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Abstract. Two standard criteria of the photon antibunching for non-stationary fields are
compared. A new criterion, obtained by direct application of the Cauchy–Schwarz inequality,
is proposed. All three definitions, based on the two-time correlation functions, are equivalent
for stationary fields. However, the photon antibunching in the non-stationary regime is
demonstrated to be not uniquely defined, since different criteria can lead to self-contradictory
predictions. As an example, photon correlations of the signal mode in the parametric
frequency converter are analysed analytically.
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1. Introduction

Analysis of the photon-antibunching effect in nonlinear
optical systems has been one of the hot topics of quantum
optics for several decades. The theoretical and experimental
search for the light exhibiting effect opposite to photon
bunching has been triggered by the classic experiments of
Hanbury Brown and Twiss [1]. Photon antibunching was
first observed in the process of resonance fluorescence from
an atom by Kimbleet al [2] 20 years after the first photon-
bunching demonstration [1]. Other successful generations
of antibunched light in resonance fluorescence and in other
nonlinear processes together with their detailed theoretical
analyses have been summarized in a number of extensive
reviews [3–6].

Although the experimental efforts have only focused
on observing the photon-antibunching effects in stationary
processes, there has also been some theoretical interest to
analyse the photon antibunching of non-stationary fields. In
particular, Kryszewski and Chrostowski [7] and Srinivasan
and Udayabaskaran [8] analysed the photon antibunching of
non-stationary fields of parametric frequency up-conversion
with stochastic pumping. Singh [9] studied antibunching in
resonance fluorescence in both stationary and transient non-
stationary regimes. Dunget al [10] and Aliskenderovet al
[11] analysed the non-stationary-field antibunching effects
in the Jaynes–Cummings model, whereas Fenget al [12]
studied the photon-antibunching effects in the model of light
propagation through a nonlinear fibre with gain.

¶ Permanent address: Nonlinear Optics Division, Institute of Physics,
Adam Mickiewicz University, 61-614 Poznań, Poland.

The purpose of this paper is to show that the conventional
descriptions of photon antibunching in non-stationary fields
are by no means unique and might lead to self-contradictory
interpretations of the results, i.e. a prediction of the photon
antibunching according to one definition doesnot imply the
photon antibunching occurs according to another. One can
conclude that there are different photon-antibunching effects.

To show these discrepancies explicitly, we analyse a
model of parametric frequency conversion with initial signal
and idler modes in Fock states. We have chosen this
model to make our analytical comparison as simple as
possible. Similarly, Zou and Mandel [13] analysed the
simplest example of a plane, polarized electromagnetic field
in the Fock state|{n}〉 to show the differences between
the stationary-field photon antibunching and sub-Poissonian
photon statistics. We are aware that the above models might
not be useful for experimental verification.

This paper is organized as follows. In section 2, we give
a short account of the most popular definitions of photon
antibunching and we propose a new definition. In section 3,
we briefly review the parametric frequency converter model
for the purpose of our analysis of photon antibunching. In
section 4, we show discrepancies between the definitions of
photon antibunching for the non-stationary signal mode in
the parametric frequency converter.

2. Definitions of photon antibunching

The most common definitions of photon bunching
and antibunching are based on the second-order two-
time intensity correlation function (fourth-order amplitude
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correlation function)

G(2)(t, t + τ) = 〈T : n̂(t)n̂(t + τ) :〉
= 〈â†(t)â†(t + τ)â(t + τ)â(t)〉 (1)

where n̂(t) is the photon number operator,â and â† are,
respectively, annihilation and creation operators; the operator
products are written in normal order (::) and in time order (T ).
The importance of the correlation functionG(2)(t, t + τ) in
the analysis of photon antibunching comes from the direct
relation ofG(2)(t, t+τ) to the joint detection probability [14]:

P2(t, t + τ)1t1τ = (αcS)21t1τG(2)(t, t + τ) (2)

of detecting two photons, one at timet and another at time
(t + τ), by a photodetector of quantum efficiencyα with
a photocathode of areaS. In (2), c denotes the velocity
of light; the space coordinates are suppressed and only one
photodetector is assumed.

The Cauchy–Schwarz inequality

[G(2)(t, t + τ)]2 6 G(2)(t, t)G(2)(t + τ, t + τ) (3)

must be fulfilled for any classical field. Thus, the violation of
inequality (3) can reflect the corpuscular nature of light and
can serve as a criterion of antibunching effects.

