Decoherence of quantum operations: How to coherify a classical map?

Karol Życzkowski

in collaboration with

Kamil Korzekwa (Gdańsk), Zbigniew Puchała (Gliwice) and Stanisław Czachórski (Cracow)

Institute of Physics, Jagiellonian University and Center for Theoretical Physics, Polish Academy of Sciences

V QuTecNOMM 2019, **UAM, Poznań**, **November 21, 2019**

Department of Physics, Jagiellonian University, Cracow,

4 □

 QQ

view from my new office,

K.Ż. (IF UJ/CFT PAN) [Decoherence of quantum operations](#page-0-0) November 21, 2019 3 / 32

重

 299

K.Ż. (IF UJ/CFT PAN) [Decoherence of quantum operations](#page-0-0) November 21, 2019 4 / 32

重

イロメス 御き スミメス ミメー

 299

Quantum *Kanalsanierung !*

Which **quantum channel** could be called **healthy** and **sane** ?

Perhaps a *unitary* and *reversible* one ?

←□

Sanierung of Quantum States acting on \mathcal{H}_N

Convex set $M_N \subset \mathbb{R}^{N^2-1}$ of all mixed states of size N

$$
\mathcal{M}_N := \{ \rho : \mathcal{H}_N \to \mathcal{H}_N; \rho = \rho^{\dagger}, \rho \geq 0, \text{Tr}\rho = 1 \}
$$

example: $\mathcal{M}_2=\mathcal{B}_3\subset\mathbb{R}^3$ - Bloch ball with all pure states at the boundary

Quantum decoherence: pure → mixed stripping off–diagonal elements, $\mathcal{D}(\rho) = \sum_i \rho_{ii} |i\rangle\langle i| = \text{diag}(\rho)$

projection into the simplex of classical states

A) Purification of $\rho \in \mathcal{M}_N$

search of a bi-partite pure state $|\psi_{AB}\rangle \in \mathcal{H}_N \otimes \mathcal{H}_N$ such that the reduced matrix reads $Tr_B |\psi_{AB}\rangle \langle \psi_{AB}| = \rho$.

B) Coherification of a classical state $diag(p) = \sigma \in \mathcal{M}_N$

search of a mono-partite pure state $|\phi_A\rangle \in \mathcal{H}_N$ such that it decohers to the diagonal, classical state, $\mathcal{D}(|\phi_A\rangle\langle\phi_A|) = \sigma = \text{diag}(p)$.

Quantum Channels

Quantum operation: linear, completely positive trace preserving map

 $\Phi : \mathcal{M}_1 \rightarrow \mathcal{M}_2$ **positivity:** $\Phi(\rho) \geq 0$, $\forall \rho \in \mathcal{M}_N$ **complete positivity**: $[\Phi \otimes \mathbb{1}_K](\sigma) \geq 0$, $\forall \sigma \in \mathcal{M}_{KN}$ and $K = 2, 3, ...$

Enviromental form (interacting quantum system !)

$$
\rho' = \Phi(\rho) = \mathrm{Tr}_{\mathcal{E}} [\, U \, (\rho \otimes \omega_{\mathcal{E}}) \,\, U^{\dagger}] \,\, .
$$

where ω_E is an initial state of the environment while $UU^{\dagger} = \mathbb{1}$.

Kraus form

 $\rho' = \Phi(\rho) = \sum_i A_i \rho A_i^{\dagger}$ $\vert \ \vert$, where the Kraus operators satisfy $\sum_i A_i^\dagger A_i = \mathbbm{1}$ $\sum_i A_i^\dagger A_i = \mathbbm{1}$ $\sum_i A_i^\dagger A_i = \mathbbm{1}$, which implies that the tra[ce](#page-6-0) i[s](#page-8-0) [pr](#page-6-0)[es](#page-7-0)e[rve](#page-0-0)[d.](#page-20-0)

K.Ż. (IF UJ/CFT PAN) [Decoherence of quantum operations](#page-0-0) November 21, 2019 7 / 32

Stochastic matrices

Classical states: N-point probability distribution, $\mathbf{p} = \{p_1, \ldots, p_N\},\$ where $p_i\geq 0$ and $\sum_{i=1}^N p_i=1$ $\mathsf{Discrete}$ dynamics: $p'_i = T_{ij} p_j$, where T is a stochastic transition **matrix** of size N and maps the simplex of classical states into itself, $T: \Delta_{N-1} \rightarrow \Delta_{N-1}.$

Stochastic maps = quantum operations

A quantum operation $\Phi: M_N \to M_N$ can be described by a matrix Φ of size N^2 ,

$$
\rho' = \Phi \rho \quad \text{or} \quad \rho'_{m\mu} = \Phi_{m\mu} \rho_{n\nu} .
$$

The superoperator Φ can be expressed in terms of the Kraus operators $A_i,$ $\Phi = \sum_i A_i \otimes \bar{A}_i$.

