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Abstract. Two standard criteria of the photon antibunching for non-stationary fields are
compared. A new criterion, obtained by direct application of the Cauchy—Schwarz inequality,
is proposed. All three definitions, based on the two-time correlation functions, are equivalent
for stationary fields. However, the photon antibunching in the non-stationary regime is
demonstrated to be not uniquely defined, since different criteria can lead to self-contradictory
predictions. As an example, photon correlations of the signal mode in the parametric
frequency converter are analysed analytically.

Keywords: Photon statistics, photon antibunching, frequency conversion

1. Introduction The purpose of this paper is to show that the conventional
descriptions of photon antibunching in non-stationary fields
Analysis of the photon-antibunching effect in nonlinear are by no means unique and might lead to self-contradictory
optical systems has been one of the hot topics of quantuminterpretations of the results, i.e. a prediction of the photon
optics for several decades. The theoretical and experimentalntibunching according to one definition doest imply the
search for the light exhibiting effect opposite to photon photon antibunching occurs according to another. One can
bunching has been triggered by the classic experiments ofconclude that there are different photon-antibunching effects.
Hanbury Brown and Twiss [1]. Photon antibunching was To show these discrepancies explicitly, we analyse a
first observed in the process of resonance fluorescence fronmodel of parametric frequency conversion with initial signal
an atom by Kimbleet al [2] 20 years after the first photon-  and idler modes in Fock states. We have chosen this
bunching demonstration [1]. Other successful generationsmodel to make our analytical comparison as simple as
of antibunched light in resonance fluorescence and in otherpossible. Similarly, Zou and Mandel [13] analysed the
nonlinear processes together with their detailed theoretical simplest example of a plane, polarized electromagnetic field
analyses have been summarized in a number of extensivéin the Fock statd{n}) to show the differences between
reviews [3-6]. the stationary-field photon antibunching and sub-Poissonian
Although the experimental efforts have only focused photon statistics. We are aware that the above models might
on observing the photon-antibunching effects in stationary not be useful for experimental verification.
processes, there has also been some theoretical interest to  This paper is organized as follows. In section 2, we give
analyse the photon antibunching of non-stationary fields. In a short account of the most popular definitions of photon
particular, Kryszewski and Chrostowski [7] and Srinivasan antibunching and we propose a new definition. In section 3,
and Udayabaskaran [8] analysed the photon antibunching ofwe briefly review the parametric frequency converter model
non-stationary fields of parametric frequency up-conversion for the purpose of our analysis of photon antibunching. In
with stochastic pumping. Singh [9] studied antibunching in section 4, we show discrepancies between the definitions of
resonance fluorescence in both stationary and transient nonphoton antibunching for the non-stationary signal mode in
stationary regimes. Dungt al [10] and Aliskenderoet al the parametric frequency converter.
[11] analysed the non-stationary-field antibunching effects
in the Jaynes—Cummings model, whereas Fengl [12]

2. Definiti f phot tibunchi
studied the photon-antibunching effects in the model of light elinitions of photon antibunching

propagation through a nonlinear fibre with gain. The most common definitions of photon bunching
9 Permanent address: Nonlinear Optics Division, Institute of Physics, @nd antibunching are based on the second-order two-
Adam Mickiewicz University, 61-614 PozhaPoland. time intensity correlation function (fourth-order amplitude
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correlation function)
GO, t+1) = (T :A(OAE + 1) 3)
= (@"0a'a +vaw +vawm) @)
where(t) is the photon number operatat, and a' are,

respectively, annihilation and creation operators; the operator

products are written in normal order (::) and in time ordgy. (
The importance of the correlation functi@i? (¢, ¢ + 7) in

the analysis of photon antibunching comes from the direct

relation ofG® (¢, +7) to the joint detection probability [14]:

)

of detecting two photons, one at timeand another at time
(t + t), by a photodetector of quantum efficieneywith
a photocathode of aref. In (2), ¢ denotes the velocity

Po(t, 1 + T)ALAT = (acS)?AtATGP (1,1 + 1)

of light; the space coordinates are suppressed and only ONE¢ the Cauchy—

photodetector is assumed.
The Cauchy-Schwarz inequality

(G2, t+D)]? <GP, 1)GP( +1,t+71)

®)

must be fulfilled for any classical field. Thus, the violation of
inequality (3) can reflect the corpuscular nature of light and
can serve as a criterion of antibunching effects.

