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† Department of Information Science, Kochi University, 2-5-1 Akebono-cho, Kochi
780-8520, Japan
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Abstract. Previous work on the two-time photon-number correlations of quantum
non-stationary fields has focused on the demonstration of self-contradictory predictions of the
photon antibunching according to different definitions. In this paper we analyse the
usefulness of the conventional and generalized definitions of photon bunching in a
description of classical non-stationary light. It is proved that the generalized definition
applied to classical fields predicts photon bunching but never antibunching. In contrast, the
two conventional definitions are shown to improperly classify certain classical non-stationary
fields as being antibunched.
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1. Introduction

It is a well known fact that photon antibunching is one of the
manifestations of non-classical properties of light. Photon
antibunching cannot be understood within the classical field
theory describing light as a wave. However, it can be simply
interpreted in particle (photon) models as the rise of the joint
probability of two detected particles upon the increase of their
time separationτ (see, e.g., [1–3]).

In a previous work [4] we systematically compared
conventional with generalized approaches to photon
antibunching in quantum non-stationary fields. We showed
that different definitions can lead to self-contradictory
predictions of photon-number correlations in quantum fields.
The purpose of this paper is to draw attention to the more
severe inconsistency of the conventional descriptions of
correlations in the non-stationary regime. We show that some
classicalnon-stationary fields can be classified spuriously as
antibunched according to the conventional definitions. We
apply the generalized definition, which properly excludes
the existence of the photon antibunching in classical non-
stationary fields.

The photon antibunching effect of non-stationary optical
fields has been a subject of considerable interest, particularly,
in comparative studies of the sub-Poissonian photon number
statistics and antibunching effects. For instance, Singh [5]
studied the photon antibunching in the process of resonance
fluorescence from a two-level atom in both steady-state

¶ Permanent address: Institute of Physics, Adam Mickiewicz University,
61-614 Poznán, Poland.

and transient regimes. This is, probably, the first paper
explicitly showing that the photon-counting statistics can be
either sub- or super-Poissonian, even if the photons always
exhibit antibunching. Dunget al [6] and Aliskenderovet al
[7] compared non-stationary-field antibunching with sub-
Poissonian photon statistics in the Jaynes–Cummings model
of a single two-level atom coupled to a single mode of the
cavity radiation field. Fenget al [8] studied the photon
antibunching effects in the model of non-stationary light
propagation through a nonlinear fibre with gain. Kryszewski
and Chrostowski [9], and Srinivasan and Udayabaskaran [10]
(see [3] for references to other similar studies) predicted the
photon antibunching of non-stationary fields in parametric
frequency up-conversion with stochastic coupling between
the signal and idler modes.

We analyse the frequency conversion model to test
the definitions of photon antibunching for initial classical
fields. We describe a process of exchanging photons between
the signal and idler optical modes of different frequencies
by the simple Louisell model [11] with trigonometric
solutions. The remarkable property of the model is the
classical-like evolution or, explicitly, the conservation of
initial quasidistributions along classical trajectories as was
predicted by Glauber [12] and Mišta [13] and experimentally
observed by Huang and Kumar [14] for initial quantum states.
The model analysed by Kryszewski and Chrostowski [9], and
Srinivasan and Udayabaskaran [10] is a generalized version
of the Louisell model constructed by assuming that the mode
coupling is stochastic.

The term classical antibunching is ambiguous since it
may refer either to antibunching of classical particles or to
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antibunching of classical fields. The antibunching effect is
typical for particle models, so is observable for classical
particles (see, e.g., classical molecular models analysed by
Kielich [15]). However, it cannot be exhibited by classical
fields. In the latter this means the classical antibunching is
an artefact only.

In section 2, we give a short account of three criteria
of photon antibunching. In section 3, we briefly discuss
a P -function criterion of classical field evolution in the
parametric frequency converter. The main results of the paper
are summarized in section 4, where we show explicitly that
some classical non-stationary fields can be falsely classified
as antibunched according to the two conventional definitions.