Dynamical Matrix D: Sudarshan et al. (1961)

obtained by *reshuffling* of a 4–index matrix Φ is Hermitian,

$$
D_{\mu\nu}^{\text{mn}} := \Phi_{\frac{m\mu}{n\nu}} \,, \quad \text{so} \quad \text{that} \quad D_{\Phi} = D_{\Phi}^{\dagger} =: \Phi^R
$$

Theorem of Choi (1975). A map Φ is **completely positive** (CP) if and only if the dynamical matrix D_{Φ} is **positive**, $D > 0$.

Classical case

In the case of a **diagonal dynamical matrix**, $D_{ii} = d_i \delta_{ii}$ reshaping its diagonal $\{d_i\}$ of length \mathcal{N}^2 one obtains a matrix of size \mathcal{N} , where $T_{ij} = D_{ii}$, of size N which is **stochastic**. jj

 200

.

Decoherence for quantum **states** and **quantum maps**

Quantum states \rightarrow classical states $=$ diagonal matrices

Decoherence of a state: $\rho \to \Phi_{CG}(\rho) = \tilde{\rho} = \text{diag}(\rho)$

Quantum maps \rightarrow classical maps $=$ stochastic matrices

(Hyper-) decoherence of a **map**: The **Choi matrix** becomes diagonal, $D\to \mathsf{\Gamma}_{\text{CG}}(D)=\tilde{D}=\text{diag}(D)$ so that the map $\mathsf{\Phi}=D^R\to \tilde{D}^R\to \mathcal{T}.$ For any Kraus decomposition defining $\Phi(\rho)=\sum_i A_i \rho A_i^\dagger$ $\frac{1}{i}$ the corresponding **classical map** T is given by the **Hadamard product**,

$$
\mathcal{T} = \Gamma_{\text{CG}}(\Phi) = \sum_i A_i \odot \bar{A}_i,
$$

where ΓCG is the **coarse–graining supermap**, **K.Ż.** (2008)

If a $\boldsymbol{\mathsf{quantum}}$ map Φ is trace preserving, $\sum_i \boldsymbol{A}_i^\dagger \boldsymbol{A}_i = \mathbb{1}$ then the $|$ **classical map** $\mathcal{T} = \Gamma_{\text{CG}}(\mathcal{T})$ is $\textbf{stochastic},\ \sum_j \mathcal{T}_{ij} = 1.$ If additionally a $\,$ **quantum map** Φ is unital, $\sum_i A_i A_i^\dagger = \mathbb{1}$ then the $|$ **classical map** T is $\boldsymbol{\mathrm{b}}$ i[st](#page-9-0)ochastic[,](#page-11-0) $\sum_{j} T_{ij} = \sum_{i} T_{ij} = A.$ $\sum_{j} T_{ij} = \sum_{i} T_{ij} = A.$ K.Ż. (IF UJ/CFT PAN) [Decoherence of quantum operations](#page-0-0) November 21, 2019 10 / 32

$$
\rho \rightarrow \boxed{\nearrow} \rightarrow p_j = \langle j|\rho|j\rangle
$$

What **p** tells us about ρ ? **p** = [1, 0] **p** = [3/4, 1/4]

$$
\rho \rightarrow \boxed{\nearrow} \rightarrow p_j = \langle j|\rho|j\rangle
$$

What **p** tells us about ρ ? **p** = [1, 0] **p** = [3/4, 1/4]

$$
\rho \rightarrow \boxed{\nearrow} \rightarrow p_j = \langle j|\rho|j\rangle
$$

What **p** tells us about ρ ? **p** = [1, 0] **p** = [3/4, 1/4]

$$
\rho \rightarrow \boxed{\nearrow} \rightarrow p_j = \langle j|\rho|j\rangle
$$

What **p** tells us about ρ ? **p** = [1, 0] **p** = [3/4, 1/4]

$$
\rho \rightarrow \boxed{\nearrow} \rightarrow p_j = \langle j|\rho|j\rangle
$$

What **p** tells us about ρ ? **p** = [1, 0] **p** = [3/4, 1/4]

$$
\rho \rightarrow \boxed{\nearrow} \rightarrow p_j = \langle j|\rho|j\rangle
$$

What **p** tells us about ρ ? **p** = [1, 0] **p** = [3/4, 1/4]

$$
\rho \rightarrow \boxed{\bigcap_{i=1}^{n} \rightarrow p_j = \langle j | \rho | j \rangle}
$$

Quantum channel Φ

What T tells us about Φ ?

