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Abstract. Previous work on the two-time photon-number correlations of quantum
non-stationary fields has focused on the demonstration of self-contradictory predictions of the
photon antibunching according to different definitions. In this paper we analyse the
usefulness of the conventional and generalized definitions of photon bunching in a
description of classical non-stationary light. It is proved that the generalized definition
applied to classical fields predicts photon bunching but never antibunching. In contrast, the
two conventional definitions are shown to improperly classify certain classical non-stationary
fields as being antibunched.
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1. Introduction and transient regimes. This is, probably, the first paper
explicitly showing that the photon-counting statistics can be
Itis a well known fact that photon antibunching is one of the either sub- or super-Poissonian, even if the photons always
manifestations of non-classical properties of light. Photon exhibit antibunching. Dungt al [6] and Aliskenderowet al
antibunching cannot be understood within the classical field [7] compared non-stationary-field antibunching with sub-
theory describing light as a wave. However, it can be simply Poissonian photon statistics in the Jaynes—Cummings model
interpreted in particle (photon) models as the rise of the joint of a single two-level atom coupled to a single mode of the
probability of two detected particles upon the increase of their cavity radiation field. Fengt al [8] studied the photon
time separation (see, e.g., [1-3]). antibunching effects in the model of non-stationary light
In a previous work [4] we systematically compared Propagation through a nonlinear fibre with gain. Kryszewski
conventional with generalized approaches to photon and Chrostowski[9], and Srinivasan and Udayabaskaran [10]
antibunching in quantum non-stationary fields. We showed (see [3] for references to other similar studies) predicted the
that different definitions can lead to self-contradictory Photon antibunching of non-stationary fields in parametric
predictions of photon-number correlations in quantum fields. frequency up-conversion with stochastic coupling between
The purpose of this paper is to draw attention to the more the signal and idler modes.
severe inconsistency of the conventional descriptions of ~ We analyse the frequency conversion model to test
correlations in the non-stationary regime. We show that some the definitions of photon antibunching for initial classical
classicalnon-stationary fields can be classified spuriously as fi€lds. We describe a process of exchanging photons between
antibunched according to the conventional definitions. We the signal and idler optical modes of different frequencies
apply the generalized definition, which properly excludes PY the simple Louisell model [11] with trigonometric

the existence of the photon antibunching in classical non- SO'”“_O"S'_ The remarkable prc_)perty of the model_ is the
stationary fields. classical-like evolution or, explicitly, the conservation of

: . : . initial quasidistributions along classical trajectories as was
The photon antibunching effect of non-stationary optical Initial . .
fields has been a subject of considerable interest, particularly,predICted by Glauber [12] and & [13] and experimentally

in comparative studies of the sub-Poissonian photon numberObserveOI by Huang and Kumar [14] for initial quantum states.

statistics and antibunching effects. For instance, Singh [5] The modelanalysed by Kryszewski and Chrostowski[9], and

studied the photon antibunching in the process of resonancesnmvasan and Udayabaskaran [10] is a generalized version

. of the Louisell model constructed by assuming that the mode
fluorescence from a two-level atom in both steady-state L .
coupling is stochastic.

€ Permanent address: Institute of Physics, Adam Mickiewicz University, The term classical antibunching is ambiguous since it
61-614 Pozna, Poland. may refer either to antibunching of classical particles or to
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antibunching of classical fields. The antibunching effect is
typical for particle models, so is observable for classical

if the derivatives(d/a7)"g?(t, ¢ + ) vanish atr = 0 for
n=1,...,n9— 1. The field exhibits bunching if the lowest-

particles (see, e.g., classical molecular models analysed byorder non-vanishing derivativey; (1), is negative. If the

Kielich [15]). However, it cannot be exhibited by classical

fields. In the latter this means the classical antibunching is to be unbunched.

an artefact only.

