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Abstract

A squeezed vacuum in a finite-dimensional Hilbert space (FDHS) is defined. Its explicit
Fock expansion is found. We show that our state goes over into the standard squeezed vacuum
if the squeeze parameter squared is much less than the dimension of FDHS. A method to
generate finite-dimensional squeezed vacuum is proposed.

1 Introduction

Various states have recently been constructed in Hilbert spaces with finite number of dimensions.
In particular, the following finite-dimensional generalized harmonic-oscillator states have been
defined in analogy to the standard (i.e., infinite-dimensional) harmonic oscillator states: (i) various
kinds of finite-dimensional coherent states [1]–[4] (ii) finite-dimensional displaced number states [6],
(iii) finite-dimensional Schrdinger male and female cats [5, 6], (iv) finite-dimensional phase states
[7], (v) finite-dimensional phase coherent states (coherent phase states) [8, 9], and (vi) finite-
dimensional displaced phase states [9].

Among the most commonly used states in quantum optics are squeezed states. It is surprising
that, as far as we know, there were no proposals of finite-dimensional analogues of the standard
squeezed vacuum or the Yuen and Caves squeezed states. In this communication, we shall define
squeezed vacuum in FDHS and describe how to generate this state.

Many schemes of Fock state generation have been proposed recently (see, e.g., [10] and refer-
ences therein) giving the opportunity to construct arbitrary finite superpositions of Fock states.
Hence, the methods described in Refs. [10] can be applied to generate the generalized harmonic
oscillator states in FDHS, in particular, to construct the squeezed vacuum in FDHS. However in
none of these methods, the FDHS states can be generated directly with the proper Fock expansion
coefficients. Recently, two of us in Ref. [11], have developed a method of Fock state generation
which enables a direct engineering of the FDHS coherent states [12, 13]. Here, we show that this
method can be generalized for squeezed vacuum engineering in FDHS.
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2 Definition of squeezed vacuum in FDHS

We are interested in states constructed in the finite-dimensional Hilbert space (FDHS) of a har-
monic oscillator. This space, denoted byH(s), is spanned by (s+1) Fock states which are complete,
and orthogonal

1̂ =
s∑

n=0

|n〉〈n|, 〈n|m〉 = δn,m. (1)

By analogy with a standard (i.e., infinite-dimensional) squeezed vacuum, we define squeezed
vacuum |ζ〉(s) in the (s + 1)-dimensional Hilbert space by the action of the generalized finite-
dimensional squeeze operator

Ŝ(s)(ζ) = exp

{
ζ

2
(â(s))†2 − ζ∗

2
(â(s))2

}
(2)

on vacuum, i.e.,
|ζ〉(s) = Ŝ(s)(ζ) |0〉, (3)

where ζ = |ζ| exp(iϕ) is the complex squeeze parameter. The generalized annihilation operator in
Eq. (2) is given by

â(s)= |0〉〈1|+
√

2|1〉〈2|+ · · ·+√
s|s− 1〉〈s| (4)

and the creation operator (â(s))† is the Hermitian conjugate of â(s). The finite- and infinite-
dimensional annihilation operators act on a number state in the same manner. However, the action
of the creation operators on |n〉 is different in H(s) and H(∞), since (â(s))†k|n〉 is zero whenever
n + k > s, contrary to the action of the standard creation operator â†. The commutation relation
for the annihilation and creation operators in H(s) reads as

[â(s), (â(s))†] = 1− (s + 1)|s〉〈s|, (5)

which differs from the standard boson canonical relation in H(∞), so â(s) and (â(s))† are not re-
lated to the Weyl-Heisenberg algebra. Even the double commutators [(â(s)), [â(s), (â(s))†]] and
[(â(s))†, [â(s), (â(s))†]] do not vanish precluding the application of the Baker-Hausdorff theorem.
These properties of the finite-dimensional annihilation and creation operators considerably compli-
cate the analytical approach to the quantum mechanics in H(s), including the explicit construction
of finite-dimensional generalized harmonic oscillator states.

A method developed by us for the analysis of coherent states in FDHS [4] can be applied
here. After some tedious calculations, we find the following explicit Fock expansion of the finite-
dimensional squeezed vacuum

|ζ〉(s) =
σ∑

n=0

b
(s)
2n einϕ|2n〉, (6)

where the superposition coefficients are

b
(s)
2n = (−i)n (2σ)!√

(2n)!