What **p** tells us about ρ ? **p** = [1, 0] **p** = [3/4, 1/4]

Infering an information on a state and a map

Quantum state ρ

$$
\rho \rightarrow \boxed{\bigcirc \nearrow} \rightarrow p_j = \langle j | \rho | j \rangle
$$

What **p** tells us about ρ? **p** = [1, 0] **p** = [3/4, 1/4]

Quantum channel Φ

What T tells us about Φ ?

$$
\mathcal{T} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}, \text{ depolarization } \Phi_*(\rho) = \frac{1}{2} \mathbf{1}
$$

←□

Infering an information on a state and a map

Quantum state ρ

$$
\rho \rightarrow \boxed{\nearrow} \rightarrow p_j = \langle j|\rho|j\rangle
$$

What **p** tells us about
$$
\rho
$$
?
\n**p** = [1, 0] **p** = [3/4, 1/4]

Quantum channel Φ

$$
k\rangle\langle k|\longrightarrow\boxed{\Phi}\boxed{\longrightarrow}\boxed{\longrightarrow}\boxed{\longrightarrow} T_{jk}=\langle j|\Phi(|k\rangle\langle k|)|j\rangle
$$

What T tells us about Φ ?

$$
T = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}, \text{ can describe unitary map}
$$

$$
\Phi_H(\rho) = H(\rho)H^{\dagger}, \quad H = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}
$$

 QQ

Given a fixed basis
$$
\{j\}
$$

with $j \in \{1, 2, ..., N\}$
populations $p_j = \langle j | \rho | j \rangle$:
coherences $c_{jk} = \langle j | \rho | k \rangle$

4 **D F**

重

 QQ

э

Coherence of quantum states

Decohering channel D

Classical bit embedded inside

 \rightarrow \equiv \rightarrow

 \leftarrow \Box

- ← 冊 →

 299

造

Classical bit embedded inside

the **Bloch ball** and its ... **decoherence**

K.Ż. (IF UJ/CFT PAN) [Decoherence of quantum operations](#page-0-0) November 21, 2019 13 / 32

Þ

 299

Coherence of quantum states

Incoherent state ρ is identified with a **classical** probability distribution p.

Coherence measures (a *distance* from incoherent states)

entropic : $C_e(\rho) = S(\rho||\mathcal{D}(\rho)) = S(\rho) - S(\lambda(\rho))$ geometric : $C_2(\rho) = ||\rho - \mathcal{D}(\rho)||_{HS}^2 = \lambda(\rho) \cdot \lambda(\rho) - p \cdot p$

Baumgratz, Cramer, Plenio, (2014) **Streltsov, Adesso, Plenio**, (2016)

Coherifying quantum states

Decohering channel D:

$$
\rho \stackrel{\mathcal{D}}{\longmapsto} \rho^{\mathcal{D}} = \text{diag}(p)
$$

Coherification C is a formal (not unique!) inverse of D:

$$
\rho = \text{diag}(p) \stackrel{\mathcal{C}}{\longmapsto} \rho^{\mathcal{C}}
$$

One can always optimally **coherify** a **classical state** p:

$$
\rho = \text{diag}(p) \stackrel{C}{\longmapsto} |\psi\rangle\langle\psi| \quad \text{with} \quad |\psi\rangle = \sum_{j=1}^N \sqrt{p_j} e^{i\phi_j} |j\rangle
$$

Coherifying quantum states

Decohering channel D:

$$
\rho \stackrel{\mathcal{D}}{\longmapsto} \rho^{\mathcal{D}} = \text{diag}(p)
$$

Coherification C is a formal (not unique!) inverse of D:

$$
\rho = \text{diag}(p) \stackrel{\mathcal{C}}{\longmapsto} \rho^{\mathcal{C}}
$$

One can always optimally **coherify** a **classical state** p:

$$
\rho = diag(\rho) \stackrel{C}{\longmapsto} |\psi\rangle\langle\psi| \quad \text{with} \quad |\psi\rangle = \sum_{j=1}^N \sqrt{p_j} e^{i\phi_j} |j\rangle
$$

$$
C_e(|\psi\rangle\langle\psi|)=S(p), \quad C_2(|\psi\rangle\langle\psi|)=1-p\cdot p.
$$