2. Three criteria of photon bunching and
antibunching

The central role in definitions of the photon antibunching
of a single-mode radiation field is played by the intensity
correlation function

G(2)(t, t + τ) = 〈T : n̂(t)n̂(t + τ) :〉 (1)

directly related, by Glauber’s formula [16], to the joint
detection probabilityP2(t, t + τ) of detecting one photon at
momentt and another at moment(t + τ). In equation (1),
n̂(t) denotes the photon-number operator, and the operator
products are written in normal order (: :), and in time order
(T ). Different normalizations ofG(2)(t, t + τ) can be
applied in the analysis of photon-number correlations. Here,
we analyse the normalized two-time second-order intensity
correlation functions defined as

g
(2)
I (t, t + τ) = G(2)(t, t + τ)

[G(1)(t)]2
(2)

g
(2)
II (t, t + τ) = G(2)(t, t + τ)

G(1)(t)G(1)(t + τ)
(3)

g
(2)
III (t, t + τ) ≡ G(2)(t, t + τ)√

G(2)(t, t)G(2)(t + τ, t + τ)
(4)

whereG(1)(t) = 〈n(t)〉 = 〈â†(t)â(t)〉 is the light intensity.
The photon antibunching according to thej th (j = I, II,

III) definition occurs if the normalized intensity correlation
functiong(2)j (t, t +τ) increases from its initial value atτ = 0,
i.e.

1gj(t, t + τ) ≡ g(2)j (t, t + τ)− g(2)j (t, t) > 0. (5)

The photon bunching occurs for decreasing correlation
function g(2)j (t, t + τ), whereas unbunching takes place if

g
(2)
j (t, t + τ) is locally constant. Alternatively, on the

assumption thatgj (t, t + τ) is a well-behaved function of
τ , the photon antibunching according to thej th definition
occurs if the lowest-order (sayn0) non-vanishing derivative
of g(2)j (t, t + τ) (or 1gj(t, t + τ)) is positive atτ = 0, i.e.,
there exists suchn0 > 1 that

γj (t) ≡ γ (n0)
j (t) = ∂n0

∂τn0
g
(2)
j (t, t + τ)

∣∣∣∣
τ=0

> 0 (6)

if the derivatives(∂/∂τ)ng(2)j (t, t + τ) vanish atτ = 0 for
n = 1, . . . , n0−1. The field exhibits bunching if the lowest-
order non-vanishing derivative,γj (t), is negative. If the
derivatives of all orders vanish,γj (t) = 0, the field is said
to be unbunched. In the following sections, we use both
parametersγj (t) and correlation functions1gj(t, t + τ) to
analyse photon bunching in a frequency conversion model.

Definition III, as formulated by the correlation function
g
(2)
III (t, t + τ), can be rewritten in terms of the so-called

correlation coefficient [17]

g
(2)
III (t, t + τ) ≡ Cov{n̂(t), n̂(t + τ)}

σ {n̂(t)}σ {n̂(t + τ)}

= G
(2)
(t, t + τ)√

G
(2)
(t, t)G

(2)
(t + τ, t + τ)

(7)

whereσ {n̂(t)} =
√
G
(2)
(t, t) is the standard deviation ofn̂(t)

and the central moment

G
(2)
(t, t + τ) ≡ Cov{n̂(t), n̂(t + τ)}

= G(2)(t, t + τ)−G(1)(t)G(1)(t + τ) (8)

is the covariance of̂n(t) and n̂(t + τ) in time and normal
order. The correlation coefficient has well known properties
and a simple geometrical interpretation as often discussed in
probability theory and mathematical statistics (e.g., see [17]).

Both definition I (see [3] and references therein) and
definition II (see, e.g., [2]) have been applied to analyse
the photon antibunching of non-stationary light generated in
various nonlinear optical processes. In particular, analysis
of the photon antibunching ofnon-stationarylight has been
studied by, e.g., Singh [5] and Fenget al [8] with the help
of definition I, and by, e.g., Kryszewski and Chrostowski [9],
Srinivasan and Udayabaskaran [10], Dunget al [6] and
Aliskenderovet al[7] by applying definition II. Definitions I–
III are equivalent for stationary fields, i.e., fields satisfying
the propertyG(2)(t, t + τ) = G(2)(τ ). However, as
we have shown in [4], these definitions can lead to self-
contradictory predictions of the photon antibunching effect
for non-stationary quantum fields.

