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Abstract

We discuss a model of a cavity filled with a passive nonlinear ‘Kerr’ medium and peri-
odically kicked by a series of ultra-short laser pulses. We perform numerical calculations to
find the variance of the field quadrature to determine the squeezing properties of the cavity
field. We show that degree of the squeezing depends on the parameters describing external,
pulsed excitation.

1 The model

One of the most commonly discussed models of quantum optics is that with a cavity filled with a
nonlinear oscillator. It is known that the systems with anharmonic oscillator can exhibit squeezing
properties [1,2]. In this paper we shall concentrate on the system involving anharmonic oscillator
modelled by a nonlinear medium that is irradiated by series of ultra-short coherent pulses. Our
system can be realized, for instance, by a cavity filled with nonlinear Kerr medium. This cavity
is irradiated by series of ultra-short coherent pulses.

The system discussed here is governed by the following interaction Hamiltonian (in units of
h̄ = 1):

Ĥint =
χ

2
(â†)2â2 + (εâ† + ε∗â)f(t) , (1)

where the envelope-function f(t) models the series of ultra-short pulses in a form of Dirac-delta
functions as follows:

f(t) =
∞∑

n=0

δ(t− nT ) . (2)

The complex amplitude ε appearing in (1) determines the strength of the pulses and is related
to the external – cavity fields interaction, whereas the nonlinearity parameter χ describes the
nonlinear interaction of the cavity field with itself which is mediated by the nonlinear medium
(self-phase modulation).

To investigate the time-evolution of our system we shall perform numerical calculations based
on the method applied in [3-6]. Owing to the fact that the ultra-short pulses are modeled by the
Dirac delta functions the time-evolution of the system can be divided into two stages of different
nature. The first stage is a ‘free’ evolution during the time between two subsequent pulses and

1published in: Proceedings of the Fifth Int. Conf. on Squeezed States and Uncertainty Relations (Balatonfured,
Hungary, 1997), eds. D. Han et al., NASA Conf. Publication No. 206855 (NASA, Greenbelt, 1998) 233-238.
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is determined by the first term of the Hamiltonian (1) (χ
2

(â†)2â2). This evolution is described by
the following unitary operator

Û0 = exp(−i
χT

2
(â†)2â2) , (3)

where the time T determines the interval between two subsequent pulses. The second stage of
the time-evolution of the system is caused by its interaction with the infinitely short pulse. This
part of the evolution is described by the second term (proportional to ε) of the Hamiltonian Ĥint,
given by (1). Thus, the evolution operator corresponding to the interaction during a single pulse
can be written as

Û1 = exp(−iε(â† + â)) . (4)

In consequence the overall evolution of the state of the system can thus be described as a subse-
quent action of the operators Û0 and Û1 on the initial state. Assuming that for the time t = 0 the
system was in the state |Φ0〉 we express the state |Φk〉 just after k-th kick as

|Φk〉 =
(
Û1Û0

)k |Φ0〉 . (5)

With this procedure we are able to obtain the state after an arbitrary, k-th pulse, and hence, the
mean value of the moments involving annihilation and creation operators describing the field.

Since we are interested in the squeezing properties of our system we introduce, similarly as in
[1], the following quadrature operators:

Q̂φ = â exp(−iφ) + â† exp(iφ) . (6)

As the phase φ is equal to zero the parameter Q is the in-phase quadrature, whereas for φ = π/2
the quantity Q is the out-of-phase quadrature. To investigate the squeezing properties of the
system we shall introduce normally ordered variance

Vφ =
〈
: Q̂2

φ :
〉
−

〈
Q̂φ

〉2
. (7)

This quantity can be expressed by the following formula [2]:

Vφ = 2Re
{
< â2 > e−2iφ− < â >2 e−2iφ

}
+ 2

{
< â†â > − < â† >< â >

}
(8)

The sign of the variance Vφ is related to the squeezing properties of the filed – for Vφ < 0 the state
is squeezed, and as the value of Vφ reaches −1 the state is perfectly squeezed.

