Experimental validation by other groups of multiple theoretical predictions proposed in our work

Experimental validation by other groups of multiple theoretical predictions proposed in our work

Here  is an additional list of collaborative experiments validating our predictions

last updated on Aug 10, 2025

  1. The generation of multi-component Schrödinger cats, also known as Schrödinger kitten states, in Kerr media
    Our first prediction
    [Miranowicz1990] A. Miranowicz, R. Tanaœ, and S. Kielich,
    Generation of discrete superpositions of coherent states in the anharmonic oscillator model,
    Quantum Opt. 2, 253 (1990) , e-print arXiv:1111.0866 . [PDF]  [BIB] 
    Experimental observations:
    (1) The New Haven experiment conducted by Robert Schoelkopf's group at Yale University
    [Kirchmair2013] G. Kirchmair, B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Observation of quantum state collapse and revival due to the single-photon Kerr effect, Nature 495, 205 (2013) .
    (2) The Shanghai-Bejing experiment conducted by Zhirong Lin's group at Chinese Academy of Sciences
    [He2023] X. L. He, Yong Lu, D. Q. Bao, Hang Xue, W. B. Jiang, Z. Wang, A. F. Roudsari, P. Delsing, J. S. Tsai, and Z. R. Lin, Fast generation of Schrödinger cat states using a Kerr-tunable superconducting resonator, Nat. Commun. 14, 6358 (2023) .
    (3) The Tokyo-Wako experiment conducted by Jaw-Shen Tsai's group at the Tokyo University of Science and RIKEN)
    [Iyama2024] D. Iyama, T. Kamiya, S. Fujii, H. Mukai, Y. Zhou, T. Nagase, A. Tomonaga, R. Wang, J.-J. Xue, S. Watabe, S. Kwon, and J.-S. Tsai, Observation and manipulation of quantum interference in a superconducting Kerr parametric oscillator, Nat. Commun. 15, 86 (2024) .
  2. Two-photon blockade
    Our prediction
    [Miranowicz2013] A. Miranowicz, M. Paprzycka, Y.-X. Liu, J. Bajer, and F. Nori,
    Two-photon and three-photon blockades in driven nonlinear systems,
    Phys. Rev. A 87, 023809 (2013),  e-print arXiv:1212.4365 .
    Experimental observation:
    (1) The Garching experiment conducted by Gerhard Rempe's group at Max Planck Insitute
    [Hamsen2017] C. Hamsen, K. N. Tolazzi, T. Wilk, and G. Rempe, Two-Photon Blockade in an Atom-Driven Cavity QED System, Phys. Rev. Lett. 118, 133604 (2017). 
  3. Amplifying quantum dynamics through sequential quadrature squeezing
    Our theoretical proposal introducing the concept and illustrative examples of quantum circuits
    [Bartkowiak2014] M. Bartkowiak, L.-A. Wu, and A. Miranowicz,
    Quantum circuits for amplification of Kerr nonlinearity via quadrature squeezing,
    J. Phys. B 47, 145501 (2014),  e-print arXiv:1210.2384 . [PDF] 
    Experimental observation:
    (1) The Boulder experiment conducted by Daniel Slichter's group at NIST
    [Burd2019] S.C. Burd, R. Srinivas, J.J. Bollinger, A.C. Wilson, D.J. Wineland, D. Leibfried, D.H. Slichter, D.T.C. Allcock, Quantum amplification of mechanical oscillator motion, Science 364, 1163–1165 (2019). 
    In detail, this experimental protocol and its application differ from ours, but the main concept remains the same: the sequential application of quadrature squeezing can enhance or accelerate quantum dynamics.
  4. Amplifying light-matter interaction through quadrature squeezing
    Our proposal
    [Qin2018] W. Qin, A. Miranowicz, P.-B. Li, X.-Y. Lu, J.-Q. You, and F. Nori,
    Exponentially Enhanced Light-Matter Interaction, Cooperativities, and Steady-State Entanglement Using Parametric Amplification,
    Phys. Rev. Lett. 120, 093601 (2018),  e-print arXiv:1709.09555 . [PDF] 
    Experimental observations:
    (1-3) The Boulder experiments conducted by Daniel Slichter's group at NIST