The classical Cauchy–Schwarz inequality reads as

[G(2)(t, t + τ)]2 6 G(2)(t, t)G(2)(t + τ, t + τ) (9)

for the correlation function (1) or, equivalently, as

[G
(2)
(t, t + τ)]2 6 G(2)

(t, t)G
(2)
(t + τ, t + τ) (10)

for the covariance (8). Inequalities (9) and (10) can be
violated by non-classical fields only. All definitions of
the photon antibunching effect for stationary fields are
based on the Cauchy–Schwarz inequality. However, for
non-stationary fields, photon antibunching according to
definitions I and II does not imply violation of the Cauchy–
Schwarz inequality (9). We give examples of classical
non-stationary fields apparently exhibiting the antibunching
effect according to definitions I and II. In contrast, photon
antibunching according to definition III occurs for quantum
fields only, independent of the stationary-field condition.
This conclusion is readily obtained by comparing the form
of the correlation functionsg(2)III (t, t + τ) or g(2)III (t, t + τ) with
the Cauchy–Schwarz inequalities (9) or (10), respectively.
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3. Classical evolution of the frequency converter

The criterion used to distinguish between the classical and
quantum character of light is usually formulated by the
Glauber–SudarshanP -function, i.e., the weight factor in the
coherent-state representation of the density matrix

ρ̂ =
∫

d2{αj }P({αj })|{αj }〉〈{αj }|. (11)

The classical state of light is defined (see, e.g., [1, 3]) to be
one, in which theP -function is a probability distribution,
i.e., is neither negative nor more singular than the Diracδ-
function. Otherwise, the state is non-classical. The compact
notation for the multimode field is used in equation (11), as
the argument{αj } stands for(α1, α2, . . .).

Glauber [12] proved that an initially coherent field
remains coherent during the whole evolution of ann-
oscillator system described by the Heisenberg equations of
motion in the form

d

dt
âk(t) = Fk({âl(t)}, t), k, l = 1, . . . , n (12)

for arbitrary functionsFk of the annihilation operatorŝal
and time. In particular, Glauber’s theorem applies to the
parametric frequency converter, i.e., a process of exchanging
photons between signal (a) and idler (b) optical modes of
different frequencies (ωa andωb) as described by the Louisell
Hamiltonian [11]

Ĥint = h̄κâaâ†
b exp(i1ωt) + h.c. (13)

where1ω = ω + ωb − ωa; âa,b are annihilation and̂a†
a,b

are creation operators;κ denotes the real coupling constant.
For simplicity, we assume the resonance case,1ω = 0. The
solutions of the Heisenberg equation of motion for the signal
and idler modes are [11]

âj (t) = cos(κt) âj − i sin(κt)âj ′ (14)

where âj ≡ âj (0), j = a, b and j ′ = b, a, respectively.
Glauber’s theorem for the frequency converter (13) can be
expressed in terms of the Glauber–Sudarshan two-modeP -
function found by Mǐsta [13] in a compact form as

P(αa, αb, t) = P {αa(−t), αb(−t), 0} (15)

whereαj (−t) are the solutions† of the classical equations of
motion for the frequency converter [11]

αj (t) = cos(κt)αj − i sin(κt)αj ′ . (16)

The two-modeP -function remains constant along classical
trajectoriesαj (t). If both the signal and idler modes are
initially classical (non-classical) they will preserve their
original character for the whole evolution. Thus, our previous
analysis [4] of the photon antibunching in initially Fock states
was limited to quantum non-stationary fields. In the present
paper, we restrict our photon-correlation analysis to classical
non-stationary fields. The Glauber theorem was graphically
represented with the help of the HusimiQ-function for
various initial statistics in [18]. Preservation of the quantum
state during the frequency conversion was experimentally
confirmed by Huang and Kumar [14].

† Precisely, the functionsαj (−t) are inverse to the solutions (16). But the
inversion is obtained simply by changing the sign oft .

4. Classical photon antibunching artefacts

In a previous work [4] we showed explicitly that the photon-
antibunching definitions I–III are not equivalent for quantum
non-stationary fields. Nevertheless, the question remains,
which of the definitions I–III gives the best indicator of
photon antibunching? Here, we analyse their usefulness in
a description of photon bunching of classical non-stationary
fields.

For simplicity, let us refer to antibunching I, bunching I
or unbunching I as to the effects according to definition I.
Analogously, we use terms anti-, un- and bunching II or III.
We focus our analysis on photon correlations of the signal
mode only. Therefore, it will cause no confusion if we
omit subscripta in the correlation functionsG(2)(t1, t2) ≡
G(2)
a (t1, t2), g

(2)
j ≡ g(2)j,a and1gj ≡ 1gj,a.