Definition I. The photon antibunching (see, e.g., [3]) occurs if
the two-time light intensity correlation function (1) increases
from its initial value atτ = 0,

G(2)(t, t + τ) > G(2)(t, t). (4)

This definition can be rewritten into the form (see, e.g.,
[4,15])

1gI(t, t + τ) ≡ g(2)I (t, t + τ)− g(2)I (t, t) > 0

(definition I)

in terms of the degree of second-order temporal coherence

g
(2)
I (t, t + τ) = G(2)(t, t + τ)

[G(1)(t)]2
(5)

which is the second-order correlation functionG(2)(t, t + τ)
normalized by the square of the mean photon number,

G(1)(t) = 〈n(t)〉 = 〈â†(t)â(t)〉. (6)

The normalization is independent ofτ . Inequalities forG(2)

andg(2)I describe the same effect assumingG(1)(t) 6= 0.

Definition II. The photon antibunching (see, e.g., [2, 5])
takes place if the two-time normalized intensity correlation
function (also called the degree of second-order coherence)

g
(2)
II (t, t + τ) ≡ λ(t, t + τ) + 1≡ G(2)(t, t + τ)

G(1)(t)G(1)(t + τ)
(7)

increases from its initial value atτ = 0, i.e.,

1gII (t, t + τ) ≡ g(2)II (t, t + τ)− g(2)II (t, t) > 0.

(definition II)

Definition III. Let us call the photon antibunching, the
effect for which the two-time normalized intensity correlation
function

g
(2)
III (t, t + τ) ≡ G(2)(t, t + τ)√

G(2)(t, t)G(2)(t + τ, t + τ)
(8)

increases from its initial value atτ = 0, i.e.,

1gIII (t, t + τ) ≡ g(2)III (t, t + τ)− g(2)III (t, t) > 0.

(definition III)

Photon antibunching can be defined in various ways by
simply changing the normalization ofG(2)(t, t + τ) by other
τ -dependent functions. But probably the most natural way
of defining photon antibunching is the direct application
of the Cauchy–Schwarz inequality (3) as we propose in
definition III. However, to the best of our knowledge, it has
not yet been applied to analyse this effect even in the non-
stationary regime (see, e.g., [7–12]).

According to thej th definition (j = I, II , III), photon
bunching is said to exist if1gj(t, t + τ) < 0, and photon
unbunching occurs if1gj(t, t +τ) = 0 for τ increasing from
zero.

Definitions I–III can be rewritten in equivalent
differential forms. Assuming thatgj (t, t + τ) is a well-
behaved function ofτ , the photon antibunching according
to thej th definition occurs if the lowest-order (sayn0) non-
vanishing derivative ofg(2)j (t, t+τ) [or1gj(t, t+τ)] is greater
than zero atτ = 0, i.e.,n0 > 1 exists such that

γj (t) ≡ γ (n0)
j (t) = ∂n0

∂τn0
g
(2)
j (t, t + τ)

∣∣∣∣
τ=0

> 0 (9)

and

∂n

∂τn
g
(2)
j (t, t + τ)

∣∣∣∣
τ=0

= 0 for n = 1, . . . , n0 − 1.

(10)

For the purpose of our analysis, only the sign of the
parametersγj (t) = 0 is important. However, their values
might be helpful in the analysis of the degree of antibunching.
The field exhibits bunching if the lowest-order non-vanishing
derivative,γj (t), is negative. If the derivatives of all orders
vanish,γj (t) = 0, the field is said to be unbunched. In
the following sections, we will use both parametersγj (t)
and correlation functions1gj(t, t + τ) to predict photon
antibunching in a frequency conversion model for various
initial fields.

