution of the SHG process has been studied extensively either (i) by
numerical solution of the Heisenberg equation (e.g., Ref. [10]), or (ii) by numerical solution of the
Schrédinger equation (e.g., Ref. [11]). To our best knowledge, the analytical evolution of the SHG
process has been found in the short-time limit only [12]. We find the exact analytical evolution
of the fundamental and harmonic modes for initial Fock states with small photon numbers. Our
solutions are valid for arbitrarily long evolution. Due to the limits on space we present here the
three simplest solutions only. But even these solutions suffice to show the differences between the
Definitions I-III of photon antibunching.

Exact solution for [¢(0)) =2,1)

We analyze the SHG for the initial Fock field |¢(0)) = |n1,n2) = |2,1), i.e., the fundamental
mode is in the two-photon Fock state, |n1) = |2), and the harmonic mode is in a single Fock state,
|ng) = |1). We find the following evolution of the field

/3 )
|W(t)) = —2\2/— sin x|4,0) + cosx|2,1) — %Sinx|0, 2), (11)
where z = 4¢gt. The mean photon numbers are
1 1
(ny(t)) = 5 [5 — cos(2x)], (na(t)) = 1 [3 4 cos(2z)] . (12)

By applying Def. I, we find that photon antibunching of the fundamental mode is accompanied
by antibunching of the harmonic mode, and bunching occurs for both modes simultaneously, since

I';(t) = 12gsin(22), ['y(t) = gsin(2z). (13)
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Similarly, according to Def. II, modes 1 and 2 are simultaneously either bunched or antibunched:

Y (t) = 128¢ [5 — cos(2x)]° cos? xsin(2z),
Yo(t) = 16g [3 + cos(2z)]*[5 — cos(2x)] sin(2z). (14)

By applying Def. III, we observe that the fundamental mode can be sub-Poisson or Poisson only;
but the harmonic mode can also be super-Poisson, since

3+cos(2z) (na())

Q:1(t) = _E)—TS(QJJ) cos“r = _Q(nl(t» cos’z <0,
@(t) = _471 B COSZ(LQw) + 3+ CZOLS(QSE)‘ (15)

The evolution of the parameters I';(t), 7;(t) and @Q;(t) is given in Fig. 1(a) for the fundamental
mode and in Fig. 1(d) for the harmonic mode.

We conclude that Defs. I and II are equivalent for the solution (11), i.e. antibunching I occurs
whenever antibunching II occurs. However, Defs. I (or II) and III differ: sub-Poisson statistics
of the fundamental mode can be accompanied by both bunching and antibunching (I or II). For
the second mode all possible variations occur: (i) sub-Poisson statistics together with antibunch-
ing; (ii) sub-Poisson statistics together with bunching; (iii) super-Poisson statistics together with
bunching; and (iv) super-Poisson statistics together with antibunching. The differences between
sub-Poisson statistics and antibunching in SHG are only another example of the well-known facts

(e.g., Refs. [7]-]9]).

Exact solution for [¢(0)) =|2,0)

The simplest nontrivial solution is for initial Fock fields |ni, ngy) = |2,0); it takes the form
|1(t)) = cosx|2,0) —isinz|0, 1), (16)
where x = v/2gt. The mean photon numbers evolve as
(ni(t)) = 2cos? z, (ny(t)) = sin® z. (17)

We observe that both modes are unbunched according to Def. I, since I'; (t) = I's(t) = 0. Applying
Def. II, we find that the harmonic mode is also unbunched [y2(t) = 0]; however, the fundamental
mode can be bunched, un- or antibunched since

7 (t) = V2gsec® ztan . (18)

According to Def. III, the fundamental mode can be sub-, super- or Poisson, but the harmonic
mode cannot be super-Poisson

Q1(t) = —cosz, Q2(t) = —sin®*z < 0. (19)

The evolution of the parameters I';(t), v;(t) and Q;(¢) is given in Figs. 1(b) and 1(e). Again,
we observe discrepancies between the single-time (Def. III) and two-time (Defs. I-II) correlation
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functions. But the essential conclusion is that the predictions of Defs. I and II may be different for
nonstationary evolution (16). Here, unbunching I is accompanied by antibunching II and bunching
II. This example can provide a test of the validity of Def. II. One can interpret this case as follows:
normalization of G®)(t,t + 7) by a 7-dependent factor [e.g., GV (¢ 4 7)] introduces some artificial

(phantom) anticorrelations.

TABLE I. All possible predictions of photon antibunching according to Defs. I, II, and III.