Definition . The photon antibunching (see, e.qg.,[3]) occursif
the two-time light intensity correlation function (1) increases
from its initial value atr = 0,

GP,t+1)> G20, 1).

4)
This definition can be rewritten into the form (see, e.g.,
[4,15])

Agit t+1)= g2 t+1) — P, 1) >0
(definition 1)

in terms of the degree of second-order temporal coherence

GO@,t+71)

(2) —
S U

®)

which is the second-order correlation functiéf® (¢, t + 1)
normalized by the square of the mean photon number,

(6)

The normalization is independent of Inequalities forG®
andg® describe the same effect assum@g (1) # 0.

GP @) = (n(0) = (@' ®aw)).

Definition 1. The photon antibunching (see, e.g., [2, 5])
takes place if the two-time normalized intensity correlation

function (also called the degree of second-order coherence)

_ GP%,t+7)

@) = EIOYAYCIOY7Ey
gttty =t t+1)+1= GONGD(r +1)

(7)
increases from its initial value at= 0, i.e.,

Agi(t,t+1)=gP(t,1+7) — g2 (t,1) > 0.
(definition I1)
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Definition Ill. Let us call the photon antibunching, the
effect for which the two-time normalized intensity correlation
function

GO(t,t+1)

2 _
gl @t t+1)= (8)
' VG, )G (1 +1,1+71)
increases from its initial value at= 0, i.e.,
Agi(t.t+1) =g (t,1+1) — g2 t.1) > 0.
(definition 111)

Photon antibunching can be defined in various ways by
simply changing the normalization 6f? (z, ¢ + ) by other
7-dependent functions. But probably the most natural way
of defining photon antibunching is the direct application
Schwarz inequality (3) as we propose in
definition 1ll. However, to the best of our knowledge, it has
not yet been applied to analyse this effect even in the non-
stationary regime (see, e.g., [7-12]).

According to thejth definition (f = I, 11, lll), photon
bunching is said to exist ihg;(z,¢ + r) < 0, and photon
unbunching occurs ihg; (¢, r + 1) = 0 for t increasing from
zero.

Definitions I-Ill can be rewritten in equivalent
differential forms. Assuming thag;(z,r + 1) is a well-
behaved function of, the photon antibunching according
to the jth definition occurs if the lowest-order (say) non-
vanishing derivative of ” (¢, 1+7) [or Ag; (1, 1+17)] is greater
than zero at = 0, i.e.,ng > 1 exists such that

>0
=0

; g
v =y 0= e+ ©)

T’o

and

at o
—gPt, 1 +1) for

=1...,n0—1
at” " o

=0

(10)

For the purpose of our analysis, only the sign of the
parametersg/;(t) = 0 is important. However, their values
might be helpful in the analysis of the degree of antibunching.
The field exhibits bunching if the lowest-order non-vanishing
derivative,y; (1), is negative. If the derivatives of all orders
vanish,y;(t) = 0, the field is said to be unbunched. In
the following sections, we will use both parametersr)
and correlation functiong\g; (¢, + t) to predict photon
antibunching in a frequency conversion model for various
initial fields.