Usually, the first derivativesγ (1)I,II (t) are non-vanishing
and in order to predict photon antibunching it is sufficient to
determine their sign only e.g., parameterγ

(1)
I (t)was used by

Pěrina [4], whereasγ (1)II (t) was applied by Dunget al [10]
and Aliskenderovet al [11]. Here, we give examples of the
field evolution for which parametersγ (1)j (t) vanish resulting
in the analysis of the higher-order derivatives, in particular
γ
(2)
j (t), for the determination of photon antibunching.
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2.1. Photon antibunching of stationary fields

Definitions I–III of photon antibunching are equivalent in
stationary fields for which the condition

G(2)(t, t + τ) = G(2)(τ ) (11)

is satisfied. Other equivalent definitions can be given in terms
of the joint detection probability (2), as

P2(t, t + τ) > P2(t, t) (12)

or with the help of the conditional probability

P2(t + τ |t) ≡ P2(t, t + τ)

P1(t)
(13)

whereP1(t) is the marginal probability.
Definitions I and II were originally proposed on the basis

of the Cauchy–Schwarz inequality to describe antibunching
of photons of stationary fields only. Inequality (3) implies
that photon antibunching cannot occur for classical stationary
fields, since they are described by a regular and non-negative
P -function.

2.2. Photon antibunching of non-stationary fields

The question arises how to describe photon bunching and an-
tibunching for non-stationary fields? Or, explicitly, which of
definitions I–III is the closest to the original meaning of pho-
ton antibunching—the effect reflecting the tendency of pho-
tons to preferentially distribute themselves separately rather
than in bunches, when the intensity of light is not stabilized?

We show that the predictions of photon antibunching
according to definitions I–III might be essentially different
for non-stationary fields, though they coincide in stationary
fields. Differences between various approaches to
antibunching result from the normalization functions of
G(2)(t, t + τ), which for definition I is independent ofτ ,
whereas for definitions II and III isτ -dependent, but in two
non-equivalent ways of non-stationary fields.

There have been some theoretical investigations of the
antibunching effect occurring not only in stationary regime.
In fact, both definitions I and II of photon antibunching
have been applied to analyse non-stationary fields. For
applications of definition II see, e.g., [7, 8, 10, 11], and for
definition I see, e.g., [9, 12]. To the best of our knowledge,
definition III has not been used yet in the analysis of the
antibunching effect. However, for non-stationary fields,
only definition III implies violation of the Cauchy–Schwarz
inequality (3).

3. Model for testing antibunching

We analyse different kinds of bunching and antibunching of
photons in a process of parametric frequency conversion. The
model can be described by the interaction Hamiltonian [16]:

Ĥint = h̄κâaâ†
b exp(i1ωt) + h.c. (14)

where1ω = ω + ωb − ωa, and âa,b are the annihilation
operators for the signal (with subscripta) and idler (subscript
b) modes;κ is the real coupling constant. For simplicity, we
only analyse the resonance case,1ω = 0.

There are simple trigonometric solutions for the signal
and idler modes in the interaction picture [16]:

âa(t) = cos(κt) âa − i sin(κt)âb

âb(t) = cos(κt) âb − i sin(κt)âa
(15)

whereâa,b ≡ âa,b(0). All expressions for the second mode
are given by those for the first mode albeit with interchanged
subscripts. The constant of motion is

〈na(t)〉 + 〈nb(t)〉 = 〈na(0)〉 + 〈nb(0)〉 = const. (16)

We have chosen a two-mode model to analyse
antibunching in the signal mode only. The idler mode gives us
the possibility of manipulating the photon-number statistics
of the signal mode.

4. Different predictions of photon antibunching

Let us analyse the parametric frequency conversion of the
signal and idler modes initially in Fock states with photon
numbersNa andNb, respectively. By applying the solution
(15) to (1) and (6), we find the two-time intensity correlation
function for the signal mode

G(2)(t1, t2) = Na(Na − 1) cos2(κt1) cos2(κt2)

+NaNb sin2[κ(t1 + t2)]

+Nb(Nb − 1) sin2(κt1) sin2(κt2) (17)

and the signal mean photon number

〈na(t)〉 = Na cos2(κt) +Nb sin2(κt). (18)

For brevity, hereafter we present correlation functions for
the signal mode only. Therefore, we can consequently omit
subscripta in correlation functions

G(2)(t1, t2) ≡ G(2)
a (t1, t2),

g
(2)
j ≡ g(2)j,a, 1gj ≡ 1gj,a

(19)

for j = I, II , III. Due to the symmetry of the solutions (15),
one can deduce the explicit expressions for the idler mode by
simply interchanging the subscripts.