How many distinct ways to **coherify?**

Given a fixed basis $\{|i\rangle\}$, with $j \in \{1, 2, ..., N\}$

 $\langle j|\Phi(|k\rangle\langle k|)|j\rangle$: classical action T_{ik} $\langle j|\Phi(|m\rangle\langle n|)|k\rangle$: action involving coherences

Given a fixed basis $\{|i\rangle\}$, with $j \in \{1, 2, ..., N\}$

Choi-Jamiołkowski

isomorphism channel $\Phi \longleftrightarrow$ bipartite state $\langle j|\Phi(|k\rangle\langle k|)|j\rangle$: classical action T_{ik} $\langle j|\Phi(|m\rangle\langle n|)|k\rangle$: action involving coherences

$$
J_{\phi} = \frac{1}{N} (\Phi \otimes \mathbb{1}) |\Omega \rangle \langle \Omega | , | \Omega \rangle = \sum_{j} |jj \rangle
$$

CP & trace preserving

conditions are translated into:

$$
\mathsf{J}_\Phi\geq 0,\quad \mathrm{tr}_1(\mathsf{J}_\Phi)=\tfrac{1}{N}\mathbb{1}
$$

 200

Given a fixed basis $\{|i\rangle\}$, with $j \in \{1, 2, ..., N\}$

Choi-Jamiołkowski

isomorphism channel $\Phi \longleftrightarrow$ bipartite state $\langle j|\Phi(|k\rangle\langle k|)|j\rangle$: classical action T_{ik} $\langle j|\Phi(|m\rangle\langle n|)|k\rangle$: action involving coherences

$$
J_{\phi} = \frac{1}{N} (\Phi \otimes 1) |\Omega \rangle \langle \Omega | , | \Omega \rangle = \sum_{j} |jj \rangle
$$

CP & trace preserving

conditions are translated into:

$$
J_{\Phi} \geq 0, \quad \mathrm{tr}_1(J_{\Phi}) = \tfrac{1}{N}\mathbb{1}
$$

Relation between J_{Φ} and T :

Vectorising classical action: where $|T\rangle = T \otimes 1 |\Omega\rangle$

$$
J_{\Phi} \geq 0, \quad \mathrm{tr}_1(J_{\Phi}) = \frac{1}{N} \mathbb{1}
$$

$$
\langle j, k | J_{\Phi} | j, k \rangle = \frac{1}{N} T_{jk}
$$

diag $(J_{\Phi}) = \frac{1}{N} | T \rangle$,
matrix *T* reshaped into a vector

Classical channels are defined as **channels** with incoherent (**classical**) Jamiołkowski state.

Action of classical channel described by the transition matrix T

$$
\rho \mapsto \mathcal{D}(\rho) = \sum_j p_j |j\rangle\langle j| \mapsto \sigma = \sum_j q_j |j\rangle\langle j| \text{ with } q = T\rho
$$

Define **coherence measure** of a map Φ by **coherence measure** of $J_Φ$

$$
C_e(\Phi) = S(\frac{1}{N}|T\rangle) - S(\lambda(J_\Phi)), \quad C_2(\Phi) = \lambda(J_\Phi) \cdot \lambda(J_\Phi) - \frac{1}{N^2} \langle\langle T||T\rangle\rangle
$$

In analogy to:

$$
C_e(\rho) = S(\rho||\mathcal{D}(\rho)) = S(\rho) - S(\lambda(\rho))
$$

\n
$$
C_2(\rho) = \lambda(\rho) \cdot \lambda(\rho) - \rho \cdot \rho
$$

Approach differs from *cohering power* of a channel: **Mani, Karimipour**, (2015); **Zanardi, Styliar[is,](#page-29-0) [V](#page-31-0)[e](#page-29-0)[nu](#page-30-0)[ti](#page-31-0)**[,](#page-19-0) [\(](#page-20-0)[2](#page-32-0)[0](#page-33-0)[1](#page-19-0)[7\)](#page-32-0)

Decohering operation D

$$
\Phi \text{ with } diag(J_{\Phi}) = \frac{1}{N} |T\rangle\rangle \mapsto \Phi^{\mathcal{D}} \text{ with } J_{\Phi^{\mathcal{D}}} = \mathcal{D}(J_{\Phi}) = \frac{1}{N} diag(|T\rangle\rangle)
$$

Coherification C (not unique!) inverse of D

 Φ with $J_{\Phi} = \mathcal{D}(J_{\Phi}) = \frac{1}{N} diag(\ket{T}) \rightarrow \Phi^{\mathcal{C}}$ with $diag(J_{\Phi^{\mathcal{C}}}) = \frac{1}{N} |\mathcal{T} \rangle$

Can one always optimally coherify a classical map T?