Usually, the first derivativesx,ﬁ)(t) are non-vanishing
and in order to predict photon antibunching it is sufficient to
determine their sign only e.g., parame;té’r) (1) was used by
Pdina [4], whereasxu(l) (t) was applied by Dungt al [10]
and Aliskenderowet al [11]. Here, we give examples of the
field evolution for which parametess™ (1) vanish resulting
in the analysis of the higher-order derivatives, in particular
yj(z) (1), for the determination of photon antibunching.
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2.1. Photon antibunching of stationary fields There are simple trigonometric solutions for the signal
N . ) . . and idler modes in the interaction picture [16]:
Definitions I-IIl of photon antibunching are equivalent in A L A
stationary fields for which the condition aq(t) = Cokt) aq — 1sin(kr)ay (15)
G, t+1) =GP (1) (11) ap(t) = codkt) ap — isin(kt)ag

whered, , = a,,(0). All expressions for the second mode
are given by those for the first mode albeit with interchanged
subscripts. The constant of motion is

is satisfied. Other equivalent definitions can be giveninterms
of the joint detection probability (2), as

Po(t, t +7) > Po(t, 1) (12) (na (1) + (np(1)) = (na(0)) + (n,(0)) = const  (16)
or with the help of the conditional probability ‘We have chosen a two-mode model to analyse
antibunching in the signal mode only. The idler mode gives us
Pyt +1|1) = Po(t, 1 +7) (13) the possibility of manipulating the photon-number statistics
Pi(t) of the signal mode.

wherePy(¢) is the marginal probability.

Definitions | and Il were originally proposed on the basis 4. Different predictions of photon antibunching
of the Cauchy—Schwarz inequality to describe antibunching . .
of photons of stationary fields only. Inequality (3) implies L€t US analyse the parametric frequency conversion of the
that photon antibunching cannot occur for classical stationary Si9nal and idler modes initially in Fock states with photon

fields, since they are described by a regular and non-negativd UMPersN, andN,,, respectively. By applying the solution
P-function. (15) to (1) and (6), we find the two-time intensity correlation

function for the signal mode

G (t1,12) = No(N, — 1) coS(it1) COZ (k12)

+N, N, Sirf[k (11 + 12)]

+N,,(Np, — 1) sirf(xt1) Sin(k t2) (17)
and the signal mean photon number

2.2. Photon antibunching of non-stationary fields

The question arises how to describe photon bunching and an-
tibunching for non-stationary fields? Or, explicitly, which of
definitions I-lll is the closest to the original meaning of pho-
ton antibunching—the effect reflecting the tendency of pho- (na(1)) = N, coS(kt) + N, Sirf(it). (18)

tons to preferentially distribute themselves separately rather,:Or brevity, hereafter we present correlation functions for

than in bunches, when the ir?te.nsity of light is not §tabi|iz§d? the signal mode only. Therefore, we can consequently omit
We show that the predictions of photon antibunching subscriptz in correlation functions

according to definitions I-lll might be essentially different @ 2
for non-stationary fields, though they coincide in stationary G, 12) = G (1, 12),
fields. Differences between various approaches to @ _ @ Ae: = Ag, (19)
antibunching result from the normalization functions of 8 =8ja i = B8ja
G@(t,t + 1), which for definition | is independent of, for j =1, 11, 1ll. Due to the symmetry of the solutions (15),
whereas for definitions Il and Il is-dependent, but in two ~ one can deduce the explicit expressions for the idler mode by
non-equivalent ways of non-stationary fields. simply interchanging the subscripts.

There have been some theoretical investigations of the Exact aznalytical solutions for the normalized correlation
antibunching effect occurring not only in stationary regime. functionsgi?(z, ¢ + ) (j = 1,11, 1ll) defined, respectively,

In fact, both definitions | and Il of photon antibunching PY (3), (7) and (8), are obtained from (17) and (18)
have been applied to analyse non-stationary fields. Forin @ straightforward way. Then the exact solu_tlons can
applications of definition Il see, e.g., [7,8,10,11], and for P& represented graphically for better comparison (see,
definition | see, e.g., [9,12]. To the best of our knowledge, €9~ figure 4). We would like to give analytical self-
definition 11l has not been used yet in the analysis of the €vident comparison of different definitions. Since, photon
antibunching effect. However, for non-stationary fields, antibunching is defined in the short-time separation limit, we