In section 2, we give a short account of three criteria
of photon antibunching. In section 3, we briefly discuss
a P-function criterion of classical field evolution in the

derivatives of all orders vanisly, (1) = 0, the field is said

In the following sections, we use both

parameterg/; (1) and correlation functionag; (¢, + 7) to

analyse photon bunching in a frequency conversion model.
Definition I, as formulated by the correlation function

gl(ﬁ)(t,t + 1), can be rewritten in terms of the so-called

parametric frequency converter. The main results of the papercorrelation coefficient [17]

are summarized in section 4, where we show explicitly that

some classical non-stationary fields can be falsely classified
as antibunched according to the two conventional definitions.

2. Three criteria of photon bunching and
antibunching

The central role in definitions of the photon antibunching
of a single-mode radiation field is played by the intensity
correlation function

GO, t+7) = (T : A(OAGF + 1) 3) (1)

directly related, by Glauber's formula [16], to the joint
detection probabilityP,(z, ¢ + t) of detecting one photon at
moments and another at momeldt + 7). In equation (1),

7(t) denotes the photon-number operator, and the operator

products are written in normal order (::), and in time order
(7). Different normalizations ofG®(z,r + t) can be

applied in the analysis of photon-number correlations. Here,

it t+7) = CoviA. At + 7))
ao{i(t)}o{a(t + 1)}

5(2)0, t+71)

™)

\/5(2)0, t)ﬁ(z)(t +1,t+71)

wheres {n(t)} = +/ G? (t, t) isthe standard deviation 6fr)

and the central moment

6(2)(1‘, t+1) = Cov{a(r), At + 1)}
=G2t,t+1)-GP0)GPr+1) (8)

is the covariance ofi(r) andn(sr + ) in time and normal
order. The correlation coefficient has well known properties
and a simple geometrical interpretation as often discussed in
probability theory and mathematical statistics (e.g., see [17]).
Both definition | (see [3] and references therein) and
definition 1l (see, e.g., [2]) have been applied to analyse
the photon antibunching of non-stationary light generated in
various nonlinear optical processes. In particular, analysis

we analyse the normalized two-time second-order intensity of the photon antibunching afon-stationarylight has been

correlation functions defined as

G, 1+71)

2
SN A )
@ G+ 1)
A e TrYeTE Ty @)
2)
g r+1) = G, 1+1) @

VGO, )G (1 +1,1+71)

whereGP (1) = (n(r)) = (@' (1)a(r)) is the light intensity.

The photon antibunching according to tite (j = 1, 11,
1) definition occurs if the normalized intensity correlation
functiongj.z) (z, t+1) increases from its initial value at= 0,
ie.

Agit 1+ =g 1+~ P, >0.  (5)

The photon bunching occurs for decreasing correlation
function ¢\ (s, ¢ + ), whereas unbunching takes place if

g?(t.1 + 7) is locally constant. Alternatively, on the
assumption thag; (¢, 7 + 7) is a well-behaved function of
7, the photon antibunching according to tligh definition
occurs if the lowest-order (say) non-vanishing derivative
of ¢?(1,1 + 1) (or Ag;(t, 1 + 1)) is positive atr = 0, i.e.,
there exists suchy > 1 that

>0
=0

" 8110
v =vP0 = e+ (6)
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studied by, e.g., Singh [5] and Fepgal [8] with the help
of definition I, and by, e.g., Kryszewski and Chrostowski [9],
Srinivasan and Udayabaskaran [10], Dueigal [6] and
Aliskenderowet al[7] by applying definition II. Definitions I—
Il are equivalent for stationary fields, i.e., fields satisfying
the propertyG@(r,t + t) = G@(r). However, as
we have shown in [4], these definitions can lead to self-
contradictory predictions of the photon antibunching effect
for non-stationary quantum fields.

