Memory-Dependent Quantum Transformations with a Photonic Quantum Memristor

Karol Bartkiewicz

Institute of Spintronics and Quantum Information, Faculty of Physics and Astronomy, Adam Mickiewicz University, Poznań 61-614, Poland

We present a theoretical proposal for a quantum memristor operating at the single-photon level, implementing memristive behavior, including characteristic hysteresis loops, in a quantum optical system through measurement-based controlled feedback on photonic polarization states [1]. Analogous to classical memristors, where resistance depends on the system's past electrical history, our quantum device transforms input photon states according to $|\psi out(t)\rangle = U(\theta(t))$ $|\psi in(t)\rangle$, where the unitary operator $U(\theta)$ evolves based on measurement outcomes of previous photons, exhibiting path-dependent memory effects [2]. Unlike classical memristors that rely on material properties, our theoretical device achieves memory effects through quantum measurements and high-speed feedback, with dynamics characterized by $d\theta/dt = \eta N(t) + \gamma(\theta_0 - \theta)$, where η is the feedback strength, N(t) represents detection events, and γ is the relaxation rate. The theoretical model predicts high state fidelity while operating under timing constraints where feedback processes must be completed within the photon coherence time ($\sim \mu$ s). Our proposal provides insights into implementing quantum memristive systems differently from those in [3] and with applications in photonic quantum computing, adaptive quantum sensing, and neuromorphic quantum architectures.

References

- [1] K. Lemr et al., Experimental Implementation of Optimal Linear-Optical Controlled-Unitary Gates, Phys. Rev. Lett., 114, 153602, (2015)
- [2] J. Salmilehto et al., Quantum memristors with superconducting circuits, Sci. Rep. 7, 42044 (2017).
- [3] M. Spagnolo et al., Experimental photonic quantum memristor, Nature Physics 18, 1056 (2022).