Exact analytical solutions for the normalized correlation
functionsg(2)j (t, t + τ) (j = I, II , III) defined, respectively,
by (5), (7) and (8), are obtained from (17) and (18)
in a straightforward way. Then the exact solutions can
be represented graphically for better comparison (see,
e.g., figure 4). We would like to give analytical self-
evident comparison of different definitions. Since, photon
antibunching is defined in the short-time separation limit, we
expandg(2)j (t, t + τ), or alternatively1gj(t, t + τ), in Taylor
series inτ . We find

1gI(t, t + τ) = sin(2κt)

2〈na(t)〉2 {−Na(Na − 1) cos2(κt)

+2NaNb cos(2κt) +Nb(Nb − 1) sin2(κt)}(κτ) +O(τ 2)

(20)

1gII (t, t + τ) = NaNb sin(2κt)

〈na(t)〉3 {(Na + 1) cos2(κt)

−(Nb + 1) sin2(κt)} (κτ) +O(τ 2) (21)

1gIII (t, t + τ) = − NaNb

2[G(2)
a (t, t)]2

{2Na(Na − 1) cos4(κt)

−(NaNb +Na +Nb − 1) sin2(2κt)

+2Nb(Nb − 1) sin4(κt)}(κτ)2 +O(τ 3). (22)
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Figure 1. Evolution of the parametersγI(t) (dashed curves) and
γII (t) = γIII (t) = 0 (solid curve) for initial Fock states withNa = 2
andNb = 0. A positive value of the parameterγI indicates that the
photons of the signal mode are antibunched according to
definition I. Negative value ofγI shows bunching.

Expansions (20)–(22) are simply related to the definitions (9)
of antibunching. Precisely, the parametersγj are given
by the lowest-order non-vanishing expansion coefficients.
Expansions (20)–(22) are valid for arbitrary photon numbers
Na and Nb. Now, we analyse special cases for more
transparent comparison.

4.1. Predictions of antibunching:∆gI 6= ∆gII = ∆gIII

Under the initial condition that there are no photons in the
idler mode (Nb = 0) and there areNa ≡ N photons in the
signal mode, the solution (17) reduces to

G(2)(t1, t2) = N(N − 1) cos2(κt1) cos2(κt2). (23)

Then the normalized correlation functions are

g
(2)
I (t1, t2) = N − 1

N
sec2(κt1) cos2(κt2) (24)

g
(2)
II (t1, t2) =

N − 1

N
(25)

g
(2)
III (t1, t2) = 1. (26)

The Taylor expansion ofg(2)I (t1, t2) is

1gI(t, t + τ) = −N − 1

N
2 tan(κt)(κτ) +O(τ 2) (27)

which comes from (20). On the other hand, we have

1gII (t, t + τ) = 1gIII (t, t + τ) = 0. (28)

According to definition I, as is self-evident from (27), the
signal photons can exhibit bunching for the values ofκt

between 0 andπ/2, antibunching in the second half of the
period, and unbunching forκt = 0, π/2, π . However,
according to definitions II and III, photons in the signal
mode are always unbunched. These different predictions of
antibunching are depicted in figure 1 using parametersγj
given by the first-order expansion coefficients.

4.2. Predictions of antibunching:∆gI = ∆gII 6= ∆gIII

As another special case, we assume that both modes are in
the same Fock states with the photon numberNa = Nb ≡ N .
Then, the two-mode unnormalized correlation function is

G(2)(t1, t2) = N

4
{2(2N − 1) + (N − 1) cos[2κ(t2 − t1)]

−(N + 1) cos[2κ(t1 + t2)]}. (29)

Figure 2. Evolution of the parametersγI(t) = γII (t) (dashed
curves) andγIII (t) (solid curves) for initial Fock states with:
(a) Na = 1,Nb = 1 and (b) Na = 2,Nb = 2. The cases given in
the upper part of the figures correspond to different predictions of
the photon antibunching as analysed in table 1.