The classical Cauchy—Schwarz inequality reads as

[GP(t,t+ D <GPt nGP +1,t+7)  (9)
for the correlation function (1) or, equivalently, as
[C%¢ + D2 <G, 06 +r,1+7)  (10)

for the covariance (8). Inequalities (9) and (10) can be
violated by non-classical fields only. All definitions of
the photon antibunching effect for stationary fields are
based on the Cauchy-—Schwarz inequality. However, for
non-stationary fields, photon antibunching according to
definitions I and Il does not imply violation of the Cauchy—
Schwarz inequality (9). We give examples of classical
non-stationary fields apparently exhibiting the antibunching
effect according to definitions | and Il. In contrast, photon
antibunching according to definition 11l occurs for quantum
fields only, independent of the stationary-field condition.
This conclusion is readily obtained by comparing the form
of the correlation functiong,? (¢, t + 1) org@ (¢, t + ) with

the Cauchy—Schwarz inequalities (9) or (10), respectively.
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3. Classical evolution of the frequency converter 4. Classical photon antibunching artefacts

The criterion used to distinguish between the classical andin a previous work [4] we showed explicitly that the photon-
quantum character of light is usually formulated by the antibunching definitions I-llI are not equivalent for quantum
Glauber—Sudarshah-function, i.e., the weight factor in the  non-stationary fields. Nevertheless, the question remains,

coherent-state representation of the density matrix which of the definitions I-IIl gives the best indicator of
R ) photon antibunching? Here, we analyse their usefulness in
o= /d {aj}P{a;DI{e}) (fej} (11) a description of photon bunching of classical non-stationary
fields.

The classical state of light is defined (see, e.g., [1, 3]) to be
one, in which theP-function is a probability distribution,
i.e., is neither negative nor more singular than the Déac
function. Otherwise, the state is non-classical. The compact
notation for the multimode field is used in equation (11), as
the argumento;} stands for(ay, a, . . .).

Glauber [12] proved that an initially coherent field
remains coherent during the whole evolution of an

oscillator system described by the Heisenberg equations of
motion in the form 4.1. Classical antibunching | artefact versus

unbunching Il and IlI

For simplicity, let us refer to antibunching I, bunching |
or unbunching | as to the effects according to definition I.
Analogously, we use terms anti-, un- and bunching Il or IIl.
We focus our analysis on photon correlations of the signal
mode only. Therefore, it will cause no confusion if we
omit subscriptz in the correlation function& @ (11, ) =

2 2
GP(n,10), g} = ¢} andAg; = Agj.

d. A

dr @) = F(a®}. o, kl=L...n(12) If the signal and idler modes are initially coherent, they will
for arbitrary functionsF, of the annihilation operatoré, remain coherent during the whole evolution of the frequency
and time. In particular, Glauber’s theorem applies to the converter (13). TheP-function, according to Glauber's
parametric frequency converter, i.e., a process of exchangingtheorem (15), evolves in a classical way
photons between signaé) and idler ) optical modes of

different frequencies, andw,) as described by the Louisell P(@asap, 1) = [ 8(a;(=1) —aj0)
Hamiltonian [11] j=a.b
Flipy = Tica,a] explidwr) + he. (13) = ,-1::[;, 8(@j — ajo(1)) (17)

whereAw = o + wp, — w,; 4., are annihilation ana&lb

are creation operators;denotes the real coupling constant.
For simplicity, we assume the resonance case= 0. The
solutions of the Heisenberg equation of motion for the signal

wherea,o anda,g are the initial amplitudes of the signal and
idler modes, respectively;; (—¢) are the classical solutions
(16) for (—¢); andao(t) = coskt)ajo — isin(kt)a o for

o g . T
and idler modes are [11] j = a,bandj = b_,a, respectively. For S|rnpl_|C|_ty,
we analyse the evolution of coherent states with initially
a;(t) = codkt)a; —isin(kt)a; (14) real amplitudesy,o anda,e. The unnormalized two-time

wherea; = 4;(0), j = a.b andj’ = b, a, respectively. correlation function (1) for the signal mode is

Glauber’s theorem for the frequency converter (13) can be
expressed in terms of the Glauber—Sudarshan two-ntede
function found by Msta [13] in a compact form as