4.1. Classical antibunching I artefact versus
unbunching II and III

If the signal and idler modes are initially coherent, they will
remain coherent during the whole evolution of the frequency
converter (13). TheP -function, according to Glauber’s
theorem (15), evolves in a classical way

P(αa, αb, t) =
∏
j=a,b

δ(αj (−t)− αj0)

=
∏
j=a,b

δ(αj − αj0(t)) (17)

whereαa0 andαb0 are the initial amplitudes of the signal and
idler modes, respectively;αj (−t) are the classical solutions
(16) for (−t); andαj0(t) = cos(κt)αj0 − i sin(κt)αj ′0 for
j = a, b and j ′ = b, a, respectively. For simplicity,
we analyse the evolution of coherent states with initially
real amplitudesαa0 andαb0. The unnormalized two-time
correlation function (1) for the signal mode is

G(2)(t1, t2) = 〈na(t1)〉〈na(t2)〉 (18)

as a product of the signal-mode mean intensities

〈na(t)〉 = α2
a0 cos2(κt) + α2

b0 sin2(κt) (19)

at two evolution times. Thus, the normalized correlation
functions are

g
(2)
I (t1, t2) = 〈na(t2)〉〈na(t1)〉 (20)

g
(2)
II (t1, t2) = g(2)III (t1, t2) = const= 1. (21)

Definitions II and III appear to be equally good since both
imply that the coherent field is unbunched

1gII (t, t + τ) = 1gIII (t, t + τ) = 0. (22)

However, according to definition I, the field might also be
bunched or antibunched as seen by expanding solution (20)
in a power series ofτ = t2 − t1 (or κτ ). We find

1gI(t, t + τ) = α2
b0 − α2

a0

〈na(t)〉 sin(2κt) (κτ) +O(τ 2). (23)
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Figure 1. Classical-field evolution of the parametersγI(t) (dashed
curves) andγII (t) = γIII (t) = 0 (solid lines) for the signal and idler
fields initially coherent with: (a) arbitraryαa > 0 andαb = 0, and
(b) αa = 2,αb = 1.

Figure 2. Two-time correlation functions1gI(t, t + τ) (dashed
curves) and1gII (t, t + τ) = 1gIII (t, t + τ) (solid lines) versus
rescaled time separationκτ at fixed evolution times: (a) κt = 1
and (b) κt = 2.5 for the same initial condition as in figure 1(b).

These counterintuitive outcomes are presented in figures 1
and 2. The time evolution of the parametersγj are depicted
in figure 1(a) for the signal mode initially coherent (with
arbitrary non-zero amplitude) and for the idler mode in a
vacuum state in figure 1(a), or for both fields initially coherent
in figure 1(b). The exactτ -evolutions of the correlation
functions1gI(t, t + τ) for fixed time t indicate explicitly
the bunching effect as presented in figure 2(a), but also the
classical antibunching artefact according to definition I as
depicted in figure 2(b).

4.2. Classical antibunching I artefact versus
bunching II and III

The classical evolution of the frequency converter with initial
chaotic fields is described by the two-modeP -function

P(αa, αb, t) = 1

π2

∏
j=a,b

1

〈nch,j〉 exp

(
−|αj (−t)|

2

〈nch,j〉
)

(24)

where〈nch,a〉 and〈nch,b〉 are the initial mean photon numbers
of chaotic photons in the signal and idler modes, respectively.
With the help of the relation〈(â†)kâk〉 = k!〈nch〉k applied to
definition (1), we find

G(2)(t1, t2) = 2〈nch,a〉2 cos2(κt1) cos2(κt2)

+2〈nch,b〉2 sin2(κt1) sin2(κt2)

+〈nch,a〉〈nch,b〉 sin2[κ(t1 + t2)]. (25)

For no time separation, the correlation function (25)
simplifies to

G(2)(t, t) = 2〈na(t)〉2 (26)

where the mean signal-field intensity is

〈na(t)〉 = 〈nch,a〉 cos2(κt) + 〈nch,b〉 sin2(κt). (27)

Here, in contrast to the evolution of coherent fields, the
correlation functionsg(2)II andg(2)III are neither the same nor

Figure 3. Classical-field evolution of the parametersγI(t) (dashed
curve),γII (t) (dot-dashed curve) andγIII (t) (solid curve) for the
signal and idler fields initially chaotic with the mean photon
numbers〈nch,a〉 = 2 and〈nch,b〉 = 1. Hereafter, the cases (given in
the upper part of the figures) correspond to those in table 1.