It follows from (18) that, under these initial conditions, the
mean photon number of each mode is constant of motion,
〈na,b(t)〉 = N = const. Hence, we have

g
(2)
I (t1, t2) = g(2)II (t1, t2). (30)

The Taylor expansions of1gj(t, t+τ)are as follows (N > 0):

1gI(t, t + τ) = 1gII (t, t + τ)

= N + 1

2N
sin(4κt)(κτ) +O(τ 2) (31)

1gIII (t, t + τ) = − N2

[2G(2)(t, t)]2
{N2 − 5N + 1

+ (2N2 +N − 1) cos(4κt)}(κτ)2 +O(τ 3) (32)

where

G(2)(t, t) = N

4
[5N − 3− (N + 1) cos(4κt)] (33)

is the special case of two-time correlation function (29).
Function (32) for the simplest two cases: forNa = Nb = 1
andNa = Nb = 2, reduces, respectively, to

1gIII (t, t + τ) = csc2(2κt)(κτ)2 +O(τ 3) > 0 (34)

1gIII (t, t + τ) = 4
1− 9 cos(4κt)

[7− 3 cos(4κt)]2
(κτ)2 +O(τ 3). (35)

Here, in contrast to the evolution analysed in section 4.1
and plotted in figure 1, the predictions of antibunching and
bunching according to definitions I and II are the same during
the whole evolution of the signal mode, but they can differ
from those of definition III e.g., forN = 1 the signal field
is always antibunched according to definition III, as is seen
from (34), but can also be unbunched or bunched according to
definitions I and II since the respective correlation functions
are proportional to the sine function in (31). This situation
is depicted in figure 2(a) in terms of the parametersγj given
by the lowest-order non-zero coefficients in the expansions
(31) and (34). In another special case, forN = 2, the
correlation function1gIII (t, t + τ) changes sign but for
different evolution times than1gI(t, t +τ) and1gII (t, t +τ),
thus again definition III is not equivalent to definitions I and II.
This case is represented in figure 2(b), whereγj are obtained
from (31) and (35).
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Figure 3. Evolution of the parametersγI(t) (dashed curves)γII (t)
(dot-dashed curves) andγIII (t) (solid curves). Initially, both signal
and idler modes are in Fock states with: (a) Na = 2,Nb = 1 and
(b) Na = 3,Nb = 1.

4.3. Predictions of antibunching:∆gI 6= ∆gII 6= ∆gIII

Here, we analyse the cases for which all three definitions
might not be equivalent for some evolution times. According
to combinatorics, there are eight possible cases (permutations
with replacement,PR(m, r)) if each of three definitions
(a sample ofr = 3 elements) can give two different
outcomes: either bunching or antibunching (a set ofm = 2
distinguishable objects) by virtue of the formulaPR(2, 3) =
23 [17]. These cases are listed in table 1 with examples for
the quantum signal fields presented graphically in figure 3
for the parametersγj and in figure 4 for the correlations1gj .
We refer to these ordinal numbers of the cases throughout the
paper, in particular, the numbers are given in the upper part of
the figures. For brevity, we do not list all the 27 cases, which
appear in the analysis of three different outcomes: bunching,
antibunching and also unbunching.

If initially, the signal mode is in a Fock state with
Na = 2, and the idler mode in a Fock state withNb = 1,
the Taylor expansions (20)–(22) of the correlation functions
1gj(t, t + τ) reduce, respectively, to

1gI(t, t+τ) = −1 + 3 cos(2κt)

〈na(t)〉2 sin(2κt)(κτ)+O(τ 2) (36)

1gII (t, t + τ) = 1 + 5 cos(2κt)

〈na(t)〉3 sin(2κt)(κτ) +O(τ 2) (37)

1gIII (t, t + τ) = 2 sec2(κt)
3− 5 cos(2κt)

[5− 3 cos(2κt)]2 (κτ)
2 +O(τ 3)

(38)
where the mean photon number is

〈na(t)〉 = 1
2[3 + cos(2κt)]. (39)

The discrepancies between definitions I–III are well
pronounced both analytically and graphically in figure 3(a)
with the help of the parametersγj and directly in figure 4 in
terms of the correlation functions1gj(t, t+τ) (j = I, II , III).
During the evolution of initial Fock states|Na,Nb〉 = |2, 1〉
almost all (except cases 2 and 3) are observed. The remaining
two cases can be found, e.g., in the signal-field evolution of
the initial Fock states with the photon numbersNa = 3 and
Nb = 1. Here, correlations (20)–(22) obtained for arbitrary
initial Fock states can be simplified to:

1gI(t, t + τ) = −6 sin2(κt)

〈na(t)〉2 sin(2κt)(κτ) +O(τ 2) (40)

1gII (t, t+τ) = 3
1 + 3 cos(2κt)

〈na(t)〉3 sin(2κt)(κτ)+O(τ 2) (41)