P(aav Ap, t) = P{aa(_t)a ah(_t)5 0} (15)

GP (11, 1) = (na (1)) (na(t2)) (18)
as a product of the signal-mode mean intensities

_ _ _ (na(1)) = a?ycog (k1) + aly Sin(kt) (19)
wherex ;(—1) are the solutionst of the classical equations of
motion for the frequency converter [11] at two evolution times. Thus, the normalized correlation
aj(t) = coskt)a; —isin(kt)a;. (16) functions are (14 (t2))

(nq(t1))

P, 1) = (20)

The two-modeP-function remains constant along classical
trajectoriesw; (r). If both the signal and idler modes are ? ?
initially classical (non-classical) they will preserve their ai (11, 12) = gy (1, 12) = const= 1. (21)
original character for the whole evolution. Thus, ourprevious pefinitions 11 and 111 appear to be equally good since both
analysis [4] of the photon antibunching in initially Fock states imply that the coherent field is unbunched

was limited to quantum non-stationary fields. In the present

paper, we restrict our photon-correlation analysis to classical Agn(t,t+7) = Agy (t,t +7) = 0. (22)
non-stationary fields. The Glauber theorem was graphically

represented with the help of the Husirgl-function for However, according to definition |, the field might also be

various initial statistics in [18]. Preservation of the quantum punched or antibunched as seen by expanding solution (20)
state during the frequency conversion was experimentally in a power series of = #, — 1, (or k). We find
confirmed by Huang and Kumar [14].

2 2
T Precisely, the functions; (—¢) are inverse to the solutions (16). But the Ag(t,t+71) = %0 — %0 Sin(ZKt) (kT) + 0(r2) (23)
inversion is obtained simply by changing the sign of ’ (ny (1)) ’

605



A Miranowiczet al
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Figure 1. Classical-field evolution of the parametefét) (dashed
curves) and (1) = yu (t) = 0 (solid lines) for the signal and idler
fields initially coherent with: &) arbitrarye, > 0 anda;, = 0, and
(b) @, =2, = 1.
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Figure 2. Two-time correlation functionag, (¢, t + t) (dashed
curves) and\g (z,t + ) = Agy (¢, t + 7) (solid lines) versus
rescaled time separatianr at fixed evolution times:&) kt = 1
and p) «r = 2.5 for the same initial condition as in figurek)(

case 1 case 2

Figure 3. Classical-field evolution of the parameterg) (dashed
curve),y; (¢) (dot-dashed curve) ang, (¢) (solid curve) for the
signal and idler fields initially chaotic with the mean photon
numbersinena) = 2 and(nenp) = 1. Hereafter, the cases (given in
the upper part of the figures) correspond to those in table 1.

case 1

Figure 4. Two-time correlation functionag, (¢, t + t) (dashed
curves),Ag (¢, t + ) (dot-dashed curves) amslg, (¢,  + )
(solid curves) versus rescaled time separatiomt«: = 1 (case

These counterintuitive outcomes are presented in figures 11) andcs = 2 (case 2) for the same initial conditions as in figure 3.

and 2. The time evolution of the parametgrsare depicted

in figure 1@) for the signal mode initially coherent (with
arbitrary non-zero amplitude) and for the idler mode in a
vacuum state in figure &j, or for both fields initially coherent

in figure 10). The exactr-evolutions of the correlation
functions Ag, (¢, t + ) for fixed timer indicate explicitly
the bunching effect as presented in figura)2but also the
classical antibunching artefact according to definition | as
depicted in figure {).