@ ; )
only definition Il implies violation of the Cauchy—Schwarz ~€XPands;” (1.1 + 1), or alternativelyAg; (r, r +7), in Taylor
inequality (3) series inc. We find
' sin(2«t)

Agi(t, 1 +7) = ———Z{—=Ny(N, — 1) coS (1)
' , . 2(n, (1))
3. Model for testing antibunching . 2
+2N, N, co2c1) + Ny(N, — 1) Sirf (k1) }(k T) + O(2)
We analyse different kinds of bunching and antibunching of (20)
photonsin a process of parametric frequency conversion. The sin(2«t) 2
model can be described by the interaction Hamiltonian [16]: Agi(t,1+1) = NuNp (na(1))3 {(Na + 1) cos (k1)
Hint = hikdadl expliAwr) + h.c. (14) —(N, + 1) sir (1)} (k) + O(z?) (21)
N, Ny

whereAw = o + wp, — w,, andd, , are the annihilation  Agu(t, 1 +7) = ——————{2N,(N, — 1) cos(kt)

, . b . . 2[GP (1, n]?
operators for the signal (with subscrigtand idler (subscript @
b) modesi is the real coupling constant. For simplicity, we —(NyNp + Ny + Ny — 1) sire (2«1)

only analyse the resonance case; = 0. +2N,(N, — 1) sin*(k1)} (k)% + O(<3). (22)
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Figure 1. Evolution of the parametens(r) (dashed curves) and
() = v (t) = 0 (solid curve) for initial Fock states witN, = 2 Figure 2. Evolution of the parametens(r) = y (¢) (dashed
andN, = 0. A positive value of the parametgrindicates that the curves) andy (¢) (solid curves) for initial Fock states with:
photons of the signal mode are antibunched according to @ N,=1,N,=1and b) N, =2, N, = 2. The cases given in
definition |. Negative value of; shows bunching. the upper part of the figures correspond to different predictions of

the photon antibunching as analysed in table 1.

Expansions (20)—(22) are simply related to the definitions (9)

of antibunching. Precisely, the parametessare given It follows from (18) that, under these initial conditions, the
by the lowest-order non-vanishing expansion coefficients. mean photon number of each mode is constant of motion,
Expansions (20)—(22) are valid for arbitrary photon numbers (na»(1)) = N = const. Hence, we have

N, and N,. Now, we analyse special cases for more

transparent comparison. g|<2) (th, 1) = g|§2> (th, 7). (30)

4.1. Predictions of antibunching: Agy 7 Ag1 = Agy The Taylorexpansions éfg; (¢, t+7) are as follows§ > 0):

Under the initial condition that there are no photons inthe Ag (s, 1 +1) = Agy(r, 1 + 1)

idler mode (v, = 0) and there ar&vV, = N photons in the N+1 )
signal mode, the solution (17) reduces to = 5y SiNéen (k) + O (31)
GP(t1,15) = N(N — 1) co (k1) coS(ktz).  (23) A ftT) = — N? N2_BN +1
gu(t,t+71) [ZG(Z)(t,t)]z{
Then the normalized correlation functions are +(2N2+ N — 1) cogder)} (k7)? + O(3) (32)

g2, 12) = seC(kr) coS(kr)  (24)  where

N-1 N
8 12) = — = (25) G(t,1) = J[5N —3— (N +Dycosden)]  (33)
e, 12) = 1. (26) s the special case of two-time correlation function (29).
. ) . Function (32) for the simplest two cases: ¢y = N, = 1
The Taylor expansion ¢ (11, 12) is andN, = N, = 2, reduces, respectively, to
N-1
Agi(t,t+1) = N 2tankt)(kt) + O(rz) (27) Aga(t, t+71) = CS@(ZKI)(KI)Z + 0(f3) -0 (34)
which comes from (20). On the other hand, we have 1— 9cog4
Agi(t,t+1) =4 cosgxr) k)2 +0(t3). (35)

Agi(t,t+7)=Aga(t,t +7)=0. (28) [7 — 3 cosdwn)]?