Figure 4. Graphical representation of eight different predictions
of photon antibunching of non-stationary fields, corresponding to
the cases analysed in table 1. The two-time signal-mode
correlation functions1gI(t, t + τ) (dashed curves),1gII (t, t + τ)
(dot-dashed curves) and1gIII (t, t + τ) (solid curves) are plotted in
their dependence on the rescaled time separationκτ for fixed
values of the evolution time: (case 1)κt = 2.8, (2)κt = 2.6, (3)
κt = 0.1, (4)κt = 0.1, (5)κt = 1.0, (6)κt = 2.3, (7)κt = 0.7,
and (8)κt = 1.8. Signal and idler modes are initially in Fock
states withNa = 3 andNb = 1 in cases 2 and 3, or withNa = 2
andNb = 1 in all other cases.

1gIII (t, t + τ) = sec2(κt)
1− 3 cos(2κt)

[3− cos(2κt)]2
(κτ)2 +O(τ 3)

(42)
respectively, where

〈na(t)〉 = 2 + cos(2κt). (43)

The evolution of the parametersγj , given by the expansion
coefficients in (40)–(42) are presented in figure 3(b). We find
six out of eight different predictions, including cases 2 and 3
not observed in the evolution of|Na,Nb〉 = |2, 1〉. The latter
two cases are also presented in figure 4 in a standard way for
the correlation functions evolving with the time separationτ

for fixed values of timet . The values of evolution timest
given in table 1 are calculated from (36)–(42).

In conclusion, during the evolution of the quantum signal
field in the parametric frequency converter initially in Fock
states, e.g.|Na,Nb〉 = |2, 1〉 and|Na,Nb〉 = |3, 1〉 one ob-
serves that both photon antibunching and bunching effects
from definitions I–III can be accompanied, for some evolu-
tion times, with the same or different correlations of photons
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Table 1. All possible predictions of photon bunching and antibunching of non-stationary fields according to definitions I, II and III. Signal
and idler modes are initially in Fock states:|ψ(0)〉 = |2, 1〉 (evolution time intervals are marked by a prime) and|ψ(0)〉 = |3, 1〉 (those
denoted by a double prime). Here,f {x} ≡ 1

2 arccos(x).

Case Definition I Definition II Definition III Evolution timesκt

1 bunching bunching bunching κt ∈ (π − f { 35}, π)′
2 antibunching bunching bunching (π − f { 13}, π)′′
3 bunching antibunching bunching (0, f { 13})′′
4 antibunching antibunching bunching (0, f { 35})′
5 bunching bunching antibunching (f {− 1

5}, π2 )′
(π − f { 13}, π − f { 35})′
(f {− 1

3}, π2 )′′
6 antibunching bunching antibunching (π − f {− 1

5}, π − f { 13})′
(π − f {− 1

3}, π − f { 13})′′
7 bunching antibunching antibunching (f { 13}, f {− 1

5})′
(f { 13}, f {− 1

3})′′
8 antibunching antibunching antibunching(f { 35}, f { 13})′

( π2 , π − f {− 1
5})′

( π2 , π − f {− 1
3})′′

derived from the other two definitions. We have given exam-
ples of all these cases in figures 3 and 4, and table 1.

5. Conclusions

We have presented a systematic comparison of two
conventional descriptions and our new description of photon
antibunching of non-stationary fields. Our definition is based
on the two-time second-order intensity correlation function
G(2)(t1, t2) normalized by the square root of single-time
second-order intensity correlations at two moments,t1 and
t2. The normalization of the correlation functionG(2)(t1, t2)

comes directly from the application of the Cauchy–Schwarz
inequality. The standard criteria of the photon antibunching
are based on the two-time correlation functionG(2)(t1, t2)

normalized either (i) by the single-time first-order intensity
correlations at two moments, or (ii) by functions independent
of the time separationτ = t2 − t1.

In a special case, when a field is stationary all three
definitions are equivalent. However, as we have shown,
the predictions of photon antibunching according to these
approaches might be different for non-stationary fields. As
an example, we have analysed the evolution of the signal
mode during the parametric frequency conversion of the
initial Fock states and have found all (i.e. eight) possible
different cases, when both photon antibunching and bunching
effects according to one definition can be accompanied by
arbitrary photon correlation effects according to other two
definitions. We conclude that the three criteria describe the
distinct photon antibunching effects in non-stationary fields.
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