Here is an additional list of collaborative experiments validating our predictions |
![]() ![]() ![]() |
[Miranowicz1990] A. Miranowicz, R. Tanaœ, and S. Kielich,Experimental observations: (1) The New Haven experiment conducted by Robert Schoelkopf's group at Yale University
Generation of discrete superpositions of coherent states in the anharmonic oscillator model,
Quantum Opt. 2, 253 (1990) , e-print arXiv:1111.0866 . [PDF] [BIB]
[Kirchmair2013] G. Kirchmair, B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Observation of quantum state collapse and revival due to the single-photon Kerr effect, Nature 495, 205 (2013) .(2) The Shanghai-Bejing experiment conducted by Zhirong Lin's group at Chinese Academy of Sciences
[He2023] X. L. He, Yong Lu, D. Q. Bao, Hang Xue, W. B. Jiang, Z. Wang, A. F. Roudsari, P. Delsing, J. S. Tsai, and Z. R. Lin, Fast generation of Schrödinger cat states using a Kerr-tunable superconducting resonator, Nat. Commun. 14, 6358 (2023) .(3) The Tokyo-Wako experiment conducted by Jaw-Shen Tsai's group at the Tokyo University of Science and RIKEN)
[Iyama2024] D. Iyama, T. Kamiya, S. Fujii, H. Mukai, Y. Zhou, T. Nagase, A. Tomonaga, R. Wang, J.-J. Xue, S. Watabe, S. Kwon, and J.-S. Tsai, Observation and manipulation of quantum interference in a superconducting Kerr parametric oscillator, Nat. Commun. 15, 86 (2024) .
[Miranowicz2013] A. Miranowicz, M. Paprzycka, Y.-X. Liu, J. Bajer, and F. Nori,Experimental observation: (1) The Garching experiment conducted by Gerhard Rempe's group at Max Planck Insitute
Two-photon and three-photon blockades in driven nonlinear systems,
Phys. Rev. A 87, 023809 (2013), e-print arXiv:1212.4365 .
[Hamsen2017] C. Hamsen, K. N. Tolazzi, T. Wilk, and G. Rempe, Two-Photon Blockade in an Atom-Driven Cavity QED System, Phys. Rev. Lett. 118, 133604 (2017).
[Bartkowiak2014] M. Bartkowiak, L.-A. Wu, and A. Miranowicz,Experimental observation: (1) The Boulder experiment conducted by Daniel Slichter's group at NIST
Quantum circuits for amplification of Kerr nonlinearity via quadrature squeezing,
J. Phys. B 47, 145501 (2014), e-print arXiv:1210.2384 . [PDF]
[Burd2019] S.C. Burd, R. Srinivas, J.J. Bollinger, A.C. Wilson, D.J. Wineland, D. Leibfried, D.H. Slichter, D.T.C. Allcock, Quantum amplification of mechanical oscillator motion, Science 364, 1163–1165 (2019).In detail, this experimental protocol and its application differ from ours, but the main concept remains the same: the sequential application of quadrature squeezing can enhance or accelerate quantum dynamics.