4.2. Classical antibunching | artefact versus
bunching Il and IlI

The classical evolution of the frequency converter with initial
chaotic fields is described by the two-moBefunction

B lotj (—1)?
exp( (nehj)

1
Plaa, ap, 1) = —
(@a, ap, 1) = —3 [

j=a,b

) (24)

(nehj)

where(ncn a) and(ncn p) are the initial mean photon numbers
of chaotic photons in the signal and idler modes, respectively.
With the help of the relation(@™*a*) = k! (nen)* applied to
definition (1), we find
G® (11, 12) = 2{ncna)® cOS (k1) COS (k1)

+2(nch,b>2 Sinz(Kl‘l) Sinz(l(l‘z)

+(ncha) (nchb) SIP[ic (11 + 1)) (25)
For no time separation, the correlation function (25)
simplifies to

GP(t,1) = 2(n,(1))? (26)
where the mean signal-field intensity is
(na (1)) = (ncna) COS (k1) + (nchp) SIP(k1). (27)

Here, in contrast to the evolution of coherent fields, the

correlation functiong?’ andg|?’ are neither the same nor
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constant. Nevertheless, they are simply related by

&2 (11, 1) = 28\ (11, 12) (28)

as comes from the property (26). The chaotic fields evolving
in the frequency converter only exhibit photon bunching
according to definitions Il and Ill, as is evident from their
power expansions:

Agy (t,t+71) = 2Ag||| (t,t+71)
{(nch,a) (nchb)
(na(1))?
for (ncna) and(ncnp) different from zero. In contrast, the

Taylor expansion

— «k1)>+0(r% <0 (29)

(ncha) — (Mehb)

e Sin(2c1) (k) + O(T?)

(30)
implies that the photon antibunching effect in a chaotic field
is falsely allowed according to definition I. The evolution
of the parameters;, given by the first coefficients of
expansions (29) and (30), is presented in figure 3, whereas
the correlations\g; (¢, t + 7), calculated with the help of the
exact solutions (25)—(27), are depicted in figure 4. The cases
indicated in the upper part of the figures, correspond to those
analysed in table 1. It is seen in both figures that the chaotic
signal field evolving classically can be bunched (case 1), but
also spuriously antibunched (case 2) according to definition |.
In contrast, the signal photons can only be bunched according
to definitions Il and Il1.

Ag(t,t+1) =2

4.3. Classical antibunching | and Il artefacts versus
bunching 11l

If the initial modes are in a superposition state of coherent
and chaotic fields, the evolution of the frequency converter is
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Table 1. All possible predictions of photon antibunching artefacts (described by pogitiyeand photon bunching (negativeg ;) of

classical non-stationary fields according to definitions I-Ill. The initial staté® andp,(0) are given by (39) and (45), respectively.
Case Ag Agy Agn Examples
1 negative (bunching) negative (bunching) negative (bunching) (% n) for p2(0)
2 positive negative (bunching) negative (bunchingys € (% n) for p1(0)
3 negative (bunching) positive negative (bunchingyt € (0, %) for p1(0)
4 positive positive negative (bunching)xr € (O, %) for p2(0)
5 negative (bunching) negative (bunching) positive forbidden
6 positive negative (bunching) positive forbidden
7 negative (bunching) positive positive forbidden
8 positive positive positive forbidden
described by the&-function (a)
) case 3 case 2
P(au,a;,,t):iz l—[ 1 exp(—la’( 1) — ajol ) e
T i—ab (nen,j) (nen,j) s ‘\\
(31) ] S ............. .
The P-function (31), in the product form of the regular and )
positive Gaussian functions, explicitly shows that the idler )
and signal fields remain classical during the frequency con- 200 17 314
version. The field evolution described by solution (17), as
analysed in section 4.1, and solution (24), as discussed in sec- ®) case 4 case 1
tion 4.2, are the special cases of the evolution described by the ! - Y=Yn
P-function (31). Here, we analyse two other special cases. o N
First, for simplicity, we assume that the mean photon - N4
numbers of chaotic photons in both modes are the same >fl
(ncha) = (nehp) = (nch) and the initial coherent amplitudes
oo are real. By applying relation [19] 2 ¥ >,
2 K
(@h*a*) = k' nen) Ly {— h } (32) . . _ -
(nen) Figure 5. Time evolution of the parameteyps(r) as in figure 3,
. . . but for initial superposition of coherent and chaotic fields: (
where L (x) is the Laguerre polynomial, we find p1(0), given by equation (39), and) 0,(0), equation (45).
GP (11, 1) = N? + N coS(2t;) COS(2k 12)
+2N_(N, + 2(ncn)) cosk (2 — )] cosfk (11 +12)] As for the other fields, the firat-derivative ofg\? (¢, 1 + 1)
+(nen) (2N, + (nep)){1 + o[k (o, — 11)]} (33) vanish att = 0. Expansions (36)—(38) lead to a simple