    [Burd2019] S.C. Burd, R. Srinivas, J.J. Bollinger, A.C. Wilson, D.J. Wineland, D. Leibfried, D.H. Slichter, D.T.C. Allcock, Quantum amplification of mechanical oscillator motion, Science 364, 1163–1165 (2019). 
    [Burd2021] S.C. Burd, R. Srinivas, H.M. Knaack, W. Ge, A.C. Wilson, D.J. Wineland, D. Leibfried, J.J. Bollinger, D. Allcock, D. Slichter, Quantum amplification of boson-mediated interactions, Nat. Phys. 17 898–902 (2021). 
    [Burd2024] S.C. Burd, H.M. Knaack, R. Srinivas, C. Arenz, A.L. Collopy, L.J. Stephenson, A.C. Wilson, D.J. Wineland, D. Leibfried, J.J. Bollinger, D.T.C. Allcock, D.H. Slichter, Experimental speedup of quantum dynamics through squeezing, PRX Quantum 5, 020314 (2024). 
    (4) The Paris experiment conducted by Zaki Leghtas's group at Sorbonne Université
    [Villiers2024] M. Villiers, W. Smith, A. Petrescu, A. Borgognoni, M. Delbecq, A. Sarlette, M. Mirrahimi, P. Campagne-Ibarcq, T. Kontos, Z. Leghtas, Dynamically enhancing qubit-photon interactions with antisqueezing, PRX Quantum 5, 020306 (2024). 
    In detail, these experimental protocols differ from ours, yet the underlying concept is the same: applying quadrature squeezing can enhance interactions between photons (or phonons) and atoms (both natural and artificial).
  5. Nonreciprocal photon blockade
    Our proposal
    [Huang2018] R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, and H. Jing,
    Nonreciprocal Photon Blockade,
    Phys. Rev. Lett. 121, 153601 (2018),  e-print arXiv:1807.10084 . [PDF] 
    Experimental observations:
    [Yang2019] P. Yang, X. Xia, H. He, S. Li, X. Han, P. Zhang, G. Li, P. Zhang, J. Xu, Y. Yang, and T. Zhang, Realization of Nonlinear Optical Nonreciprocity on a Few-Photon Level Based on Atoms Strongly Coupled to an Asymmetric Cavity, Phys. Rev. Lett. 123, 233604 (2019). 
    [Graf2022] A. Graf, S. D. Rogers, J. Staffa, U. A. Javid, D. H. Griffith, and Q. Lin, Nonreciprocity in Photon Pair Correlations of Classically Reciprocal Systems, Phys. Rev. Lett. 128, 213605 (2022). 
    [Yang2023] P. Yang, M. Li, X. Han, H. He, G. Li, C.-L. Zou, P. Zhang, Y. Qian, and T. Zhang, Realization of Nonlinear Optical Nonreciprocity on a Few-Photon Level Based on Atoms Strongly Coupled to an Asymmetric Cavity, Laser Photonics Rev. 17, 2200574 (2023). 
    [Zhang2025] Z. Zhang, Z. Xu, R. Huang, X. Lu, F. Zhang, D. Li, S. K. Özdemir, F. Nori, H. Bao, Y. Xiao, B. Chen, H. Jing, and H. Shen, Chirality-induced quantum non-reciprocity, Nat. Photon. (2025) 
    In detail, these experimental methods differ from ours-particularly in the origin of nonreciprocity-but the main outcome remains the same: the observation of nonreciprocal transmission and photon blockade at the single- or few-photon level.
  6. Ideal quantum nondemolition readout for quantum circuits
    Our proposal
    [Wang2019] X. Wang, A. Miranowicz, F. Nori,
    Ideal Quantum Nondemolition Readout of a Flux Qubit Without Purcell Limitations,
    Phys. Rev. Applied 12, 064037 (2019),  e-print arXiv:1811.09048 . [PDF] 
    Experimental observation:
    (1) The Grenoble experiment conducted by Olivier Buisson's at Université Grenoble-Alpes
    [Dassonneville2020] R. Dassonneville, T. Ramos, V. Milchakov, L. Planat, É. Dumur, F. Foroughi, J. Puertas, S. Leger, K. Bharadwaj, J. Delaforce, C. Naud, W. Hasch-Guichard, J. J. García-Ripoll, N. Roch, and O. Buisson, Fast high-fidelity quantum nondemolition qubit readout via a nonperturbative cross-Kerr coupling, Phys. Rev. X 10, 011045 (2020). 
  7. Quantum exceptional points - Liouvillian exceptional points (LEPs)
    Our proposal of the concept and potential physical systems for observing LEPs"
    [Minganti2019] F. Minganti, A. Miranowicz, R. Chhajlany, F. Nori,
    Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: The effects of quantum jumps,
    Phys. Rev. A 100, 062131 (2019),  e-print arXiv:1909.11619 . [PDF]  [BIB] 
    Experimental observations of LEPs:
    (1-3) The St. Louis experiments conducted by Kater Murch's group at Washington University
    [Chen2021] W. Chen, M. Abbasi, Y. N. Joglekar, and K. W. Murch, Quantum Jumps in the Non-Hermitian Dynamics of a Superconducting Qubit, Phys. Rev. Lett. 127, 140504 (2021). 
    [Chen2022] W. Chen, M. Abbasi, B. Ha, S. Erdamar, Y. N. Joglekar, K. W. Murch, Decoherence Induced Exceptional Points in a Dissipative Superconducting Qubit, Phys. Rev. Lett. 128, 110402 (2022). 
    [Erdamar2024] S. Erdamar, M. Abbasi, B. Ha, W. Chen, J. Muldoon, Y. Joglekar, and K. W. Murch, Constraining work fluctuations of non-Hermitian dynamics across the exceptional point of a superconducting qubit, Phys. Rev. Research 6, L022013 (2024). 
    (4-6) The Wuhan experiments conducted by Mang Feng's group at CAS
    [Zhang2022] J.-W. Zhang, J.-Q. Zhang, G.-Y. Ding, J.-C. Li, J.-T. Bu, B. Wang, L.-L. Yan, S.-L. Su, L. Chen, F. Nori, S. K. Özdemir, F. Zhou, H. Jing, and M. Feng, Dynamical control of quantum heat engines using exceptional points, Nat. Commun. 13, 6225 (2022). 
    [Bu2023] J.-T. Bu, J.-Q. Zhang, G.-Y. Ding, J.-C. Li, J.-W. Zhang, B. Wang, W.-Q. Ding, W.-F. Yuan, L. Chen, S. K. Özdemir, F. Zhou, H. Jing, and M. Feng, Enhancement of Quantum Heat Engine by Encircling a Liouvillian Exceptional Point, Phys. Rev. Lett. 130, 110402 (2023). 
    [Bu2024] J.-T. Bu, J.-Q. Zhang, G.-Y. Ding, J.-C. Li, J.-W. Zhang, B. Wang, W.-Q. Ding, W.-F. Yuan, L. Chen, Q. Zhong, A. Kecebas, ª. K. Özdemir, F. Zhou, H. Jing, and M. Feng, Chiral quantum heating and cooling with an optically controlled ion, Light: Sci. App. 13, 143 (2024). 
    (7) The online experiment on IBM Quantum
    [Abo2024] Shilan Abo, Patrycja Tulewicz, Karol Bartkiewicz, Sahin K. Özdemir, Adam Miranowicz, Experimental Liouvillian exceptional points in a quantum system without Hamiltonian singularities, New Journal of Physics 26, 123032 (2024),  e-print arXiv:2401.14993  [PDF] 
  8. Hybrid-Liouvillian formalism and hybrid-Liouvillian exceptional points
    Our proposal
    [Minganti2020] F. Minganti, A. Miranowicz, R. W. Chhajlany, I. I. Arkhipov, F. Nori,
    Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories,
    Phys. Rev. A 101, 062112 (2020),  e-print arXiv:2002.11620 . [PDF] 
    Experimental observation:
    (1) St. Louis experiment conducted by Kater Murch's group at Washington University
    [Chen2021] W. Chen, M. Abbasi, Y. N. Joglekar, and K. W. Murch, Quantum Jumps in the Non-Hermitian Dynamics of a Superconducting Qubit, Phys. Rev. Lett. 127, 140504 (2021). 
  9. Optomechanical cooling via dark-mode breaking
    Our proposals
    [Lai2022a] Deng-Gao Lai, Jie-Qiao Liao, Adam Miranowicz, and Franco Nori,
    Noise-Tolerant Optomechanical Entanglement via Synthetic Magnetism,
    Phys. Rev. Lett. 129, 063602 (2022),  e-print arXiv:2201.10814 . [PDF]  [supplement] 
    [Lai2022b] Deng-Gao Lai, Wei Qin, Adam Miranowicz, Franco Nori,
    Efficient optomechanical refrigeration of two vibrations via an auxiliary feedback loop,
    Giant enhancement in mechanical susceptibilities and net cooling rates

    Phys. Rev. Research 4, 033102 (2022)  [PDF] 
    Experimental observation:
    (1) The Shanghai experiment conducted by Haibin Wu's at East China Normal University
    [Cao2025] Y. Cao, C. Yang, J. Sheng, and H. Wu, Optomechanical Dark-Mode-Breaking Cooling, Phys. Rev. Lett. 134, 043601 (2025). 



File translated from TEX by TTHgold, version 4.00.
On 10 Aug 2025, 16:16.