2 Numerical results

Since this paper is devoted to the squeezing properties of the field generated by our model we
perform numerical calculations enabling us to find the time-evolution of the variances Vφ of the
quadrature operators Q. Moreover, we compare our results with those of Tanaś [2] obtained
analytically for the nonlinear oscillator. However, one should keep in mind that our system differs
from that discussed in [2] in fact that we have involved series of ultra-short pulses driving nonlinear
media.
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FIG. 1. The variances Vφ for the unperturbed (solid line) and kicked nonlinear Kerr
media (star marks). The parameters |ε| = 0.05, T = 1 and φε = −π/2. All energies
are measured in units of χ = 1.
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FIG. 2. The same as Fig.1 but for various values of the time T : dash-dotted
line – T = 0.01, dashed line T = 0.02, solid line – unperturbed system.
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Thus, Fig.1 shows the case when the field was initially in the coherent state with the mean
number of photons equal to 0.25. The strength of the pulses |ε| = 0.05, their phase φε = −π/2
and the time T between two subsequent pulses is equal to 1. We use the notation ε = |ε| exp(iφε)
and assume that all energies are measured in units of χ. To compare our results with those of
[2] we plot the in-phase variance component for the unperturbed system (solid line), whereas, the
star marks show this component just after each subsequent pulse. We see that the amplitudes of
oscillations of the variance increases due to the presence of the external excitation. In consequence,
the minima become deeper and, hence, the squeezing can increase.

Fig.2 corresponds to the same situation as that shown in Fig.1 but the time T is assumed to
be much smaller then for the previous case: T = 0.01 (dash-dotted line) and T = 0.02 (dotted
line). Solid line corresponds to the unperturbed system again. It is seen that the variance starts to
oscillate very rapidly as we compare it with the unperturbed system. In consequence, new minima
appear and the squeezed state can be achieved for shorter times than for the system discussed
in [2]. Moreover, it is seen that the amplitudes and frequencies of the oscillations depend on the
value of time T .
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FIG. 3. The variances for the same parameters as in Fig.1 but for various values
of the coupling constant ε — |ε| = 0.001 (Fig.3a) and |ε| = 0.05 (Fig.3b). Solid lines
correspond to the unperturbed system.

The dependence of the variance Vφ on the strength of the external coupling is shown in Figs.
3a and 3b. We assume here that the parameters are the same as for Fig.1 but |ε| = 0.001 (Fig.3a)
and |ε| = 0.05 (Fig.3b). For tiny external excitations (Fig.3a, star marks) the variance oscillates
similarly as for the unperturbed system (solid line). The difference occurs in amplitudes of those
oscillations. The divergence between those two models becomes more and more pronounced as
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the number of pulses increases. As |ε| increases the behavior of the variance changes considerably
and is completely different from that for the unperturbed system (Fig.3b). It is seen that our
system is very sensitive on the strength of the external excitation.

The last plots show the variance Vφ evolution for various values of the phase φε. Fig. 4
corresponds to the same parameters as those for Fig.1 but the phase φε = 0 (star marks) and
φε = π/2 (circle marks). It is seen that for the case of φε = 0 squeezing decreases as we compare
it with case of the unperturbed system except for the time just after the first pulse. As we assume
that φε = π/2 the variance is positive for the times after the first pulse – the squeezing is destroyed.
We can explain this phenomenon as a result of the dependence of the mean number of photons
in the system on the phase of the excitation. The energy can be pumped in or exhausted from
the system. In consequence, the squeezing that is relative to the number of photons can increase
or decrease accordingly to the phase of the excitations. Moreover, similarly as for the previous
figures we parallel our results and those for the system with unperturbed oscillator (solid line).
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FIG. 4. The variances Vφ for various values of the phase φε: φε = 0 – star marks,
φε = π/2 – circle marks. The coupling constant ε = 0.1. The remaining parameters
are the same as in Fig.1. Solid line corresponds to the unperturbed system.

3 Conclusions

The systems comprising Kerr nonlinear media can exhibit strong squeezing properties [1,2]. In
this paper we dealt with the same kind of system. However, in addition, we have included in our
model external excitations realized by the series of ultra-short coherent pulses. We have shown
that this kind of excitation leads to considerably different behavior of the system depending on the
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parameters describing external pulses. In consequence, the variance of the quadrature depends
not only on the strength of the pulsed external excitation but also on its phase and the time
between two subsequent pulses.
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