where Ny = (% + o). The exact expressions for

g?(t.1 + 1) andlor Ag; (¢, 1 + 1) are calculated from the
correlation function (33) by applying the normalization
factors

(na (1)) = (nen) + @’y oS (ict) + aZy Sit(kt)

= (nch) + (ncona(?)) (34)
and
GP(1,1) = (nooha(1))? + Anch) (ncona(r)) + 2(nc)* (35)
according to definitions I-IIl. The mean intensity (34) is the

sum of the time-dependent intensity (19) for initially coherent
fields and the initial chaotic field intensity. The single-time
correlation function (35) is a special case of solution (33). For
simpler interpretation, we expamlg; (¢, t + 7) in a power
series oft arriving at
Agi(t,1+7) = =2(nq (1) *{(nen)
+(n,(1))}N_sin(2«t) (kT) + O(t?) (36)
Agi (2, 1+ 1) = 2(na (1)) (nen) (neoha () N_ SiN(2kt) (kT)
+O(1?) (37)
(nen) @
—m{{(} (@, )({ncn) +2N,)
—AN?(nep) Sir?(2ct)}(kT)? + O(r3) < 0.

Agn(t,t+71) =

(38)

interpretation. The correlation functiaxygy, (¢, ¢ +t) cannot

be positive, thus we will not observe the antibunching of
photons according to definition Ill. In contrast, batl, (¢, r+

) andAg (¢, t + t) oscillate between negative and positive
values, therefore the antibunching according to definitions |
and Il is apparently not prohibited. This is our first example
of a classical photon antibunching artefact according to
definition 1l, examples of classical antibunching artefacts
described by definition | have already been presented in
sections 4.1 and 4.2. Surprisingly, the predictions of
definitions | and Il are opposite, since solutions (36) and (37)
have opposite signs and the same time-dependent function.
Our conclusion is supported by graphical representations of
the parameterg; in figure 5@) andAg; (¢, t + 7) in figure 6
(cases 2 and 3) for the initial condition

(nehp) =L, 05 =0, =0}

(39)
Whenever photon bunching is predicted according to either
of definitions | or Il, it must be accompanied by a classical
antibunching artefact according to the other.

As the second example, we analyse another special case
of the field (31), in which the evolution is in some sense
opposite to the field evolution under the initial condition (39).
We assume the signal mode to be initially coherent (with real

p1(0) = p{a? = (ncna)
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Figure 6. Graphical representation of all four possible different
predictions of photon bunching and antibunching artefacts of
classical fields as listed in table 1. The two-time signal-mode
correlation functiong\g, (¢, t + 7) (dashed curveshg (r, 1 + )
(dot-dashed curves) amslg, (¢, ¢ + t) (solid curves) are plotted in
their dependence on the rescaled time separatidior fixed
values of the evolution time for the initial superpositions of
coherent and chaotic fields given by (39) and (45): (cage @)
atixr = 2; (case 2, (0) atkt = 2; (case 3);(0) atkr = 0.6, and
(case 4),(0) atkt = 0.4. Evolution timesct were chosen with
the help of figure 5.