Figure 4. Two-time correlation functions1gI(t, t + τ) (dashed
curves),1gII (t, t + τ) (dot-dashed curves) and1gIII (t, t + τ)
(solid curves) versus rescaled time separationκτ atκt = 1 (case
1) andκt = 2 (case 2) for the same initial conditions as in figure 3.

constant. Nevertheless, they are simply related by

g
(2)
II (t1, t2) = 2g(2)III (t1, t2) (28)

as comes from the property (26). The chaotic fields evolving
in the frequency converter only exhibit photon bunching
according to definitions II and III, as is evident from their
power expansions:

1gII (t, t + τ) = 21gIII (t, t + τ)

= − 〈nch,a〉〈nch,b〉
〈na(t)〉2 (κτ)2 +O(τ 3) < 0 (29)

for 〈nch,a〉 and 〈nch,b〉 different from zero. In contrast, the
Taylor expansion

1gI(t, t + τ) = −2
〈nch,a〉 − 〈nch,b〉
〈na(t)〉 sin(2κt)(κτ) +O(τ 2)

(30)
implies that the photon antibunching effect in a chaotic field
is falsely allowed according to definition I. The evolution
of the parametersγj , given by the first coefficients of
expansions (29) and (30), is presented in figure 3, whereas
the correlations1gj(t, t + τ), calculated with the help of the
exact solutions (25)–(27), are depicted in figure 4. The cases
indicated in the upper part of the figures, correspond to those
analysed in table 1. It is seen in both figures that the chaotic
signal field evolving classically can be bunched (case 1), but
also spuriously antibunched (case 2) according to definition I.
In contrast, the signal photons can only be bunched according
to definitions II and III.

4.3. Classical antibunching I and II artefacts versus
bunching III

If the initial modes are in a superposition state of coherent
and chaotic fields, the evolution of the frequency converter is
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Table 1. All possible predictions of photon antibunching artefacts (described by positive1gj ) and photon bunching (negative1gj ) of
classical non-stationary fields according to definitions I–III. The initial statesρ1(0) andρ2(0) are given by (39) and (45), respectively.

Case 1gI 1gII 1gIII Examples

1 negative (bunching) negative (bunching) negative (bunching)κt ∈ ( π2 , π) for ρ2(0)
2 positive negative (bunching) negative (bunching)κt ∈ ( π2 , π) for ρ1(0)
3 negative (bunching) positive negative (bunching)κt ∈ (0, π2 ) for ρ1(0)
4 positive positive negative (bunching)κt ∈ (0, π2 ) for ρ2(0)
5 negative (bunching) negative (bunching) positive forbidden
6 positive negative (bunching) positive forbidden
7 negative (bunching) positive positive forbidden
8 positive positive positive forbidden

described by theP -function

P(αa, αb, t) = 1

π2

∏
j=a,b

1

〈nch,j 〉 exp

(
−|αj (−t)− αj0|2

〈nch,j 〉
)
.

(31)
TheP -function (31), in the product form of the regular and
positive Gaussian functions, explicitly shows that the idler
and signal fields remain classical during the frequency con-
version. The field evolution described by solution (17), as
analysed in section 4.1, and solution (24), as discussed in sec-
tion 4.2, are the special cases of the evolution described by the
P -function (31). Here, we analyse two other special cases.

First, for simplicity, we assume that the mean photon
numbers of chaotic photons in both modes are the same
〈nch,a〉 = 〈nch,b〉 ≡ 〈nch〉 and the initial coherent amplitudes
αj0 are real. By applying relation [19]

〈(â†)kâk〉 = k!〈nch〉kLk
{
− β2

〈nch〉
}

(32)

where Lk(x) is the Laguerre polynomial, we find

G(2)(t1, t2) = N2
+

+N2
− cos(2κt1) cos(2κt2)

+2N−(N+ + 2〈nch〉) cos[k(t2 − t1)] cos[k(t1 + t2)]

+〈nch〉(2N+ + 〈nch〉){1 + cos2[k(t2 − t1)]} (33)

whereN± = 1
2(α

2
a0 ± α2

b0). The exact expressions for

g
(2)
j (t, t + τ) and/or1gj(t, t + τ) are calculated from the

correlation function (33) by applying the normalization
factors

〈na(t)〉 = 〈nch〉 + α2
a0 cos2(κt) + α2

b0 sin2(κt)