[Qin2018] W. Qin, A. Miranowicz, P.-B. Li, X.-Y. Lu, J.-Q. You, and F. Nori,Experimental observations: (1-3) The Boulder experiments conducted by Daniel Slichter's group at NIST
Exponentially Enhanced Light-Matter Interaction, Cooperativities, and Steady-State Entanglement Using Parametric Amplification,
Phys. Rev. Lett. 120, 093601 (2018), e-print arXiv:1709.09555 . [PDF]
[Burd2019] S.C. Burd, R. Srinivas, J.J. Bollinger, A.C. Wilson, D.J. Wineland, D. Leibfried, D.H. Slichter, D.T.C. Allcock, Quantum amplification of mechanical oscillator motion, Science 364, 1163–1165 (2019). [Burd2021] S.C. Burd, R. Srinivas, H.M. Knaack, W. Ge, A.C. Wilson, D.J. Wineland, D. Leibfried, J.J. Bollinger, D. Allcock, D. Slichter, Quantum amplification of boson-mediated interactions, Nat. Phys. 17 898–902 (2021). [Burd2024] S.C. Burd, H.M. Knaack, R. Srinivas, C. Arenz, A.L. Collopy, L.J. Stephenson, A.C. Wilson, D.J. Wineland, D. Leibfried, J.J. Bollinger, D.T.C. Allcock, D.H. Slichter, Experimental speedup of quantum dynamics through squeezing, PRX Quantum 5, 020314 (2024).(4) The Paris experiment conducted by Zaki Leghtas's group at Sorbonne Université
[Villiers2024] M. Villiers, W. Smith, A. Petrescu, A. Borgognoni, M. Delbecq, A. Sarlette, M. Mirrahimi, P. Campagne-Ibarcq, T. Kontos, Z. Leghtas, Dynamically enhancing qubit-photon interactions with antisqueezing, PRX Quantum 5, 020306 (2024).In detail, these experimental protocols differ from ours, yet the underlying concept is the same: applying quadrature squeezing can enhance interactions between photons (or phonons) and atoms (both natural and artificial).
[Huang2018] R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, and H. Jing,Experimental observations:
Nonreciprocal Photon Blockade,
Phys. Rev. Lett. 121, 153601 (2018), e-print arXiv:1807.10084 . [PDF]
[Yang2019] P. Yang, X. Xia, H. He, S. Li, X. Han, P. Zhang, G. Li, P. Zhang, J. Xu, Y. Yang, and T. Zhang, Realization of Nonlinear Optical Nonreciprocity on a Few-Photon Level Based on Atoms Strongly Coupled to an Asymmetric Cavity, Phys. Rev. Lett. 123, 233604 (2019). [Graf2022] A. Graf, S. D. Rogers, J. Staffa, U. A. Javid, D. H. Griffith, and Q. Lin, Nonreciprocity in Photon Pair Correlations of Classically Reciprocal Systems, Phys. Rev. Lett. 128, 213605 (2022). [Yang2023] P. Yang, M. Li, X. Han, H. He, G. Li, C.-L. Zou, P. Zhang, Y. Qian, and T. Zhang, Realization of Nonlinear Optical Nonreciprocity on a Few-Photon Level Based on Atoms Strongly Coupled to an Asymmetric Cavity, Laser Photonics Rev. 17, 2200574 (2023). [Zhang2025] Z. Zhang, Z. Xu, R. Huang, X. Lu, F. Zhang, D. Li, S. K. Özdemir, F. Nori, H. Bao, Y. Xiao, B. Chen, H. Jing, and H. Shen, Chirality-induced quantum non-reciprocity, Nat. Photon. (2025)In detail, these experimental methods differ from ours-particularly in the origin of nonreciprocity-but the main outcome remains the same: the observation of nonreciprocal transmission and photon blockade at the single- or few-photon level.
[Wang2019] X. Wang, A. Miranowicz, F. Nori,Experimental observation: (1) The Grenoble experiment conducted by Olivier Buisson's at Université Grenoble-Alpes
Ideal Quantum Nondemolition Readout of a Flux Qubit Without Purcell Limitations,
Phys. Rev. Applied 12, 064037 (2019), e-print arXiv:1811.09048 . [PDF]
[Dassonneville2020] R. Dassonneville, T. Ramos, V. Milchakov, L. Planat, É. Dumur, F. Foroughi, J. Puertas, S. Leger, K. Bharadwaj, J. Delaforce, C. Naud, W. Hasch-Guichard, J. J. García-Ripoll, N. Roch, and O. Buisson, Fast high-fidelity quantum nondemolition qubit readout via a nonperturbative cross-Kerr coupling, Phys. Rev. X 10, 011045 (2020).