Decohering operation D

$$
\Phi \text{ with } diag(J_{\Phi}) = \frac{1}{N} |T\rangle\rangle \mapsto \Phi^{\mathcal{D}} \text{ with } J_{\Phi^{\mathcal{D}}} = \mathcal{D}(J_{\Phi}) = \frac{1}{N} diag(|T\rangle\rangle)
$$

Coherification C (not unique!) inverse of D

 Φ with $J_{\Phi} = \mathcal{D}(J_{\Phi}) = \frac{1}{N} diag(\ket{T}) \rightarrow \Phi^{\mathcal{C}}$ with $diag(J_{\Phi^{\mathcal{C}}}) = \frac{1}{N} |\mathcal{T} \rangle$

Can one always optimally coherify a classical map T?

1 $\frac{1}{N} |T\rangle\rangle \mapsto |\psi\rangle\langle\psi|$ with

$$
|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{jk} \sqrt{T_{jk}} e^{i\phi_{jk}} |jk\rangle
$$

No! TP condition requires $\mathrm{tr}_1|\psi\rangle\langle\psi| = \frac{1}{N}$ $\frac{1}{N}1$

Example $\mathcal{T} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ 1

$$
|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)
$$

$$
\text{tr}_1|\psi\rangle\langle\psi| = |+\rangle\langle+|
$$

4 □

 QQ

Þ

4 0 8

э

в

were $(A \circ B)_{ik} = A_{ik}B_{ik}$ denotes Hadamard product:

€⊡

Schur example of bistochastic T of order 3 which is not unistochastic

$$
\mathcal{T} = \frac{1}{2} \left[\begin{smallmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{smallmatrix} \right], \, \mathcal{X} = \frac{1}{\sqrt{2}} \left[\begin{smallmatrix} 0 & e^{i\theta_{12}} & e^{i\theta_{13}} \\ e^{i\theta_{21}} & 0 & e^{i\theta_{23}} \\ e^{i\theta_{31}} & e^{i\theta_{32}} & 0 \end{smallmatrix} \right]
$$

 X is not unitary!

were $(A \circ B)_{ik} = A_{ik}B_{ik}$ denotes Hadamard product:

Schur example of bistochastic T of order 3 which is not unistochastic

$$
T = \frac{1}{2} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, X = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & e^{i\theta_{12}} & e^{i\theta_{13}} \\ e^{i\theta_{21}} & 0 & e^{i\theta_{23}} \\ e^{i\theta_{31}} & e^{i\theta_{32}} & 0 \end{bmatrix}
$$

X is not unitary!

were $(A \circ B)_{jk} = A_{jk}B_{jk}$ denotes Hadamard product:

Schur example of bistochastic T of order 3 which is not unistochastic

$$
\mathcal{T} = \frac{1}{2} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, \ X = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & e^{i\theta_{12}} & e^{i\theta_{13}} \\ e^{i\theta_{21}} & 0 & e^{i\theta_{23}} \\ e^{i\theta_{31}} & e^{i\theta_{32}} & 0 \end{bmatrix}
$$

$$
X \text{ is not unitary!}
$$

were $(A \circ B)_{ik} = A_{ik}B_{ik}$ denotes Hadamard product:

Main result: **Proposition.**

 $Φ$ can be **coherified** to a unitary map $Ψ$ _{*U*} \iff *T* is **unistochastic**

Open **unistochasticity** problem: given **bistochastic** T, check if there is a unitary $|U|$ such that $|{\cal T}_{ij}| = |U_{ij}|^2$

 200

Set of 2 × 2 **bistocha**istic matrices,
$$
B = \begin{bmatrix} 1-a & a \\ a & 1-a \end{bmatrix}
$$
 with $a \in [0,1]$

$$
1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
$$
 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = P$

Set of 2 \times 2 **bistochastic** matrices, $B = \begin{bmatrix} 1-a & a \ 0 & 1 \end{bmatrix}$ a 1 − a with $a \in [0, 1]$ **1** = $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix} = P$ can be coherified into the **tetrahedron** of unital **Pauli channels** as all bistochastic matrices of order $N = 2$ are **unistochastic** !