’ No. H Def. 1 ‘ Def. 11 \ Def. TI1 H Evolution of the harmonic mode
1. | antibunching | antibunching sub-Poisson | 9° € (0 arccos{2v/5 — 5})
for |4 (0 )) |2 1)
2. bunching bunching | super-Poisson gt € (§ .7 — garccos{2v/5 — 5})
for |¢(0)) = ! 1)
1 _5 z
3. antibunching | antibunching | super-Poisson gt € (8 arccos{2v/5 — 5}, 8)
for [1(0)) =2, 1)
T _ 1 _ L
4. bunching bunching |  sub-Poisson | 7 te (4 s arccos{2v/5 — 5}, 4>
for [(0)) =2, 1)
—1/4
5. bunching | antibunching sub-Poisson | I' € (O,arccos{Q })
for |¢(0)) =10,2)
T _ 1/4
6. | antibunching bunching | super-Poisson | ¢ € (3.5 — arccos{27/1})
for |¢(0)) =10,2)
-1/4y =
7. bunching | antibunching | super-Poisson gt € (arccos{2 I
for |¢(0)) =10,2)
T _ 14y =
8. antibunching bunching sub-Poisson || 7 te (2 arccos{271/%}, 2)
for 1(0)) =10, 2)

@ 1W(0)=(2,10 (b) [W(0)=|2,000 (©) [w(0)=|0,200
3 T 0 i

o 0.5 1 15 [0} 1 2 t 3 4 [0} ] 0.5 1 1.5t 2 25 3
9
(e) [y(0)=|2,000 ) |W(0)=|0,200
5

0 0.5 1 15 0 1 2 3 4 o 0.5 1 15 2 25 3
gt gt gt

FIG. 1. Evolution of the parameters: @Q; (solid lines), I'; (dashed) and ~; (dot-dashed) for initial
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Fock states |ny,ne) = [2,1), 2,0), |0,2). The parameters in figs. (a), (b), (c) are given for the
fundamental mode (i = 1), and those in figs. (d), (e), (f) are for the harmonic mode (i = 2).

Exact solution for [¢(0)) = |0,2)
For initial Fock fields |ny,ny) = |0,2), we find the solution

V3 i 1
W(t» = _7 Sln2 y’47 0> - 5 Sln<2y)|27 1) + Z [3 + COS(2y>] ’07 2>7 (2())
where y = 2gt. This process describes subharmonic generation. The mean photon numbers are
1 1
(ni(t)) = 3 [5 — cos(2y)] sin®y, (na(t)) = 16 [21 + 12 cos(2y) — cos(4y)] . (21)

We observe, according to Def. I, that the fundamental and harmonic modes can be anti-
bunched, unbunched or bunched:

[L(t) = 12gsin?ysin(2y),  Taft) = —%[3 + cos(2y)] sin(2y), (22)
and according to Def. II:

Y (t) = —16g[13cosy — 6cos(3y) + cos(5y)] [5 — cos(2y)] > esc® y,
Yo(t) = 2569 [106 cosy + 21 cos(3y) + cos(5y)] [21 + 12 cos(2y) — cos(4y)] *sin®y.  (23)

Also, by applying Def. III, we find that both modes can have sub-, super- or Poisson statistics

Q:(t) = le [39 — 24 cos(2y) + cos(4y)] cos® y [ — cos(2y)] ",
Q:(t) = —312 [419 4 600 cos(2y) + 28 cos(4y) — 24 cos(6y) + cos(8y)]
x [21 + 12 cos(2y) — cos(4y)] " . (24)

The evolution of the parameters I';(t), v;(¢) and Q;(¢) is presented in Figs. 1(c), 1(f).

As above, the predictions of Defs. I-II and III are different, i.e., antibunching I-II differs
from antibunching III. But what is most intriguing, the predictions of Defs. I and II both for
the fundamental and harmonic modes are opposite: antibunching I occurs whenever bunching 11
occurs and vice verse.

Table I shows discrepancies between Defs. I-III. It is seen that all possible cases (variations)
occur in the evolution of the harmonic mode, e.g., from two initial states |2, 1) and |0, 2). In order
to observe all 8 cases for the fundamental mode one should take into account, e.g., the initial
states |2,1) and |0, 3).

3 Conclusions

Up to now, as far as we know, photon antibunching defined by two-time correlation functions has
hitherto not been studied in the SHG model. Besides. an analytical analysis of the sub-Poisson
statistics in SHG has been given in the short-time approximation only [12].
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We have found the exact analytical evolution of the fundamental and harmonic modes for
some initial Fock states and applied these solutions in the analysis of the antibunching of photons
in both modes according to Defs. I, IT and III. The discrepancies between the definitions are
summarized in Table I.

A comparison of the two-time and single-time correlations was presented just for the com-
pleteness of our discussion. The most important result of this paper is the comparison between
the definitions based on the unnormalized (Def. I) and normalized (Def. II) two-time correlation
functions. Defs. I and II coincide for stationary fields. However, for nonstationary fields, these
definitions of photon antibunching describe distinct effects.
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