[Minganti2019] F. Minganti, A. Miranowicz, R. Chhajlany, F. Nori,Experimental observations of LEPs: (1-3) The St. Louis experiments conducted by Kater Murch's group at Washington University
Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: The effects of quantum jumps,
Phys. Rev. A 100, 062131 (2019), e-print arXiv:1909.11619 . [PDF] [BIB]
[Chen2021] W. Chen, M. Abbasi, Y. N. Joglekar, and K. W. Murch, Quantum Jumps in the Non-Hermitian Dynamics of a Superconducting Qubit, Phys. Rev. Lett. 127, 140504 (2021). [Chen2022] W. Chen, M. Abbasi, B. Ha, S. Erdamar, Y. N. Joglekar, K. W. Murch, Decoherence Induced Exceptional Points in a Dissipative Superconducting Qubit, Phys. Rev. Lett. 128, 110402 (2022). [Erdamar2024] S. Erdamar, M. Abbasi, B. Ha, W. Chen, J. Muldoon, Y. Joglekar, and K. W. Murch, Constraining work fluctuations of non-Hermitian dynamics across the exceptional point of a superconducting qubit, Phys. Rev. Research 6, L022013 (2024).(4-6) The Wuhan experiments conducted by Mang Feng's group at CAS
[Zhang2022] J.-W. Zhang, J.-Q. Zhang, G.-Y. Ding, J.-C. Li, J.-T. Bu, B. Wang, L.-L. Yan, S.-L. Su, L. Chen, F. Nori, S. K. Özdemir, F. Zhou, H. Jing, and M. Feng, Dynamical control of quantum heat engines using exceptional points, Nat. Commun. 13, 6225 (2022). [Bu2023] J.-T. Bu, J.-Q. Zhang, G.-Y. Ding, J.-C. Li, J.-W. Zhang, B. Wang, W.-Q. Ding, W.-F. Yuan, L. Chen, S. K. Özdemir, F. Zhou, H. Jing, and M. Feng, Enhancement of Quantum Heat Engine by Encircling a Liouvillian Exceptional Point, Phys. Rev. Lett. 130, 110402 (2023). [Bu2024] J.-T. Bu, J.-Q. Zhang, G.-Y. Ding, J.-C. Li, J.-W. Zhang, B. Wang, W.-Q. Ding, W.-F. Yuan, L. Chen, Q. Zhong, A. Kecebas, ª. K. Özdemir, F. Zhou, H. Jing, and M. Feng, Chiral quantum heating and cooling with an optically controlled ion, Light: Sci. App. 13, 143 (2024).(7) The online experiment on IBM Quantum
[Abo2024] Shilan Abo, Patrycja Tulewicz, Karol Bartkiewicz, Sahin K. Özdemir, Adam Miranowicz, Experimental Liouvillian exceptional points in a quantum system without Hamiltonian singularities, New Journal of Physics 26, 123032 (2024), e-print arXiv:2401.14993 [PDF]
[Minganti2020] F. Minganti, A. Miranowicz, R. W. Chhajlany, I. I. Arkhipov, F. Nori,Experimental observation: (1) St. Louis experiment conducted by Kater Murch's group at Washington University
Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories,
Phys. Rev. A 101, 062112 (2020), e-print arXiv:2002.11620 . [PDF]
[Chen2021] W. Chen, M. Abbasi, Y. N. Joglekar, and K. W. Murch, Quantum Jumps in the Non-Hermitian Dynamics of a Superconducting Qubit, Phys. Rev. Lett. 127, 140504 (2021).
[Lai2022a] Deng-Gao Lai, Jie-Qiao Liao, Adam Miranowicz, and Franco Nori,Experimental observation: (1) The Shanghai experiment conducted by Haibin Wu's at East China Normal University
Noise-Tolerant Optomechanical Entanglement via Synthetic Magnetism,
Phys. Rev. Lett. 129, 063602 (2022), e-print arXiv:2201.10814 . [PDF] [supplement] [Lai2022b] Deng-Gao Lai, Wei Qin, Adam Miranowicz, Franco Nori,
Efficient optomechanical refrigeration of two vibrations via an auxiliary feedback loop,
Giant enhancement in mechanical susceptibilities and net cooling rates
Phys. Rev. Research 4, 033102 (2022) [PDF]
[Cao2025] Y. Cao, C. Yang, J. Sheng, and H. Wu, Optomechanical Dark-Mode-Breaking Cooling, Phys. Rev. Lett. 134, 043601 (2025).
![]() |