つひひ

Set of 2 \times 2 **bistochastic** matrices, $B = \begin{bmatrix} 1-a & a \ 0 & 1 \end{bmatrix}$ a 1 − a with $a \in [0, 1]$ **1** = $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix} = P$ can be coherified into the **tetrahedron** of unital **Pauli channels** as all bistochastic matrices of order $N = 2$ are **unistochastic**!

つひひ

Three dimensional tetrahedron of **one–qubit**, unital, **Pauli channels**

decoheres to the 1-D interval [0, 1] of *classical* **bistochastic matrices**

November 21, 2019 21 / 32

Classical action of a qubit channel: Optimally coherified channel:

$$
= \begin{bmatrix} a & 1-b \\ 1-a & b \end{bmatrix} =: \begin{bmatrix} a & \tilde{b} \\ \tilde{a} & b \end{bmatrix} \quad \text{with unitary} \quad \Phi^{\mathcal{C}} = \Psi(U(\cdot)U^{\dagger})
$$

$$
U = \frac{1}{\sqrt{a + \tilde{b}}} \begin{bmatrix} \sqrt{a} & -\sqrt{\tilde{b}} \\ \sqrt{\tilde{b}} & \sqrt{a} \end{bmatrix}
$$

 τ

4 0 8

 QQ

∍

Classical action of a qubit channel: Optimally coherified channel:

$$
A = \begin{bmatrix} a & 1-b \\ 1-a & b \end{bmatrix} =: \begin{bmatrix} a & \tilde{b} \\ \tilde{a} & b \end{bmatrix}
$$
 with unitary

$$
U = \frac{1}{\sqrt{a + \tilde{b}}} \begin{bmatrix} \sqrt{a} & -\sqrt{\tilde{b}} \\ \sqrt{\tilde{b}} & \sqrt{a} \end{bmatrix}
$$

and $\Psi(\cdot) = L_1(\cdot)L_1^{\dagger} + L_2(\cdot)L_2^{\dagger}$ with

$$
\mathcal{L}_1 = \begin{bmatrix} \sqrt{a + \tilde{b}} & 0 \\ 0 & 1 \end{bmatrix}, \ \mathcal{L}_2 = \begin{bmatrix} 0 & 0 \\ \sqrt{b - a} & 0 \end{bmatrix}
$$

 Ω

 τ

Classical action of a qubit channel: Optimally coherified channel:

$$
A = \begin{bmatrix} a & 1-b \\ 1-a & b \end{bmatrix} =: \begin{bmatrix} a & \tilde{b} \\ \tilde{a} & b \end{bmatrix}
$$
 with unitary

$$
U = \frac{1}{\sqrt{a + \tilde{b}}} \begin{bmatrix} \sqrt{a} & -\sqrt{\tilde{b}} \\ \sqrt{\tilde{b}} & \sqrt{a} \end{bmatrix}
$$

and $\Psi(\cdot) = L_1(\cdot)L_1^{\dagger} + L_2(\cdot)L_2^{\dagger}$ with

$$
\mathcal{L}_1 = \begin{bmatrix} \sqrt{a + \tilde{b}} & 0 \\ 0 & 1 \end{bmatrix}, \ \mathcal{L}_2 = \begin{bmatrix} 0 & 0 \\ \sqrt{b - a} & 0 \end{bmatrix}
$$

 Ω

 τ

Classical action of a qubit channel: Optimally coherified channel:

with unitary

$$
\mathcal{T} = \begin{bmatrix} a & 1-b \\ 1-a & b \end{bmatrix} =: \begin{bmatrix} a & \tilde{b} \\ \tilde{a} & b \end{bmatrix}.
$$

 $|0\rangle\langle0|$ 11×11 ^È-\X-^È ^È+\X+^È

$$
\mathcal{T}=\frac{1}{6}\begin{bmatrix}2&1\\4&5\end{bmatrix}
$$

 $U = \frac{1}{\sqrt{2}}$ $\sqrt{a + \tilde{b}}$ $\begin{bmatrix} \sqrt{a} & -\sqrt{b} \end{bmatrix}$ $\sqrt{\tilde{b}}$ $\sqrt{\ }$ a \top and $\Psi(\cdot)=L_1(\cdot)L_1^{\dagger}+L_2(\cdot)L_2^{\dagger}$ with $L_1 =$ $\begin{bmatrix} \sqrt{a + b} & 0 \\ 0 & 1 \end{bmatrix}$, $L_2 = \begin{bmatrix} 0 & 0 \\ \sqrt{b - a} & 0 \end{bmatrix}$ $b - a$ 0 1

 $\Phi^{\mathcal{C}} = \Psi(U(\cdot)U^{\dagger})$

Upper-bound for the degree of coherification

Optimising coherence of Φ with fixed $T \iff$ maximizing purity of J_{Φ} .