σ∑

k=0

exp (
i

2
|ζ|xk)

Gn(xk)

Gσ(xk)G
′
σ+1(xk)

(7)
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Here, σ = [[s/2]] and the double square bracket denotes the Entier function; Gn(x) are the Meixner-
Sheffer orthogonal polynomials [14] defined by the recurrence relation

Gn+1 = xGn − 2n(2n− 1)Gn−1 (n = 2, 3, ...) (8)

together with G0(x) = 1 and G1(x) = x. In Eq. (7), xk ≡ x
(σ+1)
k is the kth root (k = 0, ..., σ) of

the polynomial Gσ+1(x) and G′
σ+1(xk) denotes the x-derivative at x = xk. Since Eq. (7) is of a

rather complicated form, we present two examples of the finite-dimensional squeezed vacuum for
small dimensions. For s=2 and 3, we find

|ζ〉(2) = |ζ〉(3) = cos β|0〉+ eiϕ sin β|2〉, (9)

where β =
∣∣∣x(2)

0

∣∣∣ |ζ|
2

= 1√
2
|ζ|. For s=4 and 5, we have

|ζ〉(4) = |ζ〉(5) =
1

7
(6 + cos β)|0〉+ eiϕ 1√

7
sin β|2〉+ e2iϕ 2

√
6

7
sin 2

(
β

2

)
|4〉, (10)

where β =
∣∣∣x(3)

0

∣∣∣ |ζ|
2

=
√

7
2
|ζ|. Our squeezed vacuum (6) has a more complicated form in Fock basis

than the finite-dimensional coherent states discussed by us in Ref. [4]. In particular, the solution
(6) contains rather complicated Meixner-Sheffer polynomials instead of the well-known Hermite
polynomials which occur in the expansions for the FDHS coherent states. A deeper analysis
of the properties of squeezed vacuum in FDHS, including photon number and phase properties,
squeezed fluctuations and a comparison of the coherent states and squeezed vacua in FDHS, will
be presented elsewhere [15]. Here, we discuss only two basic properties of our state. By definition,
the squeezed vacuum (3) is properly normalized for arbitrary dimension of the Hilbert space, i.e.,

∧

s
(s)〈ζ|ζ〉(s) =

σ∑

n=0

[b
(s)
2n ]2 = 1. (11)

There are several ways to prove that our finite-dimensional squeezed vacuum |ζ〉(s) goes over into
the standard squeezed vacuum |ζ〉 in the limit s → ∞. By definition (3), one can conclude
that the property lims→∞ |ζ〉(s) = |ζ〉 holds, since the finite-dimensional annihilation and creation
operators go over into the standard ones, i.e., lims→∞(â(s))± = â±. One can also show, at least
numerically, that the superposition coefficients (7) approach the coefficients bn for the standard
squeezed vacuum, i.e., lims→∞ b(s)

n = bn for n = 0, ..., s. We apply another method based on
the calculation of the scalar product 〈ζ|ζ〉(s). We show the analytical results for |ζ| ≤ 1 only.
The analytical proof for arbitrary |ζ|2 ¿ s is rather lengthy and therefore will be presented
elsewhere [15]. We have found the scalar product between standard (|ζ〉) and finite-dimensional
(|ζ〉(s)) squeezed vacua in the form (for even s)

〈ζ|ζ〉(s) = 〈ζ|ζ〉(s+1) = 1 +
∞∑

i=1

(−1)ic
(s)
i |ζ|s+2i ≤ 1, (12)

where the coefficients fulfill the inequalities 0 < c
(s)
i < 1 for any i and s. We find the explicit

expression

〈ζ|ζ〉(s) = 〈ζ|ζ〉(s+1) = 1−
(

s + 1

s/2 + 1

) ( |ζ|
2

)s+2

+O(|ζ|s+4) (13)
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in terms of the binomial coefficient. In particular, for s=2,...,5, we have

〈ζ|ζ〉(2) = 〈ζ|ζ〉(3) = 1− 3

16
|ζ|4 +

1

8
|ζ|6 − 167

2560
|ζ|8 + ..., (14)

〈ζ|ζ〉(4) = 〈ζ|ζ〉(5) = 1− 5

32
|ζ|6 +

185

1024
|ζ|8 − 419

3072
|ζ|10 + .... (15)

It is clearly seen that, for a given ζ , the scalar product becomes closer to unity with increasing
space dimension. This means that the finite-dimensional states |ζ〉(s) approach standard squeezed
vacuum.