amplitudex,g), and the idler mode as chaotic (with the mean
photon numbetncnp)). Then, on applying relation (32), we

find the unnormalized correlation function

G (11, 17) = o’y cod(ity) COS (k12)
+ay (nenb) SIN[ie (11 + 12)]
+2(ncnp)? sin(ct1) sin () (40)

and the mean signal-mode intensity

(na(1)) = a®, CoS(k't) + (nehp) SINF (k1) (41)

required for calculation of the normalized correlations
¢?@, 1 +7)andg\?(t,t + ). The power expansions of

the normalized correlationsg; (¢, ¢ + 7) are

Agi(t,t+71)
_ <2[2y cot(kt) — x tan(kt)] B 2xy tan(xt))
B (na (1)) (nq(1))?
x (k1) + O(1?) (42)
_ 4x%y csq2«t) 2
Ag||(t,t+t)—W(Kt)+(’)(t ) (43)
20‘20(nch,b)(x2 + 2y2)
Agn(t.147) == (x2 + 4xy + 2y2)2
x(k1)?+ 0% <0 (44)
where, for brevity, we denote = «?,cof(xt), andy =
(nehp) SiP(kt) = (na(t)) — x. The short-time solution

(44) reveals the non-positive charactergy (¢, ¢ + t), thus

excluding the possibility of photon antibunching according to

definition ll. In contrast, botiAg, (¢, t +t) andAg (¢, + 1)

we find that the normalized correlation functions
2 2
82 (11, 12) = g\ (11, 12) (46)

and g2 (11, ,) are independent of the initial intensities.
Equations (42)—(44) reduce, respectively, to

Agi(t, 1 +7) = Agy (1, t + 1) = co(kt) Sin(2«1) (kT)
+0(1?) (47)

1+4sirf(kr) +3co$(2«t)
22 —codenE <P

+0(t%) < 0. (48)

Evidently, solution (47) takes positive values at some
evolution times. We conclude that the classical antibunching
artefact according to definition | occurs whenever it exists
according to definition Il for the signal under the initial
condition (45). These results are graphically represented in
figure 5p) and figure 6 (cases 1 and 4). Itis worth comparing
solution (47) with equations (36) and (37) describing opposite
(out-of-phase) behaviour afg (¢, ¢ + t) andAg (¢, ¢t + 1)

(see figure =)).

Table 1 summarizes our investigations of photon
bunching effects in classical fields. By virtue of the
Cauchy—Schwarz inequality, photon antibunching according
to definition |1l cannot occur for classical fields, thus cases 5—
7 in table 1 are excluded. However, the remaining cases 1-4
are observed in the evolution of classical fields as presented in
figures5and 6. The classical photon antibunching apparently
exists according to both definitions | and 1.

Photon antibunching of classical fields can only be an
artefact. So, it seems necessary to modify the conventional
definitions in the non-stationary regime. For instance, one
can add an extra condition, which guarantees the quantum
character of the field but keeps the original inequalities
unchanged. Nevertheless, the problem of the unique
description of photon antibunching in non-stationary case
would remain in the conventional definitions. In contrast,
these problems do not arise in the generalized approach
to photon antibunching (definition 1ll), where the Cauchy—
Schwarz inequality is applied directly without any further
assumptions.

Agn(t,t+1)=—

5. Conclusions

We have demonstrated that the photon antibunching
according to the conventional definitions | and Il for
nonstationary fields does not imply violation of classical
inequalities, including that of Cauchy and Schwarz.
Moreover, we have devised classical (as described by regular
and positive-definité-function) nonstationary fields, which
fulfil the criteria | and 1l for photon antibunching.

‘Definitions can be neither right nor wrong, and
their merit is determined only by their usefulness’ [20].
Definitions | and Il can still be useful in a description of

change their signs during evolution. On further assumption of photon antibunching for not only stationary fields, but also
equal initial intensities of the signal and idler modes, namely quantum non-stationary fields. However, in the latter case,

02(0) = p{a? = (nehp) > 0, = (ncna) = 0,1 = 0},
(45)
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the non-classical character of the fields should be checked
independently, e.g. with the help of ti®efunction criterion
or Cauchy—Schwarz inequality.
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