Majorization partial order:

$$
\rho \succ q \Longleftrightarrow \forall_k \textstyle\sum_{j=1}^k \rho_j^{\downarrow} \geq \textstyle\sum_{j=1}^k q_j^{\downarrow}
$$

Important because:

$$
p \succ q \Longrightarrow S(p) \leq S(q) \text{ and } p \cdot p \geq q \cdot q
$$

Look for $\mu \text{\textbackslash} (T)$ such that: $\forall \Phi$ with $\textit{diag}(J_{\Phi}) = \frac{1}{d}$

$$
\forall \Phi \text{ with } diag(J_{\Phi}) = \frac{1}{d} |T\rangle \rangle:
$$

 $\mu^{\succ}(\mathcal{T}) \succ \lambda(J_{\Phi})$

Why? To upper-bound C_e or C_2

Bistochastic classical transition matrix

For bistochastic T majorization upper-bound becomes trivial

$$
[1,0,\ldots,0]^{\top}=\mu^{\succ}\succ\lambda(J_{\Phi})
$$

A non-trivial bound which describes the unistochastic-bistochastic boundary

Leads to bounds for the purity $\gamma = \text{Tr}(\mathcal{J}_\Phi)^2 \leq 1$ characterizing the coherified map Φ[.](#page-47-0)

 QQ

One can always optimally coherify state p

$$
\rho = diag(\rho) \stackrel{C}{\longmapsto} |\psi_j\rangle\langle\psi_j| \quad \text{with} \quad |\psi\rangle = \sum_k \sqrt{p_k} e^{i\phi_{jk}} |k\rangle
$$

Classical states p related to $|\psi_i\rangle$ are the same and are **indistinguishable**. However, if quantum states $|\psi_i\rangle$ are orthogonal they can be **distinguished**.

Question

How many perfectly distinguishable states with classical version p are there?

One can always optimally coherify state p

$$
\rho = diag(\rho) \stackrel{C}{\longmapsto} |\psi_j\rangle\langle\psi_j| \quad \text{with} \quad |\psi\rangle = \sum_k \sqrt{p_k} e^{i\phi_{jk}} |k\rangle
$$

Classical states p related to $|\psi_i\rangle$ are the same and are **indistinguishable**. However, if quantum states $|\psi_i\rangle$ are orthogonal they can be **distinguished**.

Question

How many perfectly distinguishable states with classical version p are there?

One can always optimally coherify state p

$$
\rho = diag(\rho) \stackrel{C}{\longmapsto} |\psi_j\rangle\langle\psi_j| \quad \text{with} \quad |\psi\rangle = \sum_k \sqrt{p_k} e^{i\phi_{jk}} |k\rangle
$$

Classical states p related to $|\psi_i\rangle$ are the same and are **indistinguishable**. However, if quantum states $|\psi_i\rangle$ are orthogonal they can be **distinguished**.

Question

How many perfectly distinguishable states with classical version p are there?

Perfectly distinguishable state coherifications

One can always optimally coherify state p_1

$$
\rho = \text{diag}(p) \stackrel{C}{\longmapsto} |\psi_j\rangle\langle\psi_j| \quad \text{with} \quad |\psi\rangle = \sum_k \sqrt{p_k} e^{i\phi_{jk}} |k\rangle
$$

Classical states p related to $|\psi_i\rangle$ are the same and are **indistinguishable**. However, if quantum states $|\psi_i\rangle$ are orthogonal they can be **distinguished**.

Question

How many perfectly distinguishable states with classical version p are there?

Perfectly distinguishable state coherifications

One can always optimally coherify state p

$$
\rho = diag(p) \stackrel{C}{\longmapsto} |\psi_j\rangle\langle\psi_j| \quad \text{with} \quad |\psi\rangle = \sum_k \sqrt{p_k} e^{i\phi_{jk}} |k\rangle
$$

Classical states p related to $|\psi_i\rangle$ are the same and are **indistinguishable**. However, if quantum states $|\psi_i\rangle$ are orthogonal they can be **distinguished**.

Question

How many perfectly distinguishable states with classical version p are there?