Here, in contrast to the evolution analysed in section 4.1
and plotted in figure 1, the predictions of antibunching and
bunching according to definitions | and Il are the same during
period, and unbunching foer = 0,7/2, 7. However, the whole evolution of the signal mode, but they can differ

according to definitions 1l and Ill, photons in the signal rom those of definition Iil e.g., fov = 1 the signal field
mode are always unbunched. These different predictions ofiS @lways antibunched according to definition Ill, as is seen
antibunching are depicted in figure 1 using paramegers from _(34), butcan al_so be unbunchec_zl orbunche_d accord_lng to
given by the first-order expansion coefficients. definitions | and Il since the respective correlation functions
are proportional to the sine function in (31). This situation
is depicted in figure 2) in terms of the parameteys given
by the lowest-order non-zero coefficients in the expansions
As another special case, we assume that both modes are if31) and (34). In another special case, for = 2, the
the same Fock states with the photon numijee= N, = N. correlation functionAgy (r,¢ + ) changes sign but for
Then, the two-mode unnormalized correlation functionis  different evolution times thang, (¢, 7 + ) andAg (¢,  + 1),

N thus again definition lll is not equivalent to definitions land I1.
GP(t1,12) = Z{Z(ZN — 1)+ (N — 1) cos[2(r2 — 11)] This case is represented in figur&R(vherey; are obtained
—(N + 1) cos[2 (11 + 12)]}. (29) from (31) and (35).

According to definition I, as is self-evident from (27), the
signal photons can exhibit bunching for the values«of
between 0 and /2, antibunching in the second half of the

4.2. Predictions of antibunching: Ag, = Ag1 7 Agy
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Figure 3. Evolution of the parameterns(r) (dashed curves), (¢)
(dot-dashed curves) ang (1) (solid curves). Initially, both signal
and idler modes are in Fock states witk) §, = 2, N, = 1 and
(b) N, =3,N, = 1.

4.3. Predictions of antibunching: Agy 7 Agi1 7 Agy

Here, we analyse the cases for which all three definitions
might not be equivalent for some evolution times. According

to combinatorics, there are eight possible cases (permutationsg 00

with replacement,P®(m, r)) if each of three definitions
(a sample ofr = 3 elements) can give two different
outcomes: either bunching or antibunching (a setcf 2
distinguishable objects) by virtue of the formw& (2, 3) =

2% [17]. These cases are listed in table 1 with examples for
the quantum signal fields presented graphically in figure 3
for the parameterg; and in figure 4 for the correlationsg;.

We refer to these ordinal numbers of the cases throughout the

paper, in particular, the numbers are given in the upper part of
the figures. For brevity, we do not list all the 27 cases, which
appear in the analysis of three different outcomes: bunching,
antibunching and also unbunching.

If initially, the signal mode is in a Fock state with
N, = 2, and the idler mode in a Fock state with = 1,
the Taylor expansions (20)—(22) of the correlation functions
Agj(t,t + ) reduce, respectively, to

Ag (t, t+1) = M sin(2«1) (k) +O(z?) (36)
(nq(1))?
Agy(t,t+71) = 1+5co%2cr) sin(2«1)(kt) + O(r?) (37)

(na())3
3—5co92«t)

[5 — 3 cog2¢1)]2 (k2)? +O)

Agy(t,t+1) = 2seé(kt)

(38)
where the mean photon number is
(na(0)) = 3[3+cog2«1)]. (39)
The discrepancies between definitions I-Ill are well

pronounced both analytically and graphically in figura)3(
with the help of the parameteys and directly in figure 4 in
terms of the correlation functionsg; (¢, t+7) (j = I, II, 1l1).
During the evolution of initial Fock staté®/,, N,) = |2, 1)