= 〈nch〉 + 〈ncoh,a(t)〉 (34)

and

G(2)(t, t) = 〈ncoh,a(t)〉2 + 4〈nch〉〈ncoh,a(t)〉 + 2〈nch〉2 (35)

according to definitions I–III. The mean intensity (34) is the
sum of the time-dependent intensity (19) for initially coherent
fields and the initial chaotic field intensity. The single-time
correlation function (35) is a special case of solution (33). For
simpler interpretation, we expand1gj(t, t + τ) in a power
series ofτ arriving at

1gI(t, t + τ) = −2〈na(t)〉−2{〈nch〉
+〈na(t)〉}N− sin(2κt)(κτ) +O(τ 2) (36)

1gII (t, t + τ) = 2〈na(t)〉−3〈nch〉〈ncoh,a(t)〉N− sin(2κt)(κτ)

+O(τ 2) (37)

1gIII (t, t + τ) = − 〈nch〉
[G(2)(t, t)]2

{{G(2)(t, t)(〈nch〉 + 2N+)

−4N2
−〈nch〉 sin2(2κt)}(κτ)2 +O(τ 3) 6 0. (38)

Figure 5. Time evolution of the parametersγj (t) as in figure 3,
but for initial superposition of coherent and chaotic fields: (a)
ρ1(0), given by equation (39), and (b) ρ2(0), equation (45).

As for the other fields, the firstτ -derivative ofg(2)III (t, t + τ)
vanish atτ = 0. Expansions (36)–(38) lead to a simple
interpretation. The correlation function1gIII (t, t +τ) cannot
be positive, thus we will not observe the antibunching of
photons according to definition III. In contrast, both1gI(t, t+
τ) and1gII (t, t + τ) oscillate between negative and positive
values, therefore the antibunching according to definitions I
and II is apparently not prohibited. This is our first example
of a classical photon antibunching artefact according to
definition II, examples of classical antibunching artefacts
described by definition I have already been presented in
sections 4.1 and 4.2. Surprisingly, the predictions of
definitions I and II are opposite, since solutions (36) and (37)
have opposite signs and the same time-dependent function.
Our conclusion is supported by graphical representations of
the parametersγj in figure 5(a) and1gj(t, t + τ) in figure 6
(cases 2 and 3) for the initial condition

ρ1(0) = ρ{α2
a = 〈nch,a〉 = 〈nch,b〉 = 1, αb = 0, t = 0}.

(39)
Whenever photon bunching is predicted according to either
of definitions I or II, it must be accompanied by a classical
antibunching artefact according to the other.

As the second example, we analyse another special case
of the field (31), in which the evolution is in some sense
opposite to the field evolution under the initial condition (39).
We assume the signal mode to be initially coherent (with real
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Figure 6. Graphical representation of all four possible different
predictions of photon bunching and antibunching artefacts of
classical fields as listed in table 1. The two-time signal-mode
correlation functions1gI(t, t + τ) (dashed curves),1gII (t, t + τ)
(dot-dashed curves) and1gIII (t, t + τ) (solid curves) are plotted in
their dependence on the rescaled time separationκτ for fixed
values of the evolution time for the initial superpositions of
coherent and chaotic fields given by (39) and (45): (case 1)ρ2(0)
atκt = 2; (case 2)ρ1(0) atκt = 2; (case 3)ρ1(0) atκt = 0.6, and
(case 4)ρ2(0) atκt = 0.4. Evolution timesκt were chosen with
the help of figure 5.

amplitudeαa0), and the idler mode as chaotic (with the mean
photon number〈nch,b〉). Then, on applying relation (32), we
find the unnormalized correlation function

G(2)(t1, t2) = α4
a0 cos2(κt1) cos2(κt2)

+α2
a0〈nch,b〉 sin2[κ(t1 + t2)]

+2〈nch,b〉2 sin2(κt1) sin2(κt2) (40)

and the mean signal-mode intensity

〈na(t)〉 = α2
a0 cos2(κt) + 〈nch,b〉 sin2(κt) (41)

required for calculation of the normalized correlations
g
(2)
I (t, t + τ) andg(2)II (t, t + τ). The power expansions of

the normalized correlations1gj(t, t + τ) are

1gI(t, t + τ)

=
(

2[2y cot(κt)− x tan(κt)]

〈na(t)〉 − 2xy tan(κt)

〈na(t)〉2
)