Necessary condition

M perfectly distinguishable states of size N, with $\{\psi_i\}$ with $|\langle k|\psi_i\rangle|^2 = p_k$, $k = 1, \ldots, N$

$$
\implies \forall k : p_k \leq \frac{1}{M}
$$

Orthogonal $\{|\psi_i\rangle\}$ could form columns of unitary matrix Corresponding unistochastic matrix:

$$
U = \begin{bmatrix} \sqrt{p_1} e^{i\phi_{11}} & \cdots & \sqrt{p_1} e^{i\phi_{1N}} & \cdots \\ \sqrt{p_2} e^{i\phi_{21}} & \cdots & \sqrt{p_1} e^{i\phi_{2N}} & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ \sqrt{p_d} e^{i\phi_{d1}} & \cdots & \sqrt{p_d} e^{i\phi_{dN}} & \cdots \end{bmatrix} \qquad U \circ \overline{U} = \begin{bmatrix} p_1 & \cdots & p_1 & \cdots \\ p_2 & \cdots & p_2 & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ p_N & \cdots & p_N & \cdots \end{bmatrix}
$$

But rows must sum to 1!

Set of classical states of size $N = 2, 3$ and 4 forms simplices Δ_{N-1}

 P_M^N denotes the subset of Δ_{N-1} containing M –distinguishable states

 200

Example: $\overline{N} = 4$ **classical states** (tetrahedron)

a) $m = 1$ - entire tetrahedron of classical states $\mathbf{p} = (p_1, p_2, p_3, p_4)$ b) The subset of classical states with $m = 2$ **distinguishable** quantum states defined by condition $p_{\text{max}} \leq 1/2$ forms a dual red tetrahedron, c) The subset with $m = 3$ **distinguishable** quantum states belongs to tetrahedron determined by $p_{\text{max}} \leq 1/3$ and forms an object inside blue tetrahedron bounded with product states, $\alpha(a, 1-a) \times (b, 1-b)$, d) Set with $m=4$ forms the center, $p_*=\frac{1}{4}$ $\frac{1}{4}(1,1,1,1)$ - (Fourier matrix F_4)

Channels $\{\Phi^{(j)}\}$ with fixed action ${\mathcal T}$ are perfectly distinguishable iff:

 $\exists \rho_{AB}~\{\Phi^{(j)} \otimes \mathbb{1}\!\!\!\mathbb{I}\!\!\!\;\!(\rho_{AB})\}$ are perfectly distinguishable

If $\exists \rho\; \{\Phi^{(j)}(\rho)\}$ are perfectly distinguishable then no entanglement is needed

Concluding Remarks

- Hyper-Decoherence of a **quantum map** Φ to a **classical map** T determined by the diagonal of the Choi matrix J_{Φ} (a supermap $\Gamma(\Phi)$ yields the classical channel Φ_T)
- Measures of *coherence of a map* C(Φ) proposed in analogy to the **coherence of a state** $C(J_{\Phi})$
- Idea of **coherification** of a state and a map (*Kannalsanierung*): the search for all preimages with respect to **decoherence**
- *Open questions*:
	- * Are optimally coherified channels extremal?
	- * Is the minimum output entropy equal to zero??
	- * What is the number of perfectly distinguishable states (maps) which decohere to a given classical **state / map**

Based on **K. Korzekwa, S. Czachórski, Z. Puchała, K.Ż.**

a) New J. Phys. **20**, 043028 (2018)

and b) J. Phys. **A 52**, 4753[03](#page-57-0) [\(](#page-59-0)[2](#page-57-0)[01](#page-58-0)[9](#page-59-0)[\)](#page-48-0)

イロト イ部 トイヨ トイヨト

 299

重

K.Ż. (IF UJ/CFT PAN) [Decoherence of quantum operations](#page-0-0) November 21, 2019 31 / 32

A short message to a **theoretical physicist** :

в

4 0 8

∢母

 299

重

A short message to a **theoretical physicist** :

From time to time it is good to look through the window, to observe the **real world outside**,

so it is also good to **wash** it from time to time ...

K.Ż. (IF UJ/CFT PAN) [Decoherence of quantum operations](#page-0-0) November 21, 2019 32 / 32

Bench commemorating discussion between **Stefan Banach** and **Otton Nikodym** (**Kraków, summer 1916**)

Sculpture: Stefan Dousa Fot. Andrzej Kobos

Opened in Planty Garden, Cracow, Oct. 14, 2016

K.Ż. (IF UJ/CFT PAN) [Decoherence of quantum operations](#page-0-0) November 21, 2019 33 / 32