Comparative study of photon antibunching
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Figure 4. Graphical representation of eight different predictions
of photon antibunching of non-stationary fields, corresponding to
the cases analysed in table 1. The two-time signal-mode
correlation functiong\g, (z, t + t) (dashed curvesy\g, (¢, 7 + 1)
(dot-dashed curves) anslg, (¢, t + ) (solid curves) are plotted in
their dependence on the rescaled time separatidior fixed
values of the evolution time: (cased) = 2.8, (2)kt = 2.6, (3)

kt =0.1, (4)kt = 0.1, (5)«xt = 1.0, (6)xt = 2.3, (7)xt = 0.7,
and (8)xt = 1.8. Signal and idler modes are initially in Fock
states withV, = 3 andN, = 1 in cases 2 and 3, or witN, = 2
andN, = 1in all other cases.

. 1—3cog2«t) 2 3
Agu(t,t+7) = seé(xz)i[g ~coxzenp ¢ HOT)
(42)
respectively, where
(nqa(t)) = 2 + cog2«t). (43)

The evolution of the parameteys, given by the expansion
coefficients in (40)—(42) are presented in figure) 3{Ve find

six out of eight different predictions, including cases 2 and 3
not observed in the evolution @¥,, N,) = |2, 1). The latter

almostall (except cases 2 and 3) are observed. The remaining,,, cases are also presented in figure 4 in a standard way for

two cases can be found, e.qg., in the signal-field evolution of
the initial Fock states with the photon numbeéfs = 3 and
N, = 1. Here, correlations (20)-(22) obtained for arbitrary
initial Fock states can be simplified to:

6 sirf (k1)

(na(1))?
1+ 3cos2«t)
<na(t)>3

Ag (t,t+1) = sin(2«t)(kt) + O(t?)  (40)

Ag (t,1+7) =3 sin(2«t) (kt)+O(t?) (41)

the correlation functions evolving with the time separation
for fixed values of time. The values of evolution times
given in table 1 are calculated from (36)—(42).

In conclusion, during the evolution of the quantum signal
field in the parametric frequency converter initially in Fock
states, e.g|N,, N,) = |2, 1) and|N,, N,) = |3, 1) one ob-
serves that both photon antibunching and bunching effects
from definitions |-l can be accompanied, for some evolu-
tion times, with the same or different correlations of photons
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Table 1. All possible predictions of photon bunching and antibunching of non-stationary fields according to definitions I, Il and IlIl. Signal
and idler modes are initially in Fock statgg:(0)) = |2, 1) (evolution time intervals are marked by a prime) af#d0)) = |3, 1) (those
denoted by a double prime). Herg{x} = % arccosx).

Case Definition | Definition Il Definition Il Evolution times:
1 bunching bunching bunching  «t e (w — f{&},n)
2 antibunching  bunching bunching (r — f{%}, )"
3 bunching antibunching  bunching (0, f{3})”
4 antibunching antibunching  bunching (O, f{g})’
5 bunching bunching antibunching (f{—3}. Z)’
(= 37 — FLEY
(fi=313)
6 antibunching  bunching antibunching (= — f{—%},n — f{%})’
(= fl=35h 7@ = f{3}
7 bunching antibunching  antibunching (f{%}, f{fé})’
(f{g}, Fi=3)"
8 antibunching  antibunching  antibunching(f{:}, f{%})’
5w = fl=gl)
z. 7= f{=3}"

derived from the other two definitions. We have given exam- Education for the grant VS96028 and the Czech Republic
ples of all these cases in figures 3 and 4, and table 1. Grant Agency for grant 202/96/0421. MRBW was
supported by the Malaysia S&T IRPA 09-02-03-0337 grant.
HM acknowledges the support within the Proposal-Based
New Industry Creative Type Technology R&D Promotion

We have presented a systematic comparison of two Programme from the New Energy and Industrial Technology
conventional descriptions and our new description of photon Development Organization (NEDO) of Japan.
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