×(κτ) +O(τ 2) (42)

1gII (t, t + τ) = 4x2y csc(2κt)

〈na(t)〉3 (κτ) +O(τ 2) (43)

1gIII (t, t + τ) = −2α2
a0〈nch,b〉(x2 + 2y2)

(x2 + 4xy + 2y2)2

×(κτ)2 +O(τ 3) 6 0 (44)

where, for brevity, we denotex = α2
a0 cos2(κt), andy =

〈nch,b〉 sin2(κt) = 〈na(t)〉 − x. The short-time solution
(44) reveals the non-positive character of1gIII (t, t + τ), thus
excluding the possibility of photon antibunching according to
definition III. In contrast, both1gI(t, t +τ) and1gII (t, t +τ)
change their signs during evolution. On further assumption of
equal initial intensities of the signal and idler modes, namely

ρ2(0) = ρ{α2
a = 〈nch,b〉 > 0, αb = 〈nch,a〉 = 0, t = 0},

(45)

we find that the normalized correlation functions

g
(2)
I (t1, t2) = g(2)II (t1, t2) (46)

and g(2)III (t1, t2) are independent of the initial intensities.
Equations (42)–(44) reduce, respectively, to

1gI(t, t + τ) = 1gII (t, t + τ) = cos2(κt) sin(2κt) (κτ)

+O(τ 2) (47)

1gIII (t, t + τ) = −1 + 4 sin2(κt) + 3 cos2(2κt)

2[2− cos4(κt)]2
(κτ)2

+O(τ 3) 6 0. (48)

Evidently, solution (47) takes positive values at some
evolution times. We conclude that the classical antibunching
artefact according to definition I occurs whenever it exists
according to definition II for the signal under the initial
condition (45). These results are graphically represented in
figure 5(b) and figure 6 (cases 1 and 4). It is worth comparing
solution (47) with equations (36) and (37) describing opposite
(out-of-phase) behaviour of1gI(t, t + τ) and1gII (t, t + τ)
(see figure 5(a)).

Table 1 summarizes our investigations of photon
bunching effects in classical fields. By virtue of the
Cauchy–Schwarz inequality, photon antibunching according
to definition III cannot occur for classical fields, thus cases 5–
7 in table 1 are excluded. However, the remaining cases 1–4
are observed in the evolution of classical fields as presented in
figures 5 and 6. The classical photon antibunching apparently
exists according to both definitions I and II.

Photon antibunching of classical fields can only be an
artefact. So, it seems necessary to modify the conventional
definitions in the non-stationary regime. For instance, one
can add an extra condition, which guarantees the quantum
character of the field but keeps the original inequalities
unchanged. Nevertheless, the problem of the unique
description of photon antibunching in non-stationary case
would remain in the conventional definitions. In contrast,
these problems do not arise in the generalized approach
to photon antibunching (definition III), where the Cauchy–
Schwarz inequality is applied directly without any further
assumptions.

5. Conclusions

We have demonstrated that the photon antibunching
according to the conventional definitions I and II for
nonstationary fields does not imply violation of classical
inequalities, including that of Cauchy and Schwarz.
Moreover, we have devised classical (as described by regular
and positive-definiteP -function) nonstationary fields, which
fulfil the criteria I and II for photon antibunching.

‘Definitions can be neither right nor wrong, and
their merit is determined only by their usefulness’ [20].
Definitions I and II can still be useful in a description of
photon antibunching for not only stationary fields, but also
quantum non-stationary fields. However, in the latter case,
the non-classical character of the fields should be checked
independently, e.g. with the help of theP -function criterion
or Cauchy–Schwarz inequality.
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In comparison with definitions I and II, we have used
the generalized criterion (definition III) to describe photon
antibunching of non-stationary fields. These three criteria
are close to the original photodetection interpretation for
stationary fields [1, 4], but only definition III guarantees
that the photon antibunching cannot occur for classical
non-stationary light. The generalized definition of photon
antibunching is given on the basis of the Cauchy–Schwarz
inequality without any assumptions concerning properties
of the fields. Whereas the conventional definitions I
and II come from the Cauchy–Schwarz inequality under the
stationary-field condition. Thus, antibunching according to
the generalized definition cannot occur for classical fields.
In contrast, as we have shown for the parametric frequency
converter with classical initial conditions, the conventional
definitions I and II can lead to the photon antibunching
artefacts of certain classical non-stationary fields.
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