3 Generation of squeezed vacuum in FDHS

We describe a generation scheme of finite-dimensional squeezed vacuum (3) in a cavity with a
nonlinear Kerr medium. The cavity field, which is initially in a vacuum state, is pumped by a
train of short pulses (kicks) of the classical electromagnetic field at the frequency of the cavity
field. The process is governed by the general time-dependent Hamiltonian

Ĥ(t) = ĤKerr + Ĥkicks(t) (16)

in the form of an unperturbed system, ĤKerr, and a small driving perturbation, Ĥkicks(t). The
unperturbed (between the kicks) evolution of the cavity field in the (2s + 1)th-order nonlinear
Kerr medium [or (s + 1)-photon anharmonic oscillator] is modelled in the interaction picture by
the Hamiltonian [16]:

ĤKerr =
h̄χs

(s + 1)!
(â†)s+1âs+1 ≡ h̄χs

(s + 1)!
n̂(n̂− 1) · · · (n̂− s), (17)

where â is the ordinary annihilation operator for the cavity field; n̂ = â†â is the photon number
operator; and χs is proportional to the (2s + 1)th-order nonlinear susceptibility of the medium,
χ(2s+1). The time-dependent Hamiltonian

Ĥkicks(t) = εh̄(â†2 + â2)f(t) (18)

describes the second-order parametric process driven by a sequence of short pulses of the classical
field. The kick strength ε is small enough (ε < 1) and therefore will be treated as the strength of
perturbation. In general, f(t) is an arbitrary real periodic function of t with the period T . We
assume that the time T between the kicks is much longer than 2π/ω, where ω is the field frequency.
Under this assumption, the short pulses of the pump field of frequency ω can be modelled by delta
functions, f(t) =

∑∞
m=0 δ(t −mT ). If |φ(0)〉 is a state at t = 0 then the state |φ(mT )〉 after m

kicks is given by

|φ(t)〉 = |φ(mT )〉 = Ûm|φ(0)〉, (19)

where the evolution operator Û is generated by Ĥ(t), which evolves states from t = 0 to t = T .
For ε = 0, the system (16) has a simple operator solution [16]. In order to find the eigenstates
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of Û for 0 < ε < 1, we apply the generalized Rayleigh-Schrdinger perturbation theory, i.e., a
generalization of time-independent perturbation theory for systems whose perturbations are in the
form of periodic driving [17, 13]. Our problem is equivalent to that of finding the Floquet states,
or diagonalizing the sum of the momentum-like operator and the Hamiltonian (16), −ih̄ d

dt
+ Ĥ(t),

in the extended Hilbert space H ⊗ L2(0, T ). The degeneracy of the Kerr medium Hamiltonian
(17) determines, under certain conditions, the dimension of the Hilbert space H(s). Finally, after
applying the generalized Rayleigh-Schrdinger perturbation theory, we arrive at

|φ(t)〉 =
σ∑

n=0

C
(s)
2n (t)|2n〉+ εC

(s)
2σ+2(t)|2σ + 2〉+O(ε2). (20)

The superposition coefficients C
(s)
2n = 〈2n|φ(t)〉(s) for n = 0, ..., σ are

C
(s)
2n (t) = (−1)n (2σ)!√

(2n)!

σ∑

k=0

exp(ixkεt)
Gn(xk)

Gσ(xk)G′
σ+1(xk)

(21)

and

C
(s)
2σ+2(t) = 2−σ−1

√
(2σ + 1)(2σ + 2)C

(s)
2σ (t). (22)

The same superposition coefficients (10) appear in the Fock expansion of the state (23) for ζ =
−2iεt if the terms proportional to ε are omitted. We finally conclude that

|ζ = −2iεt〉(s) = |φ(t)〉+O(ε), (23)

meaning that the system described by the effective Hamiltonian (16) evolves into the (s + 1)-
dimensional squeezed vacuum defined by Eq. (3).

4 Conclusions

We have proposed a novel definition of finite-dimensional squeezed vacuum. To our best knowledge,
ours is the first definition of a squeezed state analogue in a finite-dimensional Hilbert space. We
found an explicit form of the FDHS squeezed vacuum which reveals the differences and similarities
between this state and the standard squeezed vacuum or finite-dimensional coherent states. We
prove that our state is properly normalized in FDHS for arbitrary dimension and goes over into
the standard squeezed vacuum if the dimension is much greater than the square of the squeeze
parameter.

We described a physical system comprising a cavity with nonlinear Kerr medium pumped by
an external second-order parametric process. By applying the Rayleigh-Schrdinger perturbation
theory, we proved analytically that the field generated in this standard model (described in infinite-
dimensional Hilbert space) is, under some conditions, finite-dimensional squeezed vacuum. Our
generation scheme provides the physical background for the mathematical construction of squeezed
vacuum in finite-dimensional